Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки сшивание

    Для отбора клеток, содержащих рекомбинантную ДНК, используют специальные приемы. Чтобы уменьшить количество кольцевых плазмидных молекул, образующихся ири сшивании фрагментов ДНК-лигазой Т4, рестрицированную плазмидную ДНК обрабатывают щелочной фосфатазой, удаляющей 5 -концевые фосфатные группы. Для отбора трансформированных клеток, содержащих гибридные плазмиды, проводят 1) тестирование на резистентность к определенным антибиотикам или колориметрическую реакцию 2) иммунологические тесты или выявление специфического белка - продукта клонированного гена 3) гибридизацию с зондом, комплементарным како-му-либо участку искомого гена. [c.78]


    Созревание теста и развитие у него вязкоэластических свойств принято объяснять образованием белками клейковины пространственной сетки путем сшивания белковых молекул, присутствующих в отдельных частицах муки. Эти молекулы находятся в исходной муке в форме плотно свернутых клубков и удерживаются в такой конфигурации физическими силами, в частности внутримолекулярными ковалентными дисульфидными мостиками между остатками цистеина. Перемешивание теста сопровождается разрывом некоторых сравнительно слабых когезионных связей (таких, как водородные связи), что делает возможным гидратацию, набухание и развертывание молекул белков в солевом растворе теста. Это влечет за собой ряд внутри- и межмолекулярных химических реакций белков и заканчивается образованием устойчивой трехмерной структуры созревшего теста. Согласно общепринятому представлению, важнейшими из этих реакций, по-видимому, являются реакции тиол-дисульфидного и дисульфид-дисульфидного обмена. [c.605]

    Высокомолекулярные цепи содержатся в структурах многих органических природных или синтетических веществ, которые часто обладают весьма ценными свойствами (например, в целлюлозе, белках, каучуке, полиэтилене и перлоне). Параллельно расположенные или скрученные цепи образуют гибкую нить. Эластичность резиноподобных веществ обусловлена нерегулярным сшиванием макромолекул между собой. [c.359]

    Метод применим для иммобилизации белков на полиакриламидных гелях и на АЕ-целлюлозе. Глутаровый альдегид применяли также для образования нерастворимой массы ферментов посредством поперечного сшивания. [c.236]

    Для соединений фтора и кислорода характерно образование за счет водородной связи группировок из одинаковых молекул — ассоциаций (НаО) и (HF)m. Это сказывается на целом ряде свойств соединений и, в частности, на таких параметрах, как температуры кипения и замерзания. По относительной величине молекулярных масс НаО и H S для воды и /3 должны быть ниже, чем для сульфида водорода (—60,75 и —85,60 °С). В действительности они много выше (100 и О °С), что связано с увеличением молекулярной массы воды за счет ассоциаций ее молекул. Карбоновые кислоты в жидкой и газовой фазах существуют в основном в виде димеров. В белках, нуклеиновых кислотах и других органических соединениях, имеющих большое биологическое значение, водородная связь обеспечивает поперечное сшивание цепочечных молекул. Для некоторых соединений возможно также образование внутримолекулярной водородной связи, например в нитрофеноле. [c.122]


    Хроматографический сорбент с АГП был получен на основе силикагеля с размером пор 300 А, на котором белок был иммобилизован путем изменения его функциональных групп и последующего сшивания, осуществляемого таким образом, чтобы образовавшиеся агрегаты были достаточно большими и могли удерживаться в порах. АГП содержит пять углеводных фрагментов, на долю которых приходится 45% его молекулярной массы. Окислением перйодатом натрия первичные спиртовые группы этих углеводных фрагментов превращаются в альдегидные. Закрепление модифицированного белка на силикагеле проводится путем повышения pH буферного раствора, что вызывает его сшивание через образование оснований Шиффа. Для получения гидролитически устойчивых связей последние восстанавливаются до иминогрупп с помощью циан-борогидрида натрия [94]. Процесс иммобилизации показан на схе- [c.137]

    Каждый белок строится из своего набора аминокислот, остатки которых располагаются в полипептидной цепи в строго определенной последовательности. Так формируется молекула или первичная структура белка, специфичная для каждого вида организмов. Фрагменты такой молекулы взаимодействуют между собой, образуя водородные связи, в результате чего цепочечная молекула скручивается в спираль. Каждый виток спирали содержит нецелочисленное количество остатков, также связанных между собой, что делает неповторимой пространственную структуру спирали и придает устойчивость всей системе. Особенности скручивания цепей определяют вторичную структуру белка. Полипептидные цепи белка могут взаимодействовать не только за счет водородных связей. В сшивании и скручивании молекулы участвуют еще и амидные связи, дисульфидные мостики, связи между радикалами, поскольку радикалы могут включать самые разные функциональные группы. [c.434]

    В современных интенсифицированных непрерывных процессах хлебопечения сшивание клейковинных белков ускоряется [c.605]

    При использовании для связывания бифункциональных реагентов следует помнить о. возможных осложнениях, возникающих в результате сшивания и носителя, и белков, а также их друг с другом, поэтому во время связывания следует тщательно поддерживать необходимые условия реакции (pH, температуру и продолжительность реакции). [c.231]

    Особенно сложно изучение студнеобразных систем, в к-рых сочетаются явления сшивания полимера и фазового распада. Между тем именно с такими системами часто встречаются при изучении биополимеров. Мало еще изучены комбинированные системы с двумя несовместимыми в общем растворителе полимерными компонентами (например, белки и крахмал в растительных материалах). [c.282]

    Фтористый водород в газовой фазе образует циклич. комплексы иа нескольких молекул, напр, (НР)в. Спирты в жидкой и твердой фазах содержат цепочечные или кольцевые полимеры. В белках, нуклеиновых кислотах и других биологич. веществах В. с. обусловливают поперечное сшивание цепочечных молекул ц образование сложных полимерных структур. [c.314]

    Однако процесс синтеза нельзя представлять себе как непосредственное присоединение аминокислот к рибосомной РНК и простое сшивание их друг с другом. Во-первых, трудно понять, каким образом четыре типа оснований в РНК независимо от геометрии молекулы могут служить непосредственно матрицей для 20 разных аминокислот и определять их последовательность. По-видимому, необходимо постулировать существование молекул-адаптеров, которые, с одной стороны, специфически соединяются с аминокислотами, а с другой — выбирают соответствующие места на матрице. Во-вторых, как было указано в разд. 4 гл. II, химическое равновесие при синтезе белков из обычных аминокислот сдвинуто в сторону гидролиза. Поскольку для протекания эндотермической реакции необходим источник энергии, белки могут образовываться только из активированных аминокислот. Экспериментально было показано, что синтез белка действительно происходит при участии молекул-адаптеров и активированных аминокислот. [c.370]

    Воздействие излучения на белки неспецифично и вызывает потерю их биологической активности. При облучении в растворе белки подвергаются действию свободных радикалов, возникающих в растворителе. Вызываемые изменения во многих отношениях сходны с изменениями, производимыми при облучении в сухом состоянии, хотя имеется несколько различий, а именно в растворе отмечена большая тенденция к поперечному сшиванию. Особое внимание привлекла инактивация энзимов свободными радикалами, образующимися в облученной воде. [c.282]

    Механизм взаимодействия соединений хрома с белками голья полностью еще н изучен. В науке существуют различные точки зрения. Наиболее правильными являются представления, объясняющие процесс дубления как химическое взаимодействие между соединениями хрома и коллагеном. Дубящие соединения хрома образуют в структуре коллагена прочные поперечные связи между соседними молекулярными цепями, вследствие чего происходит связывание ( сшивание ) этих цепей. Главную роль в фиксации дубящих соединений. хрома играют карбоксильные группы и аминогруппы боковых цепей коллагена. Эти группы внедряются во внутреннюю сферу комплекса, образуя координационные связи с атомами хрома. Наряду с образованием координационных связей имеет, место электровалентное взаимодействие между ионизированными группами коллагена и комплексными ионами хрома противоположного знака. Пептидные группы коллагена в фиксации [c.244]


    В 1965 г. группе американских ученых во главе с Р. Холли удалось установить полную гюследовательность нуклеотидов в одной из самых низкомолекулярных растворимых РНК — транспортной РНК аланина. Транспортные РНК служат для связывания аминокислот и доставки их в рибосомы, где производится синтез белка сшиванием аминокислот в последовательпости, определяемой кодом ДНК ядра клетки, передаваемым в рибосому матричной (информационной) РНК. Каждой аминокислоте соответствует своя транспортная РНК. Мы считаем полезным вкратце изложить работу по расшифровке транспортной РНК аланина в такой мере, чтобы дать понятие о методе полного установления последовательности нуклеотидов в нуклеиновой кислоте. При этом мы будем пользоваться сокращенными обозначениями, примененными авторами этой замечательной работы  [c.679]

    В предыдущем разделе было отмечено, что степень сшивания оказывает решающее влияние на процесс разделения веществ на ионитах. Так, на дауэксе 50x8 или х16 можио разделить аминокислоты, тогда как высшие Пептиды и белки проходят через такую колонку без задержки Высшие Пептиды (но не высокомолекулярные белки) разделяются удовлетвори- [c.549]

    Заряженные частицы перемещаются в растворе под влиянием электрического поля с различной скоростью. Уже в первой половине нашего столетия для этого явления было введено понятие "электрофорез" или "электрический перенос". Различие скоростей перемещения может быть обусловлено двумя причинами (а) различные молекулы несут на себе различные заряды и поэтому при наложении электрического поля могут ускоряться в различной степени (б) их перемещению препятствует различающееся по величине сопротивление трения. В простейшем случае разделительная среда (раствор электролита) находится в трубке. Из-за отвода Джоулева тепла на практике зачастую наблюдается искажение зон за счет различных плотностей электролита и конвекционных потоков. В случае классического электрофореза применяются гели или полоски бумаги, пропитанные электролитами для того, чтобы уменьшить помехи, вызванные конвекцией, а также чтобы увеличить сопротивление трения макро-молекул с незначительными различиями в зарядах и тем самым усилить эффект разделения. Использование полиакриламидного гель-электрофореза (ПААГ-электрофореза) позволяет проводить эффективное разделение молекул ДНК и белков. Благодаря изменению степени сшивания геля может быть оптимизирована производительность разделения. При использовании гель-электрофореза белков, денатурированных додецилсульфатом натрия (ДДСН), возможно непосредственное определение их молекулярной массы. Разделение в этом случае основано исключительно на затруднении миграции пробы через гель (без геля все денатурированные додецилсульфатом натрия белки перемещаются с одинаковой скоростью). [c.5]

    Для исследования расположения белков в мембранах, а также расположения олигомеров в ферментах, состоящих из многих субъединиц, был разработан ряд методов мечения [24,30] и сшивки [31—34]. Так, для сшивания молекул белков в мембране эритроцитов использовали окисление их внутренних меркапто-групп [30] после выделения комплекса образовавшиеся связи могут быть разрушены восстановительным расщеплением, что позволяло идентифицировать составляющие белки. Альтернативный подход [32,33] заключался в биосинтетическом введении в биологические мембраны жирных кислот, несущих светочувствительную группу сшивка производного жирной кислоты и смежного белка индуцировалась фотолизом. Сходные методы применяли для сшнвки белков [34] в мембранах эритроцитов. [c.124]

    Функцию раскручивания (расплетения) двойной спирали ДНК в репликационной вилке, происходящего за счет энергии гидролиза АТФ, выполняет специфический гер-белок, названный хеликазой (мол. масса 300000). Образовавшиеся на определенное время одноцепочечные участки ДНК служат в качестве матрицы при репликации и стабилизируются при помощи особых белков, связывающихся с одноцепочечной ДНК (ДНК-связывающие белки) и препятствующих обратному комплементарному взаимодействию цепей ДНК (мол. масса 75600). В связи с этим их иногда называют дестабилизирующими двойную спираль белками. Имеются, кроме того, особые ферменты топоизомеразы (у прокариот одна из них названа ДНК-гиразой), которые играют особую роль в сверхспирализации, обеспечивая как репликацию, так и транскрипцию ДНК. Эти ферменты наделены способностью не только создавать супервитки, но и уничтожать суперспирализацию путем сшивания образующихся разрывов или разрезания ДНК. Наконец, открыты специальные ферменты, редактирующие ДНК, т.е. осуществляющие вырезание и удаление ошибочно включенных нуклеотидов или репарирующие повреждения ДНК, вызванные физическими или химическими факторами (рентгеновское излучение, УФ-лучи, химический мутагенез и др.). [c.480]

    В осуществлении каждого из указанных процесов специфическое участие принимает ряд белков и нуклеиновых кислот, хотя конкретные молекулярные механизмы этих превращений еще не полностью раскрыты. Все три указанных процесса имеют важное значение в формировании зрелой молекулы мРНК. Однако наибольший интерес исследователи проявляют к выяснению молекулярного механизма сплайсинга, который должен обеспечить, во-первых, постепенное и высокоточное вырезание интронов из первичного транскрипта и, во-вторых, сшивание образующихся фрагментов-экзонов- конец в конец . Любые отклонения или смещения границ в процессе вырезания интронов и сшивания экзонов даже на один нуклеотид могут привести не только к глубокому искажению смысла в кодирующих последовательностях, но и к нарушению передачи генетической информации и развитию патологии. [c.490]

    Глутатион участвует в ряде окислительно-восстановительных оцессов. Он выполняет функцию протектора белков, т. е. ве- ства, предохраняющего белки со свободными тиольными груп-ми —SH от окисления с образованием дисульфидных связей S—S —. Это касается тех белков, для которых такой процесс желателен. Глутатион в этих случаях принимает на себя дей-вие окислителя и таким образом защищает белок. При окис-нии глутатиона происходит межмолекулярное сшивание двух ипептидных фрагментов за счет дисульфидной связи. Процесс ратим. [c.353]

    Малые ядерные РНК в комплексе со специальными белками образуют сплайсосому, которая осуществляет вырезание интронов и сшивание экзонов. Сплайсосома представляет собой сложный комплекс, состоящий из пяти типов м-яРНК и 50 типов белков. Этот комплекс комплементарно соединяется с консенсусной последовательностью на границе экзон—интрон. Предположим, что необходимо вырезать интрон, расположенный между двумя экзонами. На первом этапе в результате нуклеофильной атаки разрывается связь у 5 -конца интрона, и образуется петля между гуанином на 5 -конце интрона и аденином вблизи З -конца интрона. Затем вырезается З -конец интрона, петля освобождается, а экзоны А и Б сшиваются друг с другом под действием РИК-лигаз, входящих в сплайсосому (рис. 28.8). [c.461]

    Экзоны во много раз меньше (1000 пн) интронов Интрон представляет собой транскрибируемый (но не кодирующий) участок ДНК, который удаляется из состава транскрипта при сплайсинге (от англ spli ing — сплетение, сшивание) Сплайсинг протекает в ядре, и он заканчивается объединением экзонов в зрелую мРНК (рис 53) Участок ДНК между правым концом интрона и левым концом экзона называется акцепторной точкой сплайсинга В ДНК митохондрий интроны кодируют синтез отдельных белков, [c.161]

    Возможно, что сшивание молекул белков происходит главным образом путем окисления тиоловых групп с образованием межмолекулярных дисульфидных М остиков. Перестройка существующих внутримолекулярных дисульфидных связей в меж-молекулярные должна также вызывать агрегацию, но неизвестно, ускоряет ли облучение такие реакции. Каррол с сотрудниками [71] полагали, что образование поперечных связей происходит не только за счет возникновения дисульфидных мостиков, а, возможно, также в результате соединения бензольных колец тирозина и фенилаланина. Известно [72—74], что облучение насыщенных водных растворов бензола приводит к образованию дифенила как основного продукта реакции. [c.228]

    Реакции разрыва и сшивания и обусловленные ими изменения размеров и формы молекул отражаются на физических свойствах растворов облученных белков. При агрегации фибриногена [58, 70] и сывороточного альбумина быка [62, 63] обычно цроисходит увеличение вязкости растворов. Вязкость растворов овальбумина возрастает, если облучение проводится при изо-электрической точке или при низких pH, но уменьшается при высоких pH [75]. Мы видели, что уменьшение вязкости может сопутствовать увеличению молекулярного веса при образовании разветвленных структур поэтому результаты, полученные при высоких pH, не обязательно отражают деградацию. [c.228]

    Промежутки между кусками генов бывают разными — от 10 до 20 ООО пар оснований. Как же на таких расчленённых генах синтезируются единые молекулы мРНК, по которым далее идет синтез единых молекул белков Оказалось, что с участка ДНК, по которому разбросаны куски данного гена, включая и промежутки, снимается копия в виде очень длинной молекулы РНК. Эта молекула-предшественник или, как говорят, про-РНК. Из про-РНК сложным путем нарезания и последующего сшивания (этот процесс иногда называют созреванием ) получаются зрелые молекулы РНК, которые уже могут выполнять свои прямые обязанности. Таким образом, сам факт расчленённости генов заставляет высшие организмы заботиться о созревании РНКовых копий. Отметим, что в зачаточном (или, наоборот, в рудиментарном) виде механизм созревания РНК есть и у бактерий, но там дело ограничивается отрезанием лишних концов у молекул. [c.79]

    Хотя эти два вида реакций могут протекать одновременно, однако обычно в условиях облучения тот или иной вид реакций преобладает. Реакции первого типа, т. е. сшивания молекул, преобладают при облучении таких полимеров полиэтилен, полистирол, поливинилхлорид, почти все виды каучука, полиметилметакрилат и найлон. Деструкция преобладает над сшиванием у полимеров полиизобутилепа, поливинилиденхлорида, политетрафторэтилена (тефлона), полиметилметакрилата, а также у таких природных высокомолекулярных веществ, как белки, целлюлоза и крахмал. Если сопоставить строение звеньев, образующих перечисленные виды полимеров, то можно заметить, что, как правило, к деструктурирующимся полимерам относятся такие, в цепной части молекул которых имеются атомы углерода (или других элементов), к которым не присоединены атомы водорода. Отметим, что обычно сшивание сопровождается выделением значительных количеств водорода. С. С. Медведев объяснил механизм сшивания полимеров на примере изучения облученного полиэтилена тем, что в процессе облучения от молекулы отщепляются атомы Н и образуются макромолекулы — радикалы  [c.430]

    Дубление белков основными солями хрома и их комбинация с таннидами и алюминиевыми квасцами придают белкам кож устойчивость к действию излучения в указанном диапазоне доз. Установлено, что кожи таннидного дубления под действием излучения мало изменяют свои свойства в отличие от кож минерального дубления. Облучение дозами, не превышающими 10 рд, приводит к улучшению основных физико-механических свойств кож таннидного дубления. Так, например, температура сваривания образцов, выдубленных таннидами ивы, после облучения дозой 10 рд повысилась с 94 до 102° С [6]. Этот факт позволяет сделать вывод о том, что при указанной дозе в образцах кож происходит дополнительное сшивание структуры коллагена, помимо межмолекулярных связей, образовавшихся в npaafip e дубления. [c.334]

    С. г. играют важную роль в биохимич. процессах. С. г. таких низкомолекулярных соединений, как кофермент А, глютатион, липоевая кислота, способны образовывать тиоэфиры и участвовать в ферментативных реакциях нереноса ацильных остатков. С. г. белков принадлежат остаткам цистеина они принимают участие в создании вторичной и третичной структур белков за счет взаимодействия с другими функциональными группами полипептидной цепи жесткое сшивание отдельных цепей (нанр., в инсулине) или участков одной цепи (напр., в трипсине, химотрипси-не и др. ферментах) нутем образования дисульфидных мостиков образование водородных связей и координационных связей с участием металлов и т. п. С. г., З аствуя в создании разнообразных химич. связей [c.551]

    Ли и Сеон [140] сшивали три соединения — полиакриламид, поливинилэтилкарбитол и поливинилпирролидон — N, Ы -метилен-бис-(акриламидом). Эти авторы использовали не слишком высокую концентрацию агентов сшивания (9, 16 и 16% соответственно) и сильно разбавляли (5, 15 и 15%) исходные соединения водой, смесью воды со спиртом и водой соответственно. Полимеризацию проводили в массе и инициирование осуществляли с помощью диметиламинопропионитрила и персульфата аммония. Опыты со смесями белков сыворотки человека, лизоцима и компонентов пыльцы амброзии показали, что полученные гели обладали порами довольно крупных размеров. Указанные белки и несколько пигментов удалось расфракционировать по крайней мере частично, в то же время липиды оказались слишком высокомолекулярными и исключались из структуры геля. [c.135]

    Среди природных гелей, применяемых при фракционировании методом ГПХ, следует отметить крахмал [167, 186], желатину [190а] и агар [138, 170, 171]. Общим для указанных трех гелей является низкая степень сшивания, пластичность и высокое сопротивление потоку растворителя в колонке. Кроме того, эти гели содержат группы, обусловливающие возможность ионного обмена и адсорбции, поэтому для большинства целей природные гели использовали гораздо реже, чем синтетические, параметры которых легче регулировать. С другой стороны, агаровый гель содержит, вероятно, поры необычно больших размеров. Полсон [138], используя в качестве геля гранулированный агар, смог осуществить фракционирование белков молекулярного веса вплоть до 6,6 10 . Стир и Аккерс [170, 171] на агаровых гелях разделили даже вирусы и компоненты клеток. Полсон [138] получил простое соотношение между концентрацией агара в геле (с) и диаметром молекулы растворенного вещества (ё), проникающей в гель  [c.136]


Смотреть страницы где упоминается термин Белки сшивание: [c.416]    [c.57]    [c.318]    [c.433]    [c.166]    [c.82]    [c.83]    [c.346]    [c.665]    [c.182]    [c.102]    [c.166]    [c.270]    [c.327]    [c.346]    [c.217]    [c.355]   
Действующие ионизирующих излучений на природные и синтетические полимеры (1959) -- [ c.228 ]

Химические реакции полимеров том 2 (1967) -- [ c.436 , c.437 ]




ПОИСК





Смотрите так же термины и статьи:

Сшивание



© 2025 chem21.info Реклама на сайте