Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гели, используемые в методе ГПХ природные

    В соответствии с определением, данным в статье 11, а], при гель-фильтрации используют водные растворы и гидрофильные гели, а при гель-проникающей хроматографии — органические растворители и гидрофобные гели. Фильтрование через гель применяется при биохимических исследованиях и при изучении природных соединений, гель-прони-кающая хроматография — для исследования синтетических высокомолекулярных соединений. Указанные методы включают также хроматографирование, или фильтрование , на молекулярных ситах 12]. Гель обычно характеризуют размерами молекул (точнее, интервалом молекулярных весов молекул), которые он достаточно эффективно разделяет. [c.399]


    Выбор метода иммобилизации также зависит от реакции или процессов, которые будут осуществлять клетки. В целом для иммобилизации клеток микроорганизмов используют те же методы, что и для иммобилизации ферментов — адсорбцию, ковалентное и поперечное связывание, включение в гели (рис. 10.1). Ковалентное и поперечное связывание применяют чаще для мертвых или поврежденных клеток. Носители используют природные и синтетические, способные обеспечивать необходимые процессы и параметры. [c.219]

    В практическом отношении антитела преимущественно применялись для решения проблем идентификации и количественного определения веществ. Здесь имеется в виду использование белков как природных маркеров некоторых сырьевых материалов с целью распознавания их в продуктах питания для контроля качества. С этой целью изготовлены специфические иммунные сыворотки этих белков. Так, например, методы преципитации в геле послужили для обнаружения в пшеничной муке примесей ячменной муки [76] или в муке из твердой пшеницы примесей муки из мягкой пшеницы [90, 91]. Они могут быть использованы также для проверки отсутствия клейковины в кормовых рационах [7]. В такой стране, как ФРГ, где законодательство разрешает использовать в производстве пива только солод из ячменя и хмель, исключая особенно зерно риса и кукурузы как более дешевые источники крахмала, для контроля поступающего в продажу пива применили метод иммунохимической идентификации [98]. Иммунохимический подход (метод преципитации и RIA) также использовали для контроля запрещаемых законом в некоторых странах добавок в пиво препаратов протеаз как средства стабилизации [32]. В этих двух последних случаях проблема распознавания сложна, поскольку изготовление пива предусматривает вспенивание сусла при перемешивании, пастеризацию при стерилизации, т. е. происходит в условиях денатурации белков. Задача распознавания денатурированных бел- [c.112]

    В промышленности гелий выделяют из природных газов методом глубокого охлаждения. При этом он, как самое низкокипящее вещество, остается газообразным, тогда как все другие вымораживаются. Применяется гелий для создания инертной атмосферы, при сварке металлов, при консервировании пищевых продуктов, в кислородно-воздушных смесях для водолазов и др. Жидкий гелий — хладоагент, использующийся в химии и физике низких температур. [c.199]

    Мембранные методы используются Д1ш разделения воздуха как с целью получения потока, обогащенного азотом, так и с целью получения потока, обогащенного кислородом. Они используются также для выделения водорода, очистки газа от диоксида углерода и сероводорода, извлечения гелия из природного и нефтяного газов и других целей (см. 18.5). [c.46]


    В настоящее время метод фракционной конденсации глубоким охлаждением применяется в промышленности во многих производствах. Так, из природных газов, содержащих 0,5—5% гелия, выделяют гелий, конденсируя все остальные вещества. Гелий используется в воздухоплавании как легкий и абсолютно безопасный газ. Глубоким охлаждением газов крекинга и пиролиза нефти выделяют этилен, пропилен, бутилен, широко используемые в про- [c.219]

    Метод гидротермального синтеза в настоящее время широко используется для модифицирования пористой структуры гелей, ксерогелей и некоторых природных алюмосиликатов в направлении формирования крупнопористых адсорбентов с повышенными сорбционными свойствами и величиной среднего эффективного радиуса пор [36—40]. [c.38]

    Смеси низкокипящих углеводородов и газов На, N2, и СО можно разделять путем перегонки как при атмосферном давлении с применением специальных хладоагентов, так и при повышенном давлении. Если разделение проводят при повышенном давлении, то стремятся повысить температуру головки колонны до такого значения, чтобы можно было использовать обычные охлаждающие средства (см. разд. 5.4.5). Из-за того, что для перегонки под давлением необходима более сложная аппаратура, чаще применяют лабораторные и пилотные установки низкотемпературной ректификации. Методика проведения низкотемпературной ректификации разработана очень подробно. Созданы полностью автоматизированные установки для проведения низкотемпературной ректификации в интервале от —190 до 20° С. В этих установках применяют как насадочные, так и полые спиральные колонны. Во многих случаях отбираемые пробы дистиллята и кубового продукта анализируют методом газовой хроматографии (см. разд. 5.1.2). Низкотемпературную ректификацию используют для очистки газов, а также как сравнительную ректификацию, аналогичную промышленному процессу. Это относится прежде всего к очистке отходящих промышленных газов без концентрирования в них водорода и, главным образом, к очистке природного газа, например выделение гелия и азота из природного газа, что по-прежнему является трудной проблемой. [c.250]

    В настоящее время разработано значительное число методов изучения электрофореза и определения с его помощью электрокинетического потенциала метод непосредственного изучения движения границы между дисперсной системой и свободной дисперсионной средой под действием внешней разности потенциалов (метод подвижной границы), метод микроэлектрофореза — наблюдение с помощью микроскопа или ультрамикроскопа за перемещением отдельных частиц,, электрофорез в гелях, бумажный электрофорез и др. Эти методы,, подробно описанные в практикумах по коллоидной химии широко применяются для изучения электрофореза как дисперсных систем, образованных низкомолекулярными веществами, так и дисперсий ВМС, особенно природного происхождения. Методы электрофореза позволяют анализировать и разделять смеси белков, что эффективно используется в исследовательской работе и лечебно-диагностической практике. [c.194]

    Цеолитсодержащий крекирующий катализатор с аморфной матрицей для установок с движущимся слоем [30]. Раствор силиката натрия, в котором диспергирован синтетический Na-фожазит, с помощью смесительной насадки тщательно перемешивают с кислым раствором сульфата алюминия и серной кислотой. Образующийся гидрозоль, содержащий суспензию Na-фожазита, формуют в сферические бусы гидрогеля, пропуская глобулы гидрозоля через колонку с минеральным маслом [31]. Время, требуемое для затвердевания геля, при этом не составляет и 1 мин. Шариковый катализатор, загрязненный посторонними солями, можно подвергнуть обмену и заменить катионы натрия в матрице и фожазите на многие другие ионы. В промышленности обмен проводят чаще всего на редкоземельные ионы. После отмывки от хлор- и сульфат-ионов этот катализатор сушат теми же способами, как и микросферический, а затем прокаливают. Описанный метод можно видоизменить и использовать для приготовления полусинтетических катализаторов из природных глин. [c.237]

    Аналогичные методики использовались и для обнаружения в воде очень низких (1 пг) содержаний олова, свинца и ртути [61, 63]. При газохроматографическом определении химических форм нахождения олова в морской воде (моно-, ди- и трифенилолово, моно-, ди- и трибутилолово и неорганические соединения олова) МОС восстанавливают до соответствующих гидридов, продувают воду гелием высокой чистоты и улавливают гидриды на силанизированном хромосорбе GAW [64]. Предел обнаружения равен 0,02—10 мг/л. Определение летучих МОС тяжелых металлов (сурьма, висмут, мышьяк, ртуть, теллур, свинец и олово) в природных и антропогенных экологических пробах методом ГХ/МС/ИНП чаще всего осуществляется после превращения их в гидриды или алкильные соединения [66]. [c.583]


    На стадии предварительного разделения газовой смеси этот способ используют при осушке воздуха, природного и конвертированного газов, а также других газовых смесей, применяя такие адсорбенты, как силикагель, алюмогель и синтетические цеолиты [64, 90]. В некоторых случаях одновременно с осушкой производится адсорбция из газовой смеси и незначительного количества других примесей, например СО2, Нг8 и углеводородов. При криогенных температурах метод адсорбции получил наибольшее распространение при очистке гелия, неона и водорода от небольших количеств азота, кислорода и метана, а также гелия от примесей неона и водорода. Этот метод применяется при очистке от примесей и других газов, таких как аргон, криптон и ксенон [16, 90]. [c.53]

    Оба метода основаны на предположении, что содержание аргона и соотношение аргона и азота в воздухе постоянны. Это справедливо для большинства случаев, но в некоторых опытах бывает нужна синтетическая атмосфера и тогда сказанное теряет силу. Например, образование азота микроорганизмами почвы можно изучать в атмосфере, содержащей 20% кислорода и 80% гелия. Конечно, экспериментатор будет знать это заранее и не станет использовать поправочный коэффициент для аргона. Но даже и в этом случае синтетическая атмосфера может смешаться с различными количествами природного воздуха. Если фактическое содержание аргона не представляет интереса и необходимо получить надежные данные только по кислороду, наиболее простой выход заключается в применении в качестве газа-носителя аргона (см. раздел Б,И,а,2). Оба газа существенно различаются по удельной теплопроводности, так что будут получены хорошо разделенные пики. При сложном пике, однако, термический детектор будет реагировать только на кислород и не будет чувствовать малых количеств аргона. Поэтому ошибка в определении кислорода автоматически исчезнет благодаря селективности такой системы. [c.167]

    Настоящий метод дает превосходное разрешение, если первый этап электрофореза проводят в относительно разбавленных гелях при pH, подходящем для всех белков, присутствующих в смеси. Он не только обладает очень хорошей разрешающей способностью, но и позволяет определять молекулярные массы разделяемых компонентов, поскольку подвижность белков при миграции в гелях, содержащих ДСН, зависит лишь от размеров их молекул. Методы такого рода широко используют для разделения природных смесей белков (примеры приведены в главах, посвященных разделению определенных групп белков). [c.231]

    Используется гелий и в очистке веществ. В Чехословакии в конце 80-х годов разработан метод магнитной очистки и сепарации природных глин, в частности, каолина этот метод базируется на использовании сверхпроводящих магнитов. [c.8]

    Исходя из состава природных газов, было решено использовать свойство всех сопровождающих гелий компонентов (метана, азота и др.) сжижаться при температурах, значительно превышающих критическую температуру гелия, т. е. применить для целей выделения гелия метод фракционированного ожижения природного газа при глубоком охлаждении. [c.205]

    Следует отметить, что избранный американцами метод не является единственно возможным разрешением проблемы. В целях выделения гелия из природных газов может быть использовано и другое свойство сопровождающих гелий компонентов, например их способность коли- [c.205]

    Все же в первые годы развития адсорбционный метод хотя частично использовался американской гелиевой промышленностью, а именно для рафинирования гелия, как полученного в процессе его выделения из природных газов, так и отработанного в дирижаблях (т. е. загрязненного воздухом). Однако впоследствии и для этих целей стал применяться и повсеместно укрепился метод глубокого охлаждения. [c.206]

    Среди природных гелей, применяемых при фракционировании методом ГПХ, следует отметить крахмал [167, 186], желатину [190а] и агар [138, 170, 171]. Общим для указанных трех гелей является низкая степень сшивания, пластичность и высокое сопротивление потоку растворителя в колонке. Кроме того, эти гели содержат группы, обусловливающие возможность ионного обмена и адсорбции, поэтому для большинства целей природные гели использовали гораздо реже, чем синтетические, параметры которых легче регулировать. С другой стороны, агаровый гель содержит, вероятно, поры необычно больших размеров. Полсон [138], используя в качестве геля гранулированный агар, смог осуществить фракционирование белков молекулярного веса вплоть до 6,6 10 . Стир и Аккерс [170, 171] на агаровых гелях разделили даже вирусы и компоненты клеток. Полсон [138] получил простое соотношение между концентрацией агара в геле (с) и диаметром молекулы растворенного вещества (ё), проникающей в гель  [c.136]

    При выборе способа очистки сырого гелия для данной установки метод отмывки с помощью жидкого метана сравнивался с системой очистки сырого гелия путем конденсации и низкотемпературной адсорбции. В результате сравнительного анализа предпочтение было отдано методу отмывки жидким метаном [124], так как оказалось, что в этом случае при 24-часовом цикле работы каждого адсорбера требуется около 1000 кг активированного угля против 2000 кг при втором методе очистки. Полученный в криогенном блоке чистый гелий далее направляется в гелиевый ожижитель (на рис. 53 не показан). Для ожижения гелия используется криогенный цикл с последовательным расширением гелия в двух турбодетандерах. Объемная производительность установки по гелию составляет около 500 м /ч. Другим видом продукции, получаемой на установке, является горючий газ, состоящий в основном из метана и имеющий удельную теплоту сгорания около 40000 кДж/м, который сжимается компрессором 2 до 3,6 МПа и подается в трубопровод. На установке используется несколько криогенных циклов, которые в принципе можно рассматривать как четырехступенчатый каскадный цикл. Пропан, конденсация которого на установке производится с помощью воды при температуре 303 К, частично используется для охлаждения природного газа после моноэтаноламиновой очистки в испарителе пропана и конденсации паров воды, где он кипит при Т=273 К, а другая его часть испаряется при более низком давлении при Т= 233 К, обеспечивая конденсацию этилена. В свою очередь, этилен, испаряясь, обеспечивает холод для вывода фракции бензина-сырца и охлаждение природного газа, при котором частично конденсируется метан. Последний подвергается дальнейшему охлаждению до 117 К и сдросселированный до р 0,15 МПа используется для сжижения азота, сжатого до 2,5 МПа. Азот сжимается в компрессоре 16, и после охлаждения в теплообменнике 15 и конденсации в аппарате 8 основной поток жидкого азота подается на верхнюю тарелку колонны 9. Другая часть жидкого азота (на рис. 53 не показано) поступает на охлаждение низкотемпературных адсорберов и в гелиевый сжи тель. Жидкий азот, испаряясь, обеспечивает необходимое охлаждение гелия в гелиевом цикле, охлаждение низкотемпературных адсорберов и природного газа в теплообменниках и понижение температуры промывочного метана. [c.159]

    Некоторые ферменты необыкновенно устойчивы к инактивации, вызываемой любым из факторов, описанных в разд. 6.2. Часто это отмечается даже тогда, когда процедура очистки продолжается в течение нескольких недель. Внеклеточные ферменты отличаются большой устойчивостью потому, что 0Н1И существуют в более жестких природных условиях. В таких случаях быстрота операций не имеет большого значения, если решены проблемы протеолитической инактивации. Но в других случаях, когда стабильность фермента не столь велика, скорость опе раций может быть гораздо важнее, чем разрешегаие, достигаемое на каждом этапе, даже если это означает включение дополнительной стадии очистки для окончательного удаления из препарата примесей. При очистке нестабильных ферментов следует исключать диализ и гель-фильтрацию на медленно фильтрующих средах. Если это возможно, то одна стадия фракционирования должна следовать за другой без длительной подготовки. Так, после солевого фракционирования может идти гель-фильтрация, поскольку на этой стадии удаляется соль и в то же время происходит фракционирование белков. Но после солевого фракционирования нельзя сразу же использовать метод ионного обмена. Его можно применять только в исключительных случаях, когда соль, содержащаяся в осадке, не препятствует адсорбции нужного белка. Непосредственно после стадии ионного обмена невозможно использовать гель-фильтрацию, так как фракции нужно сконцентрировать, — очень редко при элюции с ионообменника получается острый пик, содержащий концентрированный раствор данного вещества (см., однако, обсуждение аффинной элюции в разд. 4.4 и х роматофокуси-рования в разд. 4.3). После фракционирования смеси с помощью органического растворителя может следовать ионный [c.266]

    Криогенные методы основаны иа способности компонентов природного газа легко конденсироваться при низких температурах. Обычно большая часть пропана н практически все более тяжелые углеводороды котщенсируются уже при охлаждении газа до —50 °С. Но для получения гелия высокой чистоты (99,995%) требуется температура конденсации азота (—195,8 °С). Часто на криогенных установках получают гелий-сырец, гелиевый концентрат с содержанием гелия 50—85%. Для получения чистого гелия из сырца используются химические адсорбционные и каталитические методы. Криогенные методы нашли промышленное применение, поскольку легко вписываются в систему комплексной переработки газа. [c.206]

    Метод включения клеток в полимеры различной природы имеет в настоадее время наибольшее применение как в лабораторном, так и в промышленном масштабе. Используют при этом природные полимеры (каррагинан, агар, желатину, хитозан, коллаген, различные пектины) и синтетические (полиакриламидный гель, фоточувствительные полимеры, полиуретаны, поливиниловый спирт и др.). В зависимости от их механических свойств и характера проводимого процесса полимеры могут использоваться в [c.166]

    Метод включения клеток в полимеры различной природы имел и имеет в настоящее время наибольшее применение как в лабораторном, так и в промышленном масштабе. Используют при этом природные полимеры (каррагинан, агар, желатину, хитозан коллаген, различные пектины) и синтетические (полиакриламидный гель, фоточувствительные полимеры, полиуретаны, поливи- [c.223]

    Пьезоэлектрический метод использован также в анализаторе для определения отношения водород — углерод в углеводородах [157]. Смеси углеводородов (например, и-бутана, и-пентана, пен-тена-1) разделяют методом газовой хроматографии на колонке со скваленом и окисляют полученные компоненты кислородом в токе гелия при температуре пламени около 650 °С. После сжигания углеводородов поток окисленных продуктов разделяют на две части одну пропускают над кристаллом кварца, колеблюш,имся с частотой 9,000 МГц, который поглощает воду последовательно из бутана, пентана и пентена. Другую часть потока осушают хлористым кальцием и пропускают над вторым кристаллом кварца, колеблющимся с той же частотой и поглощающим диоксид углерода. Частота колебаний каждого кристалла кварца уменьшается пропорционально количеству поглощенных воды или диоксида углерода каждая из этих двух частот накладывается порознь на фиксированную частоту эталонного генератора — 9,001 МГц, в результате чего образуются три различных дифференциальных частоты. Полученные данные непрерывно регистрируются, и расчет соотношений водород — углерод производится автоматически. В качестве материалов для покрытия кристалла, сорбирующего воду, Сэнфорд и сотр. [157] использовали силикагель, оксид алюминия, природные и синтетические смолы для сорбции диоксида углерода эти авторы применяли полярные вещества, например полиэтиленгликоль. [c.587]

    НОВ в соответствующие ртутные аддукты. Хроматография аддуктов оказалась возможной или на кремневой кислоте [38], или на дезактивированном флорисиле [39]. Последний метод был особенно пригоден для определения тринасыщенных ацилглицери-нов. В работе [40] описано разделение насыщенных триацилглицеринов на колонке 48,8x9,5 мм, заполненной стирагелем, сшитым полистиролом. В качестве подвижной фазы использовали тетрагидрофуран со скоростью элюирования 0,4 мл/мин. Несмотря на чрезвычайную эффективность колонки, ширина пика была того же порядка, что и разница между временами удерживания триацилглицеринов, отличающихся шестью атомами углерода. На этом примере можно видеть, насколько трудно разделять триацилглицерины природных эфиров. Гель-хроматография, по-видимому, является перспективным методом для анализов смешанных триацилглицеринов [41]. [c.203]

    В странах с развитой нефтеперерабатывающей, промышленностью сырьем для получения водорода может служить кре кинг-газ. Указанным выше способом разделения можно подвергать очистке также газовую смесь, получаемую конверсией. 11р1Иродного газа, и конвертированный водяной газ (после конверсии СО). В настоящее время все шире применяются методы получения этилена, который используется в органических синтезах. После выделения этилена газовую смесь направляют нг обогащение природного газа в тех случаях, когда он содержит большие. количества азота. В свое время гелий, применявшийся для наполнения дирижаблей, в США выделяли из природногс газа методом глубокого охлаждения. Этот метод, имеющий ряд иреи-муществ, исиользуется для самых разнообразных целей. В данной главе мы ограничимся рассмотрением его применительно к разделению коксового газа, используемого в качестве сырья для синтеза аммиака. [c.366]

    Ядерные изомеры o-Hg и /z-Hj хорошо разделяются [9] проявительным методом на колонке с активной окисью алюминия при 77°К при использовании гелия в качестве газа-носителя (рис. 70). При этом наблюдается неполное разделение o-D и n-D . Для количественного анализа смеси Hg, HD и Dg в качестве адсорбента чаще всего используется активная окись алюминия с примесью окиси железа [10, И] или окиси хрома [12, 13] нри 77°К с использованием Не и Ne в качестве газа-носителя (рис. 71). Окись железа предотвращает раздельный выход из колонки ядерных изомеров На и Dg. Взаимный переход орто- и иара-модификацип происходит значительно быстрее передвижения газа вдоль колонки. Это приводит к тому,что о/ то-ипа/ а-изомеры выходят одним ником с временем удерживания средним между временами удерживания этих двух изомеров. Точность определения 0,2%. Предел детектирования HD и Dg меньше 0,01%, следовательно дейтерий можно определять даже в природном водороде. В указанных выше случаях было замечено сильное влияние степени активации адсорбента на симметрию пиков. При сильной активации пик Dg получается несимметричным. При сильной деактивации адсорбентов водяным паром получаются симметричные пики, но они не разделяются полностью. При частичной деактивации получается полное разделение На, HD и Dg. [c.143]

    Хроматографические методы. Для анализа сточных и природных вод используется газожидкостная, тонкослойная и ионообменнаа хроматография, а также хроматография на бумаге и гель-хроматография [5, с. 95]. Количественное определение микропримесей этими методами производится после их предварительного выделение [c.21]

    Колонки с сефадексом использовали для фракционирования органических соединений, присутствующих в природной воде. Помимо цвета были изучены также и другие характеристики каждой фракции. Джессинг и Ли [59] нащли взаимосвязь между распределением углерода, цветом и содержанием азота во фракциях, элюированных из колонки с сефадексом. В заключение- следует сделать несколько замечаний относительно данных, полученных на сефадексе. Многие возможные эффекты не были изучены достаточно подробно, в том числе взаимодействие с гелем окрашенных кислот и других веществ. При сильном взаимодействии разделяемых веществ с материалом насадки найденное молекулярно-массовое распределение может существенно изменяться. Даже в отсутствие взаимодействия с гелем влияние концентрации компонентов в пробе на поведение органических веществ до сих пор не выяснено. Некоторые исследователи сообщали об уменьшении интенсивности окраски при концентрировании пробы. Весь-ма"возможно, что молекулярно-массовое распределение в исходной пробе совершенно отличается от распределения на колонке. В тех случаях, когда данные, полученные методом гель-хроматографии, подтверждаются другими методами, их следует считать полезными и важными, но не исчерпывающими. [c.422]

    В гель-хроматографии для разделения растворенных веществ используют пористые полимерные гели (молекулярные сита), которы.ми заполняют колонку. Метод применяют д.ш фракционного разделения (по размеру молекул или молекулярной массе) растворимых металлорганиче-ских соедиР1ений, например соединений микроэлементов с гу. ц[новыми веществами в природных и сточных водах [727-730]. Так, при анализе пробы воды на хроматограмме наблюдаются два отчетливых пика. Первый соответствует фракции веществ с молекулярной массой i 10(Х)0. содержащей JOOnr. меди, второй-фракции веществ с молекулярной массой 500-1000, которая содержит 5 700 нг меди. Свободных ионов. меди в пробе не обнаружено. Метод также применяют для изучения взаимодействия ионов металлов с органически.ми веществами в природньгх водах. [c.111]

    В работах Кочеткова и сотр., которые использовали различные химические методы расщепления биополимера и изучали продукты распада аналитической гель-фильтрацией, показано, что в основе молекулы группового вещества крови А лежит полипептидная цепь, несущая углеводные единицы, связанные с ней в основном 0-гликозидной связью через оксиаминокислоты. [Деревицкая В. А., Кара-Мурза С. Г., Кочетков Н. К., Химия природных соединений, 4, 223 (1966) Кочетков Н. К., Кара-Мурза С. Г..Деревицкая В. А., Изв. АН СССР, Сер. хим., 12, 2212 (1965) Д е р е в и ц к а я В. А., К а р а - М у р з а С. Г., Кочетков Н. К., ДАН СССР, 163, 650 (1965).]—Ярмл. ред. [c.178]

    Эффективным методом, позволяющим изучать изменчивость белков в природных популяциях и определять частоты генотипов и аллелей в популяциях, служит электрофорез в гелях (см. дополнение 22.1). Маса-тоши Ней предложил удобный способ оценки генетической дифференциации популяций по данным электрофореза (дополнение 26.1). При этом используются две величины 1) генетическое сходство I, оценивающее долю структурных генов, которые идентичны в обеих популяциях, и 2) генетическое расстояние (или дистанция) )-оценка среднего числа замен аллелей в каждом локусе, произошедших за время раздельной эволюции двух популяций. Замены аллелей имеют место тогда, когда в результате мутаций аллели в отдельных локусах замещаются другими аллелями или когда сразу замещается целый набор аллелей. Этот метод учитывает то обстоятельство, что замены аллелей могут быть неполными в какой-то части популяции новый аллель может вытеснить старый , который тем не менее с большей или меньшей частотой продолжает присутствовать в популяции. [c.214]

    Рассмотренные в I главе методы газохроматографического определения углеводородов СгСб+, азота и диоксида углерода в природном газе, как правило, характеризуются относительной простотой аппаратурного оформления и процедуры выполнения анализа, хорошей точностью и экспрессностью. Эти методы могут быть использованы для последующего расчёта физико-химических показателей газа, однако область применения таких методов имеет ограничения. Во-первых, они не позволяют определять примесный кислород. Во-вторых, они применимы к анализу только в тех случаях, когда содержания таких компонентов природного газа, как гелий, аргон и водород незначительны и неизменны. Аналогичная ситуация складывается с анализом газов, близких по составу к природному газу (например, газом комммунально-бьггового назначения), которые могут содержать примеси оксида углерода и низших олефинов. [c.55]


Смотреть страницы где упоминается термин Гели, используемые в методе ГПХ природные: [c.124]    [c.237]    [c.60]    [c.92]    [c.127]    [c.233]   
Фракционирование полимеров (1971) -- [ c.136 ]




ПОИСК







© 2025 chem21.info Реклама на сайте