Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутилкаучук структура

    Модифицированный бутилкаучук. Хлорированный бутилкаучук. Структура. .. 269 [c.269]

    Модифицированный бутилкаучук. Бромированный бутилкаучук. Структура. .. 279 [c.279]

    Слабая ненасыщенность бутилкаучука и его структура придают ему исключительную устойчивость против действия химических веществ—кислот, щелочей, воздуха и озона. [c.251]


    Для получения синтетического каучука изопрен более ценен, чем бутадиен, хотя вследствие большей трудности его производства начали вырабатывать синтетический каучук на основе бутадиена. Изопрен используется для получения бутилкаучука путем совместной полимеризации изобутилена с небольшой добавкой изопрена. Главное применение изопрен наш-ел сравнительно недавно для производства полиизопренового каучука стереорегулярной структуры, получаемого полимеризацией изопрена в присутствии металлоорганических катализаторов аналогично -бутадиеново-му каучуку  [c.484]

    Бутилкаучук имеет примерно такую структуру  [c.632]

    Сополимеры изобутилена с диенами содержат некоторое количество двойных связей, соответствующее количеству диеновых звеньев в макромолекулах сополимера. Такой сополимер, называемый бутилкаучуком,. можно подвергать вулканизации, в результате которой образуется сетчатая структура. Резины на основе бутилкаучука сочетают высокую морозостойкость с эластичностью и стойкостью к действию окислительных сред. [c.514]

    Макромолекулы бутилкаучука имеют линейную структуру с нерегулярным чередованием изопреновых и изобутиленовых групп [c.467]

    Озонирование бутилкаучука показало, что изопреновые звенья в молекулах каучука расположены изолированно друг от друга в положении 1,4, так как среди продуктов распада озонида не обнаружены ни янтарная кислота, ни левулиновые производные, отсутствуют также муравьиная кислота и муравьиный альдегид. В соответствии с этим бутилкаучук должен иметь следующую структуру  [c.54]

    С увеличением содержания изопрена в исходной шихте возрастает ненасыщенность образующегося сополимера, но снижается его молекулярная масса (рис.7.29), что объясняется участием изопрена в реакциях обрыва цепи. По этой причине при получении промышленных марок бутилкаучука дозировка изопрена не превышает 4% от массы изобутилена. Изучение структуры бутилкаучука показало, что звенья изопрена в макромолекуле присоединены преимущественно в положении 1,4-транс- около 1,0% изопреновых звеньев присоединены в положении 1,2 и 3,4. В макромолекулах бутилкаучука изопреновые звенья практически друг с другом не соединяются и статистически распределяются по всем макромолекулам. [c.327]

    Синтетические каучуки — бутадиеновый, изопреновый, бутадиенстирольный, бутилкаучук и другие имеют более сложную структуру, чем природный каучук. Так, например, в процессе полимеризации возникают цис- и транс-конфигурации как за счет 1,4-, так и за счет 1,2-присоединения. Полимеризация бутадиена в присутствии металлического натрия относится к анионному типу (механизм рассмотрен ранее). Схематично процесс полимеризации можно записать  [c.358]


    Интересной особенностью этих реакций сульфирования является то, что соединения с самой различной молекулярной структурой реагируют с удобными для измерения скоростями почти при одной и той же температуре. Так, натуральный каучук, GR-S и бутилкаучук реагируют с серой со сравнимыми скоростями при 140° такие же скорости характерны для сульфирования циклогексена, изобутилена и различных низкомолекулярных полиизопренов. Температура, при которой протекает реакция, практически соответствует температуре перехода циклической восьмиатомной серы из подвижного жидкого состояния в высокомолекулярную линейную форму, существующую в виде вязкой жидкости. Эти факты свидетельствуют о том, что стадией, определяющей скорость, пол ной реакции, является образование радикала в результате разрыва кольца Sg, а не непосредственное взаимодействие молекулы с углеводородом. Как показал Гордон [14], вулканизация каучука буна является реакцией первого порядка, однако связывать это с процессом разрыва серного кольца, не располагая достаточными знаниями о механизме последующих цепных реакций и особенно о механизме реакций [c.197]

    В химическом отношении бутилкаучук является менее ненасыщенным соединением, чем природный каучук и содержит больше метильных групп. Структура его может быть представлена следующим образом [c.118]

    Структура потребления бутилкаучука [c.481]

    Бутилкаучук имеет линейную структуру с нерегулярным чередованием изопреновых групп. Как правило, звенья изопрена присоединяются в положении [c.101]

    В случае пространственно-структурированных полимеров изменение их структуры при механических воздействиях можно оценить по изменению величины равновесного набухания в соответствующей жидкости. Действительно, изучение набухания ненаполненных вулканизатов бутилкаучука и натурального каучука показало, что в результате действия многократных деформаций сдвига одноосного сжатия или растяжения способность к набуханию в значительной степени изменяется. Вулканизаты бутилкаучука в результате механического воздействия значительно повышали величину предельного набухания в вазелиновом масле. Вулканизаты натурального каучука после длительных многократных деформаций повышали степень набухания в полярных жидкостях и уменьшали ее в неполярных (например, в вазелиновом масле). При этом переход от возрастания набухания к его уменьшению происходил при тем большей полярности жидкости, чем более длительно деформировался вулканизат. Таким образом, в отличие от вулканизатов бутилкаучука вулканизаты натурального каучука в результате механической деструкции становятся более полярными веществами, что указывает на развитие реакций окисления каучука в процессе деформации. [c.318]

    Целесообразно кратко охарактеризовать наиболее важные сорта синтетических каучуков, чтобы иметь необходимые общие сведения о них, которые потребуются для сопоставления их. Синтетические каучуки по своим свойствам вполне сравнимы с натуральными каучуками, а некоторые из них характеризуются весьма желательными и технически ценными свойствами, отсутствующими у природных каучуков. По химической структуре природный каучук можно рассматривать как полимёр изопрена, т. е. 2-метилбутадиена-1,3. Этот углеводород никогда не был обнаружен в каучуконосах, но он обычно используется в сравнительно незначительных количествах нри производстве синтетического каучука из изобутилена (97%). Небольшое количество изопрена придает бутил-каучуку способность к вулканизации серой. Бутилкаучука производится 65 ООО т в год и ввиду своей высокой герметичности к воздуху (почти в 10 раз выше, чем у природного каучука) ой используется почти исключительно для производства камер. [c.210]

    Иа1[более широкое применение бутилкаучук в настоящее время находит для камер грузовых автомашин [9]. В результате разветвленной структуры и небольшой степени ненасыщенности бутилкаучук обладает значительно большей воздухостойкостью и стойкостью к старению. Воздухопроницаемость составляет всего этой величины для натурального каучука, а проч- [c.571]

    Это соотношение иногда называют критерием Деборы и обозначают буквой О. Чем меньше 0=т/ тем быстрее релаксирует система, тем она более податлива. Очень малое значение О характерно для низкомолекулярных жидкостей. Если, однако, деформирующая сила действует на полимер в течение очень длительного времени, то значение О окажется небольшим даже для большого т, и полимер проявит текучесть (обнаружит податливость) так, как если бы это была жидкость. Мы неоднократно наблюдаем это на примере битумов твердые при комнатной температуре и даже хрупкие при ударе, они после длительного хранения могут растекаться как жидкость. Ряд типичных эластомеров в невулканизованном состоянии при хранении текут, т. е. обладают, как говорят, свойством хладотеку-чести (бутилкаучук, полисульфидные каучуки и т. п.). Таким образом, при малом значении О полимеры обнаруживают свойства жидкостей, а при большом значении О — свойства твердых тел. Понятия твердый, жидкий зависят, как мы видим, не только от химической структуры полимера, но и от времени действия силы. [c.118]


    Обычный иодортутноацетатный метод определения двойных связей в бутилкаучуке не пригоден в данном случае, так как обычный фактор пересчета, рассчитанный на три связи иод—олефин, нельзя применять к галогенированнсму полимеру [3, 4]. Однако если все же этот метод используют, следует учитывать, что результаты определения числа двойных связей в хлорированном бутилкаучуке получаются заниженными на 50% по сравнению с анализом нехлори-рованного каучука. Нельзя использовать и метод озонирования, описанный в [7]. Наличие атома галогена замедляет реакцию озонирования, так что для полного разрыва двойных связей требуется около 16 час [3, 4]. Имеется и другое осложнение. Для простоты в уравнении реакции показано образование одного только продукта, в то время как возможно получение и других структур точный состав полимера не известен. Согласно спектральным данным, возможно присутствие структур типа [c.83]

    Получение в промышленном производстве широкого круга полимеров изобутилена и композитов на его основе дает возможность говорить о существовании самостоятельной области малотоннажной химии изобутилена при этом следует иметь в виду, что ряд традиционных областей, например связанных с использованием высокомолекулярного полиизобутилена и бутилкаучука, по-прежнему не имеет альтернативы. Актуальность исследований и фундаментальность проблемы химии изобутилена, как это не парадоксально, обусловлены классическим, только катионактивным, характером мономера. Мономер характеризуется простой неизомеризующейся структурой. Именно эти факторы поставили изобутилен в ряд признанных классических объектов фундаментальных исследований в области катионной полимеризации олефиновых и виниловых мономеров и других возможных химических превращений олефинов. [c.3]

    Динамика роста производства ХБК [5, 19,20] 1960 г. - 600 т, 1965 - 13 тыс. т, 1972 г. - более 55 тыс. т, 1982 г. - 75 тыс. т, 1999 г. -окло 150 тыс. т, т.е. порядка 20%) в год от общего объема бутилкаучука ( 600 тыс. т/год). Таким образом, в структуре производства БК отчетливо прослеживается тенденция увеличения доли ХБК (как и других галоидированных БК), которая возросла с 24% в 1975 г. до 32,1%) в 1982 г. В СССР выпускались три марки ХБК (ХБК-155, ХБК-165 и ХБК-175), соответствующие по свойствам зарубежным маркам НТ-1066, НТ-1067 иНТ-1068. [c.269]

    При получении хлорбутилкаучука через раствор полимера пропускают смесь хлора с азотом в отношении от 1 5 до 1 10. Методами ИК- и ЯМР-спект-роскопии доказана структура образующихся при этом полимеров. В основном протекают реакции замещения атома водорода в изопренильных звеньях, при этом сохраняется 15% ненасыщенности ргсходного бутилкаучука и образуются звенья следующих типов  [c.337]

    В макромолекуле бутилкаучука, которая имеет лине11ную структуру, изопреновые и изобутилеповые звенья расположены беспорядочно и почти полностью присоединены в положении 1,4. [c.203]

    Лине11ная структура молекул бутилкаучука обусловливает его высокую стойкость к действию кислорода, озона, кислот, щелочей, теплоты и солнечного света. Бутилкаучук обладает исключительно низкой газо- и паропроницаемостью. [c.203]

    В реакции цепной полимеризации можно вводить также молекулы двух различных, но подобных по структуре веществ. Такая совместная хЛлимеризация, называемая сополимеризацией, нашла большое применение в технике, так как позволяет получать сополимеры, обладающие новыми ценными свойствами. Сополимер бутадиена (75%) и стирола (25%), а также сополимер бутадиена (60—75%) и акрилонитрила (25—40%) представляют собой синтетические каучуки — бу-на-S и соответственно буна-N сополимер изобутилена (95%) и див нилa (5%) —бутилкаучук — способен к вулканизации, тогда как полимер изобутилена не вулканизируется сополимеры хлористого винила и хлористого винилидена представляют собой легко прессующиеся пластичные материалы для получения изделий, отличающихся высокой механической прочностью и устойчивостью к действию химических реагентов. [c.87]

    Главное различие в прочностных свойствах полимеров с кристаллической и аморфной структурой рассмотрено в 1 и 2 гл. П. На прочность полимеров, кроме того, влияют плотность унаковки—одна из характеристик первичной структуры полимера, определяемая гибкостью (или жесткостью) цепей, и межмолекулярные взаимодействия цепных молекул. Например, по Ла-зуркину рыхло упакованные каучуки (СКБ, СКС) при низких температурах в стеклообразном состоянии обладают лучшими прочностными свойствами, чем плотно упакованные каучуки (НК, бутилкаучук, полихлоропрен). У рыхло упакованных полимеров температурный интервал вынужденной эластичности необычайно широк (около 100 °С), ВТО время как у плотно упакованных полимеров хрупкий разрыв наблюдается лишь на 20—25 С ниже температуры стеклования. Дипольные и водородные межмолекулярные связи повышают хрупкую прочность полимера и поэтому понижают температуру хрупкости. Это особенно четко [c.131]

    Структура и свойства невысыхающих герметиков во многом определяются совместимостью исходных компонентов и, следовательно, их соотношением, а также гомогенностью полученных систем [32]. Так, оптимальным соотношением этиленпропи-ленового каучкука и бутилкаучука при получении герметика, предназначенного для использования в строительстве, является 1,6 1,0 [45]. [c.143]

    При aA opomii сополимера стирола с бутадиеном, бутилкаучука и натурального каучука на сажах различной природы равновесие устанавливалось в течение 18—90 ч и зависело от природы полимера, удельной поверхности сажи и других переменных. Наибольшая скорость адсорбции найдена для бутилкаучука, наименьшая — для натурального каучука. С увеличением удельной поверхности скорость адсорбции уменьшалась, что видно из рис. 7 [76]. Иногда частицы непористых адсорбентов, например сажи, образуют вторичные пористые структуры, которые достаточно устойчивы и не разрушаются при перемешивании суспензий [72]. Эта вторичная пористость отчетливо проявляется при электронномикроскопических исследованиях. Пористость препятствует быстрому проникновению [c.23]

    Для смесей полимеров, по-видимому, весьма характерна и специфическая двухфазная структура, в которой обе фазы непрерывны. Впервые на возможность возникновения таких структур указывали Роватти и Бобалек [77]. Они пришли к выводу, что наибольшая прочность и сопротивление удару смеси ПВХ и бутадиен-нитриль-ного каучука достигается тогда, когда обе фазы полимеров непрерывны и образуют волокнистое переплетение. Аналогичное наблюдение сделал и Мацуо [2, 3, 78] в отношение смеси ПВХ с сополимером бутадиен-нитрильного каучука и 20% нитрила акриловой кислоты. Методом фазово-контрастной микроскопии было обнаружено, что в смесях бутилкаучука со СКЭПТ или с полихлоропреном при соотношении компонентов близких к 1 1 возникают сетчатые структуры в виде контактирующих частиц шириной 2—4 и длиной несколько микрон [79]. Авторами работ [62, 80, 81] обнаружены сетчатые структуры двух непрерывных фаз в смесях полиэтилена высокой плотности и полипропилена. Свойства каучуков, усиленных термореактивными смолами, объясняют возникновением непрерывной структуры смолы в матрице каучука [82]. Имеются и другие работы [117], в которых прямо или косвенно было установлено наличие двух взаимопроникающих сеток каучуков, образующих смесь. [c.26]

    Чен [7] раюсвдслрел вопрос о присутствии 1,2- или 3,4-структур в натур альнам каучуке, в котором преобладает 1,4-ст1ру-ктура, и показал, что 1,2-структур в этом полимере нет. Чен и Филд [8] подтвердили также, что звенья изопрена, присутствующие в очень малых количествах в техническом бутилкаучуке, имеют 1,4-конфигурацию, как и было ранее установлено химическими методами [9] (В этих работах [7, 8] проводилось накопление спектров). [c.234]

    Этот метод был использован также для исследования структуры ряда бутадиеновых сополимеров. Если эти сополимеры не содержат слишком больших количеств второго мономера, то в продуктах реакции можно определить и янтарную, и бутан-1,2,4-трикарбоновую кислоты. Кроме этих продуктов, были также идентифицированы соединения, которые могли образоваться только из звеньев второго мономера, находящихся между двумя бутадиеновыми звеньями, присоединенными в положение 1,4. Некоторые из этих продуктов указаны в табл. 22. Были обнаружены также продукты, образовавшиеся из звеньев второго мономера, находящихся между бутадиеновыми звеньями, присоединенными в положение 1,2. Эти продукты наглядно иллюстрируют структуру сополимеров. 94% хлора, содержащегося в сополимере о-хлорстирола и бутадиена (25 75), было идентифицировано в виде 2-(о-хлорфенил)-бутандикарбоновой кислоты, что указывает на отсутствие тенденции к образованию больших участков, состоящих из звеньен о-хлорстирола. Скорее всего этот мономер распределен по цепи более или менее беспорядочно. Аналогичный вывод был сделан также на основе данных о характере продуктов реакции бутилкаучука, так как и в этом случае не удалось определить соединений, образовавшихся из двух соседних изопреновых звеньев 1321. [c.202]

    Подобные же результаты были получены для натурального и бутилкаучуков. В случае полимеров с пространственной структурой изменения при воздействии механических сил могут быть оценены, как ни странно, по равновесному набуханию в определенных растворителях. Так, изучение набухания ненаполнен-ных вулканизатов бутилкаучука или натурального каучука, подвергнутых деформациям сдвига, одноосного сжатия или растяжения, выявляет заметное изменение способности к набуханию и разрыву поперечных связей, способствующее проникновению растворителя между молекулярными цепями. Способность к набуханию вулканизатов бутилкаучука в вазелиновом масле сильно повыщается после механических воздействий. В случае вулканизатов натурального каучука после многократных продолжительных деформаций степень набухания растет в полярных жидкостях и уменьшается в неполярных (например, в вазелиновом масле). Следовательно, в отличие от вулканизатов бутилкаучука вулканизаты натурального каучука вследствие механической деструкции становятся более полярными, что указывает на развитие реакций окисления во время процесса деформации. [c.188]

    Техника предъявляет к резиновым изделиям са мые разнообразные требования. В одном случае необходима большая прочность, в другом — высокая эластичность, в третьем — термическая устойчивость. Все эти требования невозможно удовлетворить одним каким-нибудь типом каучука. В связи с этим промышленность выпускает десятки сортов синтетического каучука, полученных на основе самых различных химических соединений. Выше указывались ценные свойства хлоропреновых каучуков и бутилкаучука. Каучуки на основе кремнийорганических соединений отличаются сохранением эластических свойств как при низких, так и при высоких температурах каучуки на основе фторорганических соединений сочетают высокую термостойкость с почти абсолютной химической устойчивостью каучуки, полученные сополимеризацией дивинила с акрилонитрилом, хорошо выдерживают действие бензина и других нефтепродуктов. Наиболее массовым типом каучука, широко применяемы.м для изготовления шин, является каучук, получаемый сополимеризацией дивинила со стиролом (стр. 486). Эти каучуки отличаются хорошей прочностью и поэтому изготавливаются в громадных количествах. Однако по эластичности и некоторым другим свойствам они все же уступают натуральному каучуку, вследствие чего до последнего времени он являлся незамени.мым д.ля целого ряда изделий. Эти ценные свойства натурального каучука были связаны со строением полимерной цепи, которое отличалось строго регулярным расположением в пространстве отдельных звеньев. Такую структуру долго не удавалось воспроизвести в синтетических каучуках. Лишь в 50-х годах в СССР и в других странах найдено, что проведение полимеризации в присутствии комплексных металлоорганических катализаторов приводит к образованию полимеров регулярной структуры. [c.104]

    Основная особенность бутилкаучука — низкая непре-дельность. Это определяет высокую химическую стойкость гуммировочных материалов, стойкость к тепловому и амосферному старению, действию озона, кислот, щелочей, растворов солей, спиртов, эфиров, животных и растительных жиров. Бутилкаучук лучше других каучуков с непредельной структурой сопротивляется действ1ию слабых растворов азотной кислоты, пероксида водорода и прочих окислителей, которые разрушают большинство обычных каучуков. [c.69]


Смотреть страницы где упоминается термин Бутилкаучук структура: [c.236]    [c.113]    [c.177]    [c.16]    [c.168]    [c.380]    [c.151]    [c.124]    [c.9]    [c.439]    [c.9]    [c.439]    [c.652]    [c.277]   
Действующие ионизирующих излучений на природные и синтетические полимеры (1959) -- [ c.128 ]

Синтетические каучуки (1949) -- [ c.348 ]




ПОИСК





Смотрите так же термины и статьи:

Бутилкаучук



© 2025 chem21.info Реклама на сайте