Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород при действии излучения

    Как уже было сказано, образованием радикалов Н, ОН и НОг- можно объяснить окислительно-восстановительные реакции, происходящие в водных растворах многих веществ под действием излучений. Например, при облучении кислых растворов сульфата двухвалентного железа в кислом растворе в отсутствие кислорода воздуха осуществляется реакция Ре2+4-ОН. -> Рез+ + ОН  [c.267]


    Влияние внешних условий и температуры. Как уже упоминалось выше, кислород легко взаимодействует с реакционноспособными радикалами, образовавшимися при диссоциации органических молекул под действием излучения. Поэтому в воздухе распад в результате облучения больше, чем в инертной среде. Установлено, что у резиновых или шинных смесей при облучении в воздухе разрыв цепи происходил быстрее, а структурирование медленнее, чем в инертной атмосфере. Поэтому доступ кислорода к облучаемому продукту имеет важное значение. Тонкие слои или порошкообразные материалы разрушаются больше, чем эти же материалы в сплошной массе. Следует учитывать также мощность дозы излучения. При высоких мощностях дозы первоначально растворенный кислород расходуется, и его количество не может быть восполнено за счет диффузии достаточно быстро, чтобы участвовать в процессах, вызываемых излучением. [c.164]

    При более сильных воздействиях наблюдается деструкция поли-/мера, вызываемая разрывом связей между цепями или внутри цепей. При обычных температурах деструкция может происходить под действием кислорода воздуха (окислительная деструкция), света (фотохимическая деструкция), механических или других воздействий. Особое место занимает деструкция, вызываемая действием излучений большой энергии (радиационная деструкция). При повышенных тем- [c.232]

    К радиационно-химическим относятся реакции присоединения, разложения, полимеризации и др. Под действием излучений из кислорода получается озон из азота и кислорода — оксиды азота вода разлагается на водород и кислород пероксид водорода — на кислород и воду аммиак — на азот и водород и т. п. При низких температурах проводят окисление углеводородов кислородом воздуха с получением практически важных веществ, входящих в состав смазочных масел, моющих средств. [c.200]

    Химическое действие радиоактивных излучений. Исследованием химических изменений, возникающих в веществе под действием ядерных излучений, занимается радиационная химия. Вскоре после работ Беккереля была обнаружена способность излучений радия разлагать воду на водород и кислород. В последующие годы расширились работы, посвященные действию излучений радиоактивных элементов на различные вещества. Было установлено, что под действием излучений возникают ионы и радикалы. Часто наблюдается протекание цепных реакций. Современный этап радиационной химии связан с появлением мощных источников ядерных излучений. Решение прикладных задач по эксплуатации ядерных [c.407]


    Элементарные процессы радиационной химии, для которых характерно участие быстрых заряженных и электронновозбужденных частиц, имеют много общего с процессами, протекающими при очень высоких температурах. Поэтому наметилась тенденция рассматривать все эти области химии с теоретической точки зрения как химию высоких температур. Относительный вклад ионов и возбужденных молекул в радиохимические реакции зависит от величины энергии излучения и от химической природы реагирующих молекул. Например, радиохимический процесс образования озона при действии излучения на кислород развивается через первично образующиеся возбужденные молекулы кислорода О 2, а радиационнохимическое окисление азота протекает с участием ионов N"2. [c.408]

    К существенным химическим факторам, модифицирующим действие ионизирующего излучения, относится концентрация кислорода в тканях организма у млекопитающих. Его наличие в тканях, особенно во время гамма- или рентгеновского облучения, усиливает биологическое воздействие радиации. Механизм кислородного эффекта объясняется усилением главным образом непрямого действия излучения. Присутствие же кислорода в облученной ткани по окончании экспозиции дает противоположный эффект. [c.22]

    При радиолизе различных водных растворов большое значе ние имеют процессы, протекающие под действием радикалов Н ОН и НО2, возникающих вследствие действия излучения на воду Так, например при облучении кислых растворов суль фата железа (И) в отсутствие кислорода происходит следующий окислительный процесс [c.318]

    При систематическом изучении окислительных реакций ПЭ были предложены схемы, хорошо объясняющие экспериментальные данные. Для других полимеров подобные данные отсутствуют, можно, однако, предполагать, что и у ПП, диеновых и других полимеров при действии излучения возникают радикалы, подобные образующимся в случае облучения ПЭ. В качестве первичного процесса предполагается присоединение к радикалу молекулы кислорода с возникновением пероксирадикала  [c.235]

    Влияние кислорода при действии излучений на полимеры является вопросом первостепенной важности, особенно в случае биологически важных полимеров (гл. X, стр. 204). В настоящее время оно еще недостаточно исследовано. Ценным вкладом в понимание этого вопроса было бы исследование окисления малых органических молекул, инициированного облучением. Эта область изучена чрезвычайно неполно, но ясно, что в присутствии кислорода подавляются обычные реакции и стимулируется окисление. Так, Линд с сотрудниками [28] нашли, что ири облучении а-частицами смесей метана или этана с кислородом дегидрирование подавляется, и продуктами реакции являются двуокись углерода и вода. В случае более высоких углеводородов происходят обе реакции. Найдено, что инициированное облучением окисление углеводородов и жиров [29] и хлороформа [30] протекает через промежуточные перекиси. [c.69]

    Фотосенсибилизированное окисление. Давно известно [301], что эргостерин и различные родственные стерины поглощают кислород под действием излучения и в присутствии сенсибилизатора, например эозина, образуя трансаннулярные перекиси. Большая часть имеющихся сведений относительно этих реакций получена в результате работ Виндауса и сотрудников, а также исследо- [c.281]

    Как уже указывалось, кислород также промотирует изомеризацию в присутствии галоидных соединений алюминия. Однако в опытах при температуре 25° как с и-бутаном [219] (см. табл. 4), так и с метилциклопента-ном [209] изомеризация была очень медленной в присутствии кислорода до тех пор, пока реакционная смесь не была подвергнута облучению солнечным светом или светом от кадмиево-ртутной лампы. Ускоряющее действие излучения, которое видно из данных табл. 4, было больше в кварцевом, чем в пирексовом реакторе [209]. Это свидетельствует о том, что особенно эффективным было излучение в ультрафиолетовой области. [c.63]

    Интересна аналогия между действием энергетических катализаторов при реакциях в разрядах и действием сенсибилизаторов в фотохимических реакциях. Так, сенсибилизирующее действие паров ртути было также установлено в реакциях фотохимического крекинга углеводородов [144] и разложения аммиака [145, 146]. Образования аммиака при освещении чистой смеси дзота с водородом ультрафиолетовым светом вообще не наблюдается [147]. Если же к смеси добавить пары ртути, то аммиак образуется [148]. Таким образом, активное участие молекул азота в синтезе озона может также сводиться к передаче при ударах П рода энергии электронного возбуждения на колебательное возбуждение молекул кислорода. Вероятность этого процесса подтверждается спектроскопическим исследованием тушащего действия кислорода на излучение азота [86]. [c.126]


    Проведен ряд исследований по влиянию излучений на различные водные растворы. Кинетика этих процессов очень сложна результаты исследований во многих случаях являются противоречивыми, а поэтому можно сделать лишь небольшое число обобщений. Протекающие процессы обычно согласуются с постулированным начальным образованием Н- и ОН-радикалов из воды или (в случае присутствия газообразного кислорода) образованием пергидроксила в дальнейшем протекают реакции этих радикалов с растворенным веществом, хотя Лефор и Гайсинский сообщают о случае, когда арсенит в водном растворе, по-видимому, перешел в элементарный мышьяк под прямым действием излучений [90]. В ряде случаев скорость образования перекиси водорода оказы-ваб гся более высокой, чем при облучении чистой воды так, например, ионы галогенидов в растворе повышают количество образующейся перекиси водорода, причем йодид более эффективен, чем бромид, который в свою очередь эффективнее хлорида. В недавно проведенной дискуссии на заседании Фарадеевского общества [84] были сообщены результаты ряда новейших исследований по влиянию растворенных веществ. В этих сообщениях содержатся также ценные ссылки иа предыдуш ие работы. Из других новых работ нужно указать на облучение рентгеновскими лучами водных растворов йодноватокислого калия [101], йодистого калия [102], дезоксирибонуклеиновой кислоты [103] [c.63]

    Кроме работ по окислению углеводородов под действием излучений опубликованы работы по окислительному радиолизу этилового спирта [23], уксусной кислоты [24] и изопропилового эфира [25], в которых превращение вещества под действием излучения в отсутствие кислорода сопоставлено с окислением под действием излучения (рентгеновские лучи, электроны) при невысоких температурах (25, 60° С). [c.197]

    Радиолиз диизопропилового эфира [25] под действием электронов и рентгеновских лучей в атмосфере азота сопровождается образованием карбонильных соединений (ацетон, ацетальдегид, метилэтилкетон) с С = 10 и спиртов с О = 0,7. В присутствии кислорода появляются дополнительно гидроперекиси и кислоты. Для гидроперекисей О = 20, для карбонильных С = 25, для спирта С = 2,5, для кислот О = 1,5. Высокие значения С (несколько десятков) свидетельствуют о цепном механизме окисления изопропилового эфира под действием излучения. [c.198]

    Спсссбнссть кислорода вступать в реакцию со свободными радикалами, образовавшимися под действием излучения, приводит к получению окисленных продуктов она имеет значение в том случае, если облучение происходит в воздухе. Многие жидкости и твердые тела с более высоким молекулярным весом благодаря рекомбинации короткоживущих радикалов меньше изменяются под дейст- [c.159]

    Не подлежит сомнению, что основным источником энергии в абиогенную эру было ультрафиолетовое излучение ( 150—200 нм). Его действие имеет ряд специфических особенностей. Излучение порождает радикалы, т. е. создает весьма активные частицы, способные стать исходными точками в дальнейшей цепи превращений. Однако это происходит главным образом в верхних слоях атмосферы, откуда продукты реакции попадают на поверхность Земли с дождем или просто вследствие медленного оседания. В нижних слоях атмосферы и на поверхности гидросферы и литосферы излучение становится особенно важным фактором с момента появления фотосинтетических механизмов. Кислород, выделяющийся при фотосинтезе, превращаясь в озон, ослабляет действие ультрафиолета и защищает возникшие предбиологнческие структуры от фотохимической деструкции. Это автоматическое регулирование действия излучения способствовало целенаправленному использованию его энергии. Радиоактивность, именно излучение изотопа калия °/С, также играло существенную роль в качестве источника энергии. По мнению М. Кальвина, среднее количество энергии, доставляемое распадом °К, 2,6 млрд. лет тому назад было в четыре раза больше, чем в настоящее время. Этот исследователь считает, что в течение года на всю поверхность Земли приходится примерно 1,2-10 Дж энергии за счет распада К и 18,9-10 Дж за счет ультрафиолетового излучения. Другие возможные источники энергии (вулканизм, разряды молний и даже удары метеоритов ), вместе взятые, доставляют не более 0,58Дж/г. [c.378]

    При действии излучений высоких энергий на водные среды, содержащие различные органические вещества, возникает большое количество окислительных частиц, обуславливающих процессы окисления. Радиационно химические превращения протекают не за счет радиолиза загрязняющих воду веществ, а за счет реакции этих веществ с продуктами радиолиза воды ОН , НО, (в присутствии кислорода), Н2О2, Н и еп,лр (гидратированный электрон), первые три из которых являются окислителями. В качестве источников излучения могут быть использованы радиоактивные кобальт и цезий, тепловыделяющие элементы, радиационные контуры, ускорители электронов. [c.69]

    Как предположил Моор, при действии излучения с длиной волны более 3000 А фотодиссоциация протекает по связи С—N. Образующийся в результате ал-коксильный радикал впоследствии разлагается. Механизм, предусматривающий образование перекисей в процессе фотодиссоциации ПА 6, предложен Краусом [12]. При инициировании независимо от присутствия кислорода происходит разрыв связи С—N. [c.94]

    Раднофотолюминеецентный метод (РФЛ) — под действием излучения в люминофоре создаются центры фотолюминесценции, содержащие атомы и ионы серебра. Освещение РФЛ ультрафиолетовым светом вызывает видимую люминесценцию. Линейность показаний от дозы сохраняется до 10 Гр. Метафосфатные РФЛ-детекторы, содержащие серебро, алюминий, фосфор, кислород, литий и другие примеси, имеют довольно высокий эффективный номер (12,6-17,9) и поэтому большой ход с жесткостью (от 4 до 11 раз соответственно) в диапазоне 50 кэВ-1 МэВ. [c.119]

    Как можно заключить на основании сказанного в разделе IV, В, закись никеля представляет особый интерес ввиду существования ярко выраженных d-d-линий, расположенных в области длинных волн основной полосы поглощения [130]. Недавно мы исследовали эту область для выявления активности в фотоадсорбции и фотодесорбции кислорода и наблюдали следующий крайне интересный факт. Оказалось, что излучение в полосе основного поглощения совершенно не эффективно для фотоадсорбции и фотодесорбции, тогда как излучение в d-d Oблa ти (за пределами 650 ммк) стимулирует фотодесорбцию кислорода [131]. Поэтому механизм фотодесорбции, аналогичный предложенному для окиси цинка, здесь исключается, и мы обратимся к тем идеям, которые обсуждались в конце раздела IV, В. При хемосорбции ионов кислорода на N10, имеющей решетку поваренной соли, поверхностные ионы NF+(d ) достраивают свои октаэдры, образуемые соседними ионами кислорода, что дает выигрыш в энергии стабилизации кристаллического поля. Изменение энергии в расчете на одну молекулу хемосорбированного кислорода является, вероятно, максимальным на плоскости (011), где ионы на свободной поверхности обычно имеют четверную координацию. Поэтому мы предполагаем, что фотодесорбция имеет следующий механизм. Под действием излучения в указанной области поверхностные ионы никеля с шестерной координацией, несущие адсорбированный кислород, переходят из своего основного состояния (Mag) в возбужденное i Tig). В этом активированном состоянии шестерная координация гораздо менее стабильна, чем соответствующее основное состояние тетраэдрической координации ( Ti). Поэтому для обоих адсорбированных кислородных атомов, достраивающих октаэдр иона N1 + на плоскости (011), имеется большая вероятность высвобождения в газовую фазу, т. е. фотодесорбции. [c.363]

    Бутилкаучук под действием ионизирующего излучения, по-видимому, разрушается таким же образом, как и полиизобутилен малой доли двойных связей недостаточно, чтобы привести к преобладанию сшивания. Дэвидсон и Гейб [46] впервые наблюдали это при облучении в атомном реакторе образца не-вулканизованного бутилкаучука, содержащего 50 частей сажи, вулканизующие агенты для серной вулканизации и 26,4 части бората аммония для увеличения ионизирующего действия излучения. Вместо вулканизации наблюдалась быстрая деградация, проявляющаяся в значительном размягчении полимера. При вулканизации материала до облучения получались те же самые результаты. Бопп и Зисман [19, 47, 48] наблюдали быстрое уменьшение прочности на растяжение и твердости вулканизованного серой бутилкаучука, содержащего 75 частей сажи. Оба показателя достигали примерно нулевого значения после облучения 10 нейтрон/см (50 мегафэр). Гейман и Хоббс [49] сделали такие же наблюдения и отмечают, что подобного рода деструкция характерна для действия свободных радикалов на бутилкаучук. Они не смогли получить доказательств наличия окисления в деструктированном бутилкаучуке и пришли к выводу, что для деструкции не требуется присутствия кислорода. Реакция, несомненно, в основных чертах та же самая, как и Б нолиизобутилене. [c.133]

    Мы уже видели в перечне, приведенном на стр. 64, что в полистироле, подвергающемся действию облучения электронами с энергией 800 кэв в отсутствие кислорода, происходит в основном сшивание, а предыдущее обсуждение показало, что эффективность сшивания невелика вследствие защитного действия бензольных колец. Зисман и Бопп [18] нашли, что полистирол является наиболее устойчивым из всех пластиков по отношению к действию излучения атомного реактора. Оказалось, что после воздействия 13-10 нейтрон/см (что эквивалентно 5850 мегафэр) получается только небольшое увеличение модуля упругости и только небольшое уменьшение прочности на разрыв и удлинения. Наблюдалось некоторое потемненир. ио даже [c.134]

    Хорощо известно, что галоидопроизводные (за исключением фторидов) обладают высокой чувствительностью к действию ионизирующих излучений. В табл. 4 (стр. 58) приведено число свободных радикалов, образующихся при действии -излучения на каждые 100 эв поглощенной энергии, для ряда галоидосодержащих органических соединений. Эти значения высоки для хлороформа, бромоформа и четыреххлористого углерода они выще, чем для любого другого из изученных ранее органических соединений. К подобному же заключению пришли также Зайтцер и Тобольский [1]. Чистый хлороформ в отсутствие кислорода воздуха при облучении дает гексахлорэтан и не образует хлористого водорода, в присутствии же кислорода образуется перекись, разлагающаяся с образованием фосгена [2]. Подобным же образом реагирует метиленхлорид четыреххлористый углерод и четыреххлористый этилен не образуют перекисей, но тем не менее дают фосген и хлор [2], Алифатические бромиды дают бромистый водород и бром механизм этих реакций точно не установлен [3]. При изучении радиолиза и [c.163]

    Изучение продуктов деструкции цепей полимера методом хроматографии показало наличие глюкозы, мальтозы, мальто-триозы и неидентифицированного продукта, очевидно с меньшим молекулярным весом, чем иентоза. Потенциометрическое титрование показало присутствие карбоксильных групп, концентрация которых зависит от дозы. Радиационно-химический выход 6 карбоксильных групп составляет 1,5 при облучении в кислороде и 1,4 в вакууме, что выше данных Филлипса [2] (0 = 0,4) по окислению гексоз в уроновые кислоты. Большой выход карбоксильных групп, очевидно, обусловлен окислением полимерных цепей и частично окислением высвобождающейся глюкозы и редуцирующих олигосахаридов. Действие излучения, таким образом, не ограничивается гидролитическим разрывом глю-козидных связей, но включает также окисление. Имеющиеся данные не позволяют подсчитать, сколько энергии требуется на разрыв цепи. Но в любом случае полученные результаты не могут сравниваться с данными для целлюлозы и декстрана (см. ниже), так как облучение проводилось в разбавленном растворе, в связи с чем эффекты были обусловлены, видимо, косвенным действием радиации. [c.212]

    Фотохимические реакции можно разделить на прямые и сенсибилизированные. В случае прямой фотохимической реакции излучение поглощается одним или большим числом веществ, участвующих в реакции. При сенсибилизированной реакции определенное вещество поглощает излучение и возбуждает реакции, в которых его молекулы непосредственно не участвуют. Примерами сенсибилизированных реакций могут слуншть гидрирование этилена в присутствии паров ртути под действием излучения, поглощаемого только парами ртути развитие растений, обусловленное поглощением излучения хлорофиллом, несмотря на то, что он в дальнейшем не подвергается химическому изменению окисление тетрахлорэтилена кислородом до хлорангидрида три-хлоруксусной кислоты в присутствии хлора при поглощении излучения только хлором. [c.218]

    Реакции, которые относятся, по-видимому, к этому типу, наблюдаются также в случае стероидов [315], хотя они и протекают при других экспериментальных условиях. Так, эргостерин (LV1I1) под действием излучения в отсутствие кислорода, но в присутствии сенсибилизаторов, например эозина или флуоресцеина, дает [316] б с-эргостадиенол, для которого была предложена структура X V11. Возможно, что в этих реакциях сенсибилизатор действует так же, как акцептор водорода. [c.286]

    Полное сечение ионизации молекулы и полное сечение ее электронного возбуждения быстрой частицей примерно пропорциональны одной и той же характеристике молекулы — силе осциллятора, причем отношение этих сечений в широком диапазоне энергий мало меняется, будучи близким к единице. Так, согласно данным Сантара и Бернара [1434], отношение числа возбужденных к числу ионизированных молекул составляет для водорода величину, равную 1,2 для кислорода — 1,0—1,8 для азота 0,8—0,9 для аммиака — 1,2—1,6 и для метана 0,8—0,9. В результате оказывается, что число актов ионизации, возбуждения, а также число молекул, вступающих в химическую реакцию, под действием излучения (в отсутствие цепных реакций), отнесенное к единице поглощенной энергии, поразительно одинаково для самых разных веществ. Поэтому, полагая число химически превращенных молекул равным 4 на 100 эе, мы в подавляющем большинстве случаев не ошибемся более чем в 2—3 раза. Поэтому с такой ке точностью можно прогнозировать скорость распада индивидуального вещества при радиационно-химическом воздействии, пользуясь просто выражением  [c.361]

    Спектр I типа наблюдается в основном для Н (МН4 , активированный при 400—500° С) и характеризуется -тензором аксиальной симметрии и сверхтонким взаимодействием с одним ядром А1 (А = = 7,5 Гс). Авторы [36] предположили, что центром, ответственным за спектр, является дырка, локализованная на несвязывающей -орби-тали кислорода решетки, связанного с ирном алюминия, Образование центров связано с разрушением связи О—И под действием излучения. Поскольку в облученном Н были обнаружены атомы водорода [43], то такой механизм вполне допустим. При выдерживании образца в кислороде сигнал I типа исчезает, а на его месте появляется новый, сравнительно узкий сигнал [36]. Последний спектр не имеет сверхтонкой структуры, обусловленной взаимодействием с A1. Эсперимент с применением кислорода, обогащенного изотопом О, показал, что индуцированные кислородом центры имеют два неэквивалентных ядра кислорода [36]. В результате последующего вакуумирования при комнатной температуре этот сигнал исчезал и восстанавливался первоначальный спектр I типа. Авторы [36] отнесли сигнал, индуцированный кислородом, к перекисным радикалам, образованным из молекул О2 и центров I типа. При облучении НУ в присутствии кислорода интенсивность сигнала была в 10 раз выше [36]. [c.445]

    Кубо с сотрудниками [79] сообщает, что катализаторы TiO, и V3O5 — TiOa проявляют очень высокую активность в окислении SO2 при облучении рентгеновскими лучами определенной интенсивности. Предполагается, что TiOg под действием излучения выделяет активный кислород и реакция протекает следующим образом  [c.347]

    Поскольку ароматические углеводороды стабильны при сравнительно высокой температуре и устойчивы к радиолизу, были подробно изучены диарилалканы и алкилполифенильные углеводороды с целью определения возможности их использования в качестве гидравлических жидкостей и специальных смазок, несущих нагрузку не только при высоких температурах, но и в условиях действия излучения. Исследовались также некоторые кислород-производные этих соединений. [c.171]

    Дальнейшее окисление, особенно нри действии излучения высокой энергии, направляется по атомам С-4 и С-5 с образованием соединений типа (150) наряду с производными аллоксана и нарабановой кислоты. В отсутствие кислорода при действии радикалов, образующихся из спиртов [176], аминов [177, 178] и простых эфиров [179], наблюдаются реакции замещения, приводящие к 6- или 8-алкилпуринам или продуктам типа (151) и (152) описаны также реакции фотодезалкилирования 8-гидр-окснлалкилпуринов [180] и аддукты, образуемые 8-замещенными [c.628]

    Дж. Дж. Керрол, Р. О.. Болт. Действие радиоактивных излучений на смазочные материалы. Общие сведения о взаимодействии радиоактивных излучений с органическими веществами. Радиолиз и вызываемые им изменения. Действие излучений на компоненты смазочных масел базовые масла (нефтяные и синтетические алкилароматические, типа сложных и простых эфиров, галоидопроизводные, кремнийорганические), присадки различного назначения. Совместное влияние излучений, высоких температур и кислорода. Предельные допускаемые дозы для различных твердых масел, жидкостей для гидравлических систем и консистентных смазок. Методы испытания и пути повышения радиационной стойкости. [c.391]


Смотреть страницы где упоминается термин Кислород при действии излучения: [c.157]    [c.246]    [c.241]    [c.545]    [c.185]    [c.60]    [c.109]    [c.113]    [c.241]   
Действующие ионизирующих излучений на природные и синтетические полимеры (1959) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте