Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электродвижущая сила температуры

    Здесь ДЯ и AS — изменения энтальпии и энтропии, которые, согласно (52.2), соответствуют уравнению химической реакции. Таким образом измерением электродвижущей силы и ее температурной зависимости можно определить величины ДС, ДЯ и Д5 для реакции (52.2). Так как все три величины являются функциями состояния, то их значения ие зависят от того, протекает ли реакция (при постоянной температуре и постоянном давлении) необратимо (случай б".) или обратимо (случай в".). Напротив, теплота, принятая системой (которая зависит от пути в пространстве состояния), при необратимом протекании равна ДЯ, при обратимом процессе равна ГД5, в то время как в последнем случае, согласно (52.31), ДЯ равна сумме подведенной теплоты и электрической работы, подведенной потенциометром к системе. Термодинамическое исследование гетерогенной реакции с помощью обратимых гальванических элементов играет также важную роль при экспериментальной проверке теплового закона Нернста ( 38). [c.270]


    Неполная диссоциация молекул, взаимное притяжение ионов, их гидратация и другие эффекты влияют на различные свойства раствора. Суммарное влияние их на любое из термодинамических свойств может быть выражено через коэффициент активности электролита в данном растворе. Поэтому коэффициент активности и активность могут быть определены путем измерения различных свойств растворов температуры замерзания, температуры кипения, давления насыщенного пара, осмотического давления, электродвижущей силы (э. д. с.) гальванической цепи (см. ниже) и др. [c.395]

    Скачки потенциалов на границах фаз 365 2. Электродвижущая сила гальванического элемента 368 3. Типы электродов 371 4. Стандартные электродные потенциалы и правило знаков 373 5. Концентрационные элементы. Диффузионный потенциал 375 6. Зависимость ЭДС от температуры 377 7. Измерение некоторых физико-химических величин методом ЭДС 380 8. Электродные процессы 382" [c.400]

    В неидеальных растворах мерой взаимодействия в них молекул растворителя и растворенных частиц является активность, которую называют еще эффективной концентрацией. Для растворов неэлектролитов и электролитов активности можно рассчитывать по закону распределения, по понижению давления над растворами, по повышению температуры кипения или понижению температуры замерзания, по измерению электропроводности или электродвижущих сил раствора. [c.239]

    В таком цикле Карно гальванический элемент при известной температуре поглощает теплоту нагревателя и производит электрическую работу. Последняя может быть затрачена на поднятие тяжести и таким образом сохранена как потенциальная механическая энергия. Заставляя затем элемент работать в условия идеальной тепловой изоляции, можно адиабатно понизить (или г.о-высить) его температуру, после чего, используя сохраненную работу, можно провести химическую реакцию в элементе в обратном направлении, при ином значении электродвижущей силы, а затем адиабатно довести элемент до первоначальной температуры. [c.81]

    Величины электродвижущей силы различных термопар, в зависимости от температуры используемые для градуировки термопар, приведены в табл. 4. [c.13]

    Коэффициент активности может быть определен различными методами при измерении электродвижущих сил, температур кипения и замерзания растворов, понижения давления пара и др. Его значение зависит от концентрации и общего состава раствора, температуры, давления и т. д. [c.40]


    Общий принцип действия системы можно пояснить на примере автоматического регулирования температуры в колонне синтеза. Электродвижущая сила, возникающая в термопаре (датчика), пропорциональна температуре, которая отсчитывается на шкале измерительного прибора. Отклонение температуры от заданной преобразуется специальным устройством в импульс давления воздуха, приводящий в действие систему регулирования. Чем больше отклонение, тем сильнее воздействие, передаваемое регулятором органу управления. Прн повышении температуры открывается вентиль холодного байпаса, при снижении — он закрывается. Если такой прием регулирования не приводит к понижению температуры при закрытом байпасе, прибегают к регулированию изменением объемной скорости. При этом регулятор начинает подавать сигнал на открытие вентиля длинного байпаса , вследствие чего уменьшается количество газа, подаваемого в колонну циркуляционным компрессором. [c.71]

    В соответствии с уравнениями (VI, 3) и (VI, За), термодинамической характеристикой компонента раствора может быть его парциальное давление р,- или летучесть в насыщенном паре над раствором. Однако эти величины для малолетучих компонентов практически неопределимы, тогда как активность щ может быть определена не только из уравнений (VI, 23) или (VI, 23а), но и другими методами, не требующими измерения давления пара (например, температуры затвердевания, электродвижущие силы). Об этих методах сказано в дальнейшем. [c.208]

    Активность растворенной соли Яг может быть определена по давлению пара, температуре затвердевания, по данным о растворимости рассчитывается она теми же способами, которые кратко изложены в т. I (гл. VI и VII). Специфическим и в то же время наиболее удобным методом определения активности и коэффициентов активности электролитов является метод э.д.с. (электродвижущих сил). Все методы определения активности соли и упомянутые выше уравнения приводят к величине, характеризующей реальные термодинамические свойства растворенной соли в целом, независимо от того, диссоциирована она или нет. Однако в общем случае свойства различных ионов неодинаковы, и в принципе можно ввести и рассматривать термодинамические функции отдельно для ионов различных видов, используя практический коэффициент активности у [см. т. I, стр. 207—211, уравнения (VI, 24) и (31 6)]. [c.395]

    Электродвижущая сила элемента Ве ла определена путем тщательных измерений при различных температурах. Э. д. с. (в вольтах) такого элемента, приготовленного в соответствии с разработанными правилами, выражается уравнением  [c.526]

    При бесконечно медленном (обратимом) протекании химической реакции в гальваническом элементе при постоянных температуре и давлении получаемая электрическая энергия наибольшая, и совершаемая при этом электрическая работа максимально полезна и равна убыли изобарного потенциала Л акс=—ДО. Поэтому —АО=пРЕ, где п — количество грамм-эквивалентов вещества (заряд иона) / — число Фарадея (пР — количество электричества, прошедшего через элемент) —электродвижущая сила. [c.218]

    Высокие значения температуры удобнее и точнее можно замерять нри помощи термопар. Этот способ замера основан па возникновении электродвижущей сил ,[ в месте спая двух проводников. Значение э, д. с. зависит от природы проводников и темнературы спая. Измерительная установка представляет собой цепь, состоящую из двух проволок-проводников, спаянных на концах в цепь включен потенциометр или милливольтметр. [c.15]

    Электродвижущая сила элемента = ек — еа не зависит от концентрации щелочи, устойчивое значение э.д.с. близко к 1,35В. Напряжение при разряде элемента при температурах выше 0°С отличается стабильностью. На рис. 1-14 приведены характерные разрядные кривые элемента РЦ-53 диаметром 15,6 мм, высотой [c.39]

    ИЛИ металлический кожух 5 так, чтобы спай не касался его дна. Концы проволок выводят наружу, и холодный спай 6 константана с медью погружают в тающий лед 7. Возникающую электродвижущую силу, пропорциональную разности температур между горячим и холодным спаями, измеряют милливольтметром 8. [c.113]

    Электродвижущая сила (ЭДС) этой цепи при протекании какой-либо химической реакции в стандартных условиях (температура 25°С, давление 1 атм, концентрации всех веществ в ячейках- [c.163]

    Соотношения (У.54), (У.55) и (У.56) обычно и называют уравнениями Гиббса — Гельмгольца. Исходя из уравнения (У.56) можно сказать, что электродвижущую силу гальванического элемента возможно получить из теплового эффекта реакции по принципу Бертло (а не из максимальной работы), если дЕ/дТ = О, т. е. если электродвижущая сила элемента не зависит от температуры. Принцип Бертло исторически был подтвержден как раз равенством Е = = —АЯ /г-23062 для случайно выбранного элемента Даниэля, основанного на реакции [c.117]


    Наиболее распространенным и надежным способом измерения температуры в низкотемпературной рентгенографии является метод измерения электродвижущей силы различных термопар В температурном интервале от 80 до 300 К обычно используется термопара медь — константан , при более низких температурах (6—77 °К) применяют термометры сопротивления, например, германий — платина . [c.135]

    Если легко может быть найден изобарный потенциал реакции (например, исходя из изменений энтальпии реакции ДЯ, теплоемкостей веществ и использования уравнения AG = ДЯ — TAS или путем измерения электродвижущей силы элемента и т. д.), то по уравнению (IX.9) находится константа равновесия при заданной температуре. Рассмотрим с этой точки зрения реакцию распада метилового спирта [c.138]

    В зависимости от природы металлов, погруженных в электролит, от концентрации электролита и температуры в гальваническом элементе возникает электродвижущая сила (э. д. с.). Последняя представляет разность потенциалов, возникающих на границе раздела металл — электролит. [c.57]

    В качестве топлива для этих элементов применяют водород, спирты, альдегиды и другие активные органические вещества. При высоких температурах можно использовать оксид углерода (П), углеводороды, нефтепродукты и др. В топливном элементе электродвижущая сила образуется за счет реакции соединения кислорода (или воздуха) с веществами, способными более или менее легко окисляться. Материалом для изготовления электродов в топливных элементах могут служить металлы переходных групп (например, никель или металлы группы платины), а также угли с сильно развитой поверхностью, на которую наносят соответствующие катализаторы (оксиды некоторых металлов и др.). [c.221]

    В случае бесконечно медленного (обратимого) протекания химической реакции в гальваническом элементе при постоянных температуре и давлении получаемая электрическая энергия наибольшая, совершаемая при этом электрическая работа максимально полезна и равна убыли изобарного потенциала Лмакс = = — АО. Поэтому —АО = пГЕ, где п — число эквивалентов вещества Е — постоянная Фарадея (пЕ — количество прошедшего электричества) Е — электродвижущая сила. [c.249]

    В разбавленных растворах, приближающихся по свойствам к идеальным, коэффициент активности достигает единицы. Коэффициенты активности экспериментально определяются по измерениям осмотического давления, понижения температуры замерзания, упругости пара, электродвижущей силы и др. [c.247]

    ИЗ которого видно, что при реакции происходит переход электронов, т. е. реакция является окислительно-восстановительной. В рассматриваемом элементе пара 2п /2п является восстановителем, а пара Си /Си" — окислителем. В каждой паре на поверхности раздела металл — раствор соли металла возникает определенный, зависящий (при данной концентрации и температуре) от природы металла потенциал. Если во внешнюю цепь включить вольтметр, то с помощью его удается измерить разность потенциалов, или электродвижущую силу элемента (э. д. с.). Электродвижущая сила является мерой импульса окислительновосстановительной реакции и измеряется разностью потенциалов [c.172]

    Термо-ЭДС — электродвижущая сила, возникающая в электрической цепи, состоящей из нескольких разнородных материалов, контакты между которыми имеют различную температуру (эффект Зеебека). [c.145]

    Электродвижущая сила первой системы около 1,8 в, второй 1,5—1,7 в и последней около 1,1 в. Эти элементы имеют хорошие удельные характеристики. Они приводятся в действие путем заполнения водой и благодаря разогреванию, происходящему от взаимодействия магния с водой, могут работать при низких температурах окружающей среды. [c.562]

    Схема установки для определения потенциала растворения металла по сравнению с водородным электродом компенсационным методом приведена на рис. 123, где V — элемент Вестона с электродвижущей, силой 1,083 В, почти не зависящей от температуры. Элемент Вестона включается на сопротивление АВ (с линейным законом изменения сопротивления), исследуемый элемент включается на это же сопротивление через скользящий контакт С. Если падение внешнего потенциала от элемента Вестона на участке АС равно ЭДС элемента, то гальванометр (Г) покажет отсутствие тока. Отсюда легко найти ЭДС испытуемого элемента (Дё ) [c.233]

    Перенос электричества через раствор при введении в него двух электродов, соединенных с источником электродвижущей силы, осуществляется благодаря движению катионов и анионов в противоположных направлениях. При постоянных температуре и концентрации число всех ионов в растворе постоянно. Поэтому смысл уравнения (УП.2) в том, что увеличение I при возрастании Е происходит в результате увеличения скорости движения ионов. Такое движение подобно движению твердого шарика в вязкой среде. [c.109]

    Величина электродвижущей силы (ЭДС) различных термопар при температуре холодного спая С° [c.473]

    В последние годы щирокое развитие получили исследования в области высокотемпературной электрохимии, основанные на измерении электродвижущих сил. Оказалось, что этот метод, имеет ряд преимуществ. Большой вклад в развитие теории электролиза расплавленных электролитов внесли О. А. Есин, С. В. Карпачев, Ю. В. Баймаков, Ю. К- Делимарский, М. В. Смирнов и др. Так, в частности, было выяснено, что при высоких температурах в расплавах в равновесии с металлами участвуют ионы одного и того же элемента различных валентностей. [c.13]

    Принято, что международный вольт равен 1/1,018300 электродвижущей силы нормального элемента при 20° С. Изменение его э. д. с. в зависимости от температуры весьма незначительное и описывается уравнением [c.145]

    Вычислите электродвижущую силу элемента температура 298 К) [c.136]

    До сих пор единственным электролитом, который был исследован в интервале температур О—100°, является хлористый натрий, но, к сожалению, методы исследования этого электролита в случае разбавленных растворов (<0,1 М) были неточными. Даже для более концентрированных растворов и при 25° еще остаются сомнения в точности определения Результаты (табл. 135), полученные путем сочетания данных из измерений электродвижущих сил, температур кипения и теплот разбавления, не вполне согласуются со значениями, принятыми Скэтчардом, Гамером и Вудом [41] в качестве стандартных и полученными ими путем изопиестических измерений упругости пара. , [c.382]

    Основным элементом является ректификационная колонна 1 (см. фит. 78), сделанная из пирекса и впаянная в эва куиро1ванную муфту 2. Муфта вверху имеет раструб на подобие дьюаровского сосуда 10, по оси которого проходит верхняя часть колонны, служащая дефлегматором. Сжиженный га.з находится внизу колонны, где испарение его достигается нагреванием нихромовой проволокой 3 сила тока регулируется трансформатором и реостатом 4. В верхний сосуд 10 наливается легкий бензин, охлаждаемый жидким воздухом из термоса 6, подающимся по трубке. Температура отгоняющихся газов измеряется точной термопарой 5 для увеличения электродвижущей силы применяются тройные термопары, нечетные спаи которых охлаждаются льдом, а четные вводятся в дефлегматор. Отгоняемые газы через трубку 11 собираются в бутыль 7, через кран 8 , проходя мимо манометров, один из которых служит для измерения количества газа в бутьши, другой — для намерения давления в установке. Самая колонна работает изотермически, т. е, флегма образуется только в дефлегматоре и обегает в-низ навстречу газам по насадке, нредста-вляющей собой спираль из алю миниевой проволоки толщиной в 0,5 мм (1а). [c.392]

    Величину константы интегрирования можно определить если известны теплоемкости, тепловой эффект при АН298 и значение Кх Для одной из температур или установлена температура, при которой AGr=0 (как, например, для реакции превращения модификаций 5пбелое 5псерое, AGr = 0 при Г = 292 К). Численное значение изменения энергии Гиббса можно определить экспериментально, измеряя электродвижущие силы для элемента, в котором осуществляется заданная реакция, используя соотношение  [c.208]

    Измерение и регулирование температуры. Для измерения температуры у нас в стране применяют термодинамическую и стоградусную щкалу. Нуль стоградусной щкалы соответствует температуре плавления льда при давлении 760 мм рт. ст., а 100 °С— температуре кипения воды при том же давлении. Измерение температуры основано на физических явлениях, происходящих при нагревании тел, — возникновении электродвижущей силы в месте спая двух разнородных проводников. Два спаянных конца проволоки из различных металлов называют термопарой. Величина электродвижущей силы термопары зависит от температуры спаянного конца. Электрический ток термопар является постоянным, поэтому один из ее свободных концов имеет положительный потенциал, а другой — отрицательный. Свободные концы термопар соединяют проводами, а затем с измерительным прибором. Действие прибора основано на компенсации электродвижущей силы термопары противоположно направленной разностью потенциалов, создаваемой током от батареи, включенной в цепь термопары. [c.87]

    О свойствах высокомолекулярных сульфокислот можно получить представление после ознакомления со свойствами 1-гексаде-кансульфокислоты [246], более детально изложенными ниже. Свободную кислоту трудно выделить в чистом виде из растворов воды и спирта, из эфира же она кристаллизуется в виде белого твердого вещества, плавящегося при53—54 . Кислота трудно растворима в воде при комнатной температуре, но легко растворяется при температуре выше 50 . В обычных органических растворителях она хорошо растворяется при комнатной температуре 0,0008 н. водный раствор ее имеет легкую муть, в то время как 0,3 н. раствор представляет собой очень вязкую желатинообразную массу. При 90 растворы прозрачны даже после длительного стояния. Вязкость 1,0 н. раствора при 90 так велика, что пузырьки водорода проходят через него очень медленно [246]. Степень диссоциации, найденная путем измерения электропроводности, составляет около 25% для 0,1 п., 85% для 0,0001 н. и 30% для 0,5 н. водного раствора, что напоминает поведение натриевого и калиевого мыл. Степень диссоциации нри 90 , вьгчисленная из значений электропроводности, понижения упругости пара и измерений электродвижущей силы, составляет соответственно 29,8, 38,4 и 63%. Детальная сводка этих результатов сделана в работе Мак-Вэна и Вильямса [246]. Кондуктометрическое титрование [c.126]

    При одинаковой температуре горячих спаев в термопарах возникает электродвижущая сила, которая взаимно компенсируется в дифференциальной термопаре, не вызывая отклонения стрелки гальванометра или каретки потенциометра. Если горячие спаи имеют различную температуру, то в цепи возникает нескомпенси-рованный термоток. По мере начала процесса в анализируемом [c.7]

    Максимальная разность потенциалов между электродами гальванического элемента, находящегося в правильно разомкнутом или компенсированном состоянии, называется электродвижущей силой (э. д. с.) и обозначается Его. Э. д. с. зависит от температуры, давления, природы и концентрации веществ, из которых составлены электроды. Для э. д. с. условно введены знаки — и + по следующему правилу э. д. с. считают положительной, если катионы при работе элемента переходят из металла в раствор у электрода, записанного в схеме элемента слева, по направлению к электроду, записанному справа, а электроны движутся по внещнему проводнику в этом же направлении. Принимают, что правый электрод заряжен положительно относительно левого (см. рис. 27). Э. д. с считают отрицательной, если процессы осуществляются в обратном направлении. Э. д. с. равна алгебраической сумме разности потенциалов, вознпкаюпхих на границе раздела между всеми соприкасающимися фазами. Для N1—2п элемента [c.125]

    Особый класс полупроводниковых фотоэлементов с запирающим слоем, работающих на основе внутреннего фотоэффекта, не требует питания током от внешнего источлика, так как в них создается фото-электродвижущая сила при освещении. Фотоэлементы широко используются в автоматике, сигнализации, звуковом кино, изготовлении солнечных батарей и т.д. Цезий используется также для активации термоэлектронной эмиссии с вольфрамовых катодов электронных ламп. Если работа выхода с поверхности чистого вольфрама порядка 4,5 эв, то с поверхности вольфрама, активированного напыленной пленкой цезия, она снижается до 1,4 эв. Ток эмиссии при заданной температуре может возрасти на 10 порядков и больше. [c.274]

    Активности и коэффициенты активности веществ в растворах определяют, измеряя коллигативные свойства растворов (понижение упругости насыщенного пара над раствором по сравнению с упругостью насыщенного пара чистого растворителя, понижение температуры замерзания, повышение температуры кипения раствора по сравнению с чистым растворителем, осмотическое давление раствора), а также электродвижущую силу и электродные потенциалы обратимо работающих гальванических элементов. Можно, например, определить активность хлорида калия в растворе, поскольку можно приготовить такой раствор и измерить его коллигативные свойства. Однако в настоящее время неизвестны методы, с помощью которых можно было бы приготовить заряженные растворы, т. е. содержащие только катионы или только анионы, и измерить их коллигативные свойства, поскольку растворы электронейтральны и содержат эквивалентные количества как катионов, так и анионов. Следовательно, невозможно экспериментально определить активности и коэффициенты активности индивидуальных ионов (катионов или аниогюв) в растворе. [c.59]

    До сих пор работа гальванических элементов рассматривалась в изотермических условиях.-Между тем во многих случаях приходится принимать во внимание те изменения, каким электродвижущая сила гальванических элементов подвергается в зависимости от изменения температуры. Как будет показано далее, этот вопрос непосредственно связан с более общим соотношением, существующим между максимальной полезной работой гальванического элемента и тепловым э( зфектом протекающей в нем электрохимической реакции. [c.91]


Смотреть страницы где упоминается термин Электродвижущая сила температуры: [c.25]    [c.97]    [c.82]    [c.4]    [c.404]    [c.61]    [c.190]   
Химия справочное руководство (1975) -- [ c.490 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние температуры на электродвижущую силу гальванического элемента

Н и ч к о в, С. П. Р а с п о п и н. Электродвижущая сила термопар, составленных из никеля, графита, вольфрама и молибдена, при температурах

Связь между электродвижущей силой элемента, тепловым эффектом реакции и температурой

Электродвижущая сила ЭДС

Электродвижущая сила ЭДС зависимость от температуры

Электродвижущая сила гальванического элемента зависимость от температуры

Электродвижущая сила нормального элемента Вестона при раз ных температурах

Электродвижущая сила стандартного элемента Кларка при разных температурах

Электродвижущие силы гальванических элементов с расплавленными солями при разных температурах



© 2025 chem21.info Реклама на сайте