Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гомогенные реакции присоединения по С—С-связи

    Существуют разл. системы классификации Р. х. В зависимости от путей возбуждения реагентов в активное состояние Р.х. по дразделяют на плазмохим., радиационно-хям., термич., фотохим., электрохим. и др. Кинетич. классификация Р.х. учитывает молекулярность реакции (число молекул, участвующих в каждом элементарном акте,-обычно моно-, би- и тримолекулярные р-ции), порядок реакции (степень, в к-рой концентрация в-ва входит в кинетическое уравнение р-ции, устанавливающее зависимость скорости Р. х. от концентрации реагентов). По формальным признакам (изменение степени окисления, перераспределение связей, фазовому состоянию, топологии и др.) Р. X. делятся на окислительно-восстановительные реакции, присоединения реакции, замещения реакции, гетерогенные реакции, гомогенные реакции, реакции в растворах, реакции в твердых телах, топохимичес-кие реакции, перегруппировки молекулярные,, элиминирования реакции и т.д. Классификация по формальным признакам обычно не зависит от механизма р-ции. Напр., р-ции присоединения объединяются общим внеш. признаком-образованием одного нового соед. из двух или неск. исходных в р-циях замещения один фрагмент молекулы замещается на другой, при изомеризации происходит перераспределение связей между атомами в молекуле без изменения ее состава и т.д. [c.212]


    Кратная связь в комплексе оказывается частично разорванной и очень активной при различных реакциях присоединения. Вследствие этого комплексы переходных металлов широко используются на практике как катализаторы разнообразных процессов, в которых участвуют непредельные соединения (гидрирование, полимеризация, оксо-синтез и т. п.). Комплексные катализаторы, содержащие различные металлы, действуют очень специфично. Многие из этих комплексов растворимы и могут быть использованы в растворах — осуществляется гомогенный катализ соединениями переходных металлов. Прочность комплекса зависит от природы других лигандов, связанных с металлом. Если связь между олефином и металлом очень прочна, то комплекс не может функционировать как катализатор напротив, малая прочность связи не приводит к достаточному активированию олефина. Отсюда видно важное значение исследований влияния лигандов на прочность я-комплексов. [c.132]

    Менее изучена гомогенная реакция, катализируемая цианид-и фторид-ионами. Несмотря на то что некоторые из них были уже давно известны (ср. [411Ь]), только в последнее время они привлекли к себе особое внимание. Например, тетрабутиламмо-нийцианид в ТГФ или ацетонитриле вызывает присоединение нитроалканов, спиртов и хлороформа к а, -ненасыщенным кето-нам и сложным эфирам [413]. В этих растворителях ионные пары нитрил/четвертичный аммоний не защищены водородными связями и ведут себя как основания. Кротонитрил димеризуется, акрилонитрил полимеризуется [413]. [c.219]

    При рассмотрении реакций присоединения следует затронуть также и ряд других вопросов. Например, для гомолитических реакций немаловажен вопрос, вызывает (как в случае присоединения НВг) или не вызывает (как в случае Н1) гомолитический разрыв связи цепной процесс. Ход реакции зависит также от того, является ли реакция гомогенной или гетерогенной, а гетерогенность в свою очередь может быть связана как с гомолитиче-скими, так и с гетеролитическими процессами . Кроме того, от обратимости реакции в целом или ее конечных стадий зависит, какой из продуктов может быть выделен. Решающее значение, особенно при определении возможной стереохимии присоединения, имеет также вопрос, протекает ли реакция в одну или несколько стадий. В зависимости от времени жизни промежуточных состояний и степени независимости частей реагирующей системы многостадийные реакции, даже в случае одного реагента, могут давать существенно различные результаты. Наконец, важно знать, начинается ли присоединение непосредственно у двойной связи, которая в продукте реакции становится насыщенной, или в какой-либо другой части молекулы. [c.11]


    Водородный обмен и миграция двойной связи, происходящие при гетерогенном каталитическом гидрировании, предполагают, что реакция не обязательно идет как прямое присоединение двух атомов водорода по двойной связи исходного соединения. Следовательно, этот метод не может служить для региоселективного или стереоспецифического присоединения Ог к двойным или тройным связям. Однако такое присоединение можно провести (сын-процесс) с помощью гомогенного катали- [c.184]

    Наряду с образованием в гомогенном катализе промежуточных соединений определенную роль также могут играть весьма кратковременные сочетания ионов и молекул, которые обусловлены ионо-дипольным взаимодействием или образованием водородных связей. При таких взаимодействиях должна происходить поляризация молекул реагента и, как следствие этого, изменение их реакционной способности. Так, например, с современной точки зрения кислотой считается вещество, способное отщеплять протон, а основанием — вещество, присоединяющее протон. При кислотно-основном катализе кислота отдает свой протон молекуле субстрата. Это сопровождается внутримолекулярным превращением субстрата, связанным с изменением характера и расположения связей, а затем отщеплением протона от другого участка молекулы и присоединением его к сопряженному основанию. Так, например, в реакции енолизации кетонов [c.119]

    ГОМОГЕННЫЕ РЕАКЦИИ ПРИСОЕДИНЕНИЯ ПО С—С-СВЯЗИ [c.172]

    Некоторые гетерогенные реакции натрия и других металлов протекают, повидимому, по не полярному механизму [47]. Для наших ближайших целей будет достаточно констатировать, что большая часть гомогенных реакций присоединения по кратным связям относится к ионному типу и что при всех реакциях ионного типа на той или иной стадии реакции должно происходить электромерное смещение. [c.102]

    Скорость гомогенного взаимодействия двуокиси серы с кислородом настолько мала, что ее до сих пор не удалось измерить. Поэтому можно предположить, что энергия активации гомогенной реакции весьма велика. Основной причиной высокого значения энергии активации является необходимость затраты энергии на разрыв связи в молекуле кислорода для присоединения одного из атомов его к молекуле двуокиси серы. [c.23]

    Реакция присоединения молекулярного водорода к ненасыщенным соединениям не протекает вследствие высокого энергетического барьера, обусловленного квантово-механическим запретом и большой энергией связи в Нз. Однако известно множество гомогенных каталитических реакций, протекающих с высокой скоростью под действием низковалентных комплексов гаких металлов, как Ки, КЬ, Со, Р1, Р<1 и т. д. Типичными лигандами таких комплексов являются фосфины, СО, СГ, СЫ и др. В последние годы используют кластеры металлов Рс1, Р1, N1 и Ов. [c.540]

    Исследования Л. М. Литвиненко [288—290] посвящены изучению гомогенного органического катализа и механизма органических реакций. На примере процесса ацилирования органических аминов различными реагентами открыто явление бифункционального катализа. В результате изучения каталитических свойств амидов карбоновых кислот в реакции бензоилирования аминов показано, что последние являются мощными нуклеофильными катализаторами указанной реакции, что связано, по-видимому, с образованием реакционноспособного промежуточного продукта присоединения галогенангидрида кислоты к катализатору. Изучено влияние структурных факторов на каталитическую активность амидов. [c.58]

    Таким образом, мы приходим к понятию о структуре гетерогенно-каталитических процессов ( псевдоструктуре в случае обычных гомогенных реакций), так как схему (2.1) можно рассматривать как формулу строения особого вида. Кроме наиболее простых, дублетных, бывают более сложные структуры следующей по сложности структурой является триплет. В качестве примера последнего можно привести реакцию присоединения водорода к диолефиновой связи в положение 1—4  [c.199]

    Е. А. Шиловым [271—277] изучен механизм реакций хлора с органическими соединениями, лежащий в основе промышленного синтеза этиленхлоргидрата, и показано, что активными агентами хлорирования в водной среде являются ацилгипохлориты, хлор, Н0С1 и окись хлора, а не ион хлора, как считалось ранее. Установлено, что реакции присоединения галогеноводородов к соединениям с двойной и тройной связью в зависимости от природы реагентов и растворителя носят или электрофильный, или нуклеофильный характер. Изучена кинетика присоединения галогенов к тройной связи в неводных средах открыт и исследован гомогенный катализ карбоновыми кислотами и другими акцепторно-донорными веществами в апротонных и протонных растворителях. Создана теория электрофильного замещения в ароматических системах, в которой постулируются акцепторно-донорные комплексы хиноидного строения. Показано, что каталитическое действие аминокислот в процессе энолизации ацетона связано со специфическим свойством аминокислот образовывать циклические промежуточные комплексы. [c.57]


    В свете изложенного общий принцип подбора кислотноосновных гетерогенных катализаторов можно сформулировать следующим образом. Для гетерогенно-каталитических реакций, протекающих в газовой и жидкой фазах и сводящихся к гете-ролитическим превращениям, в частности к переходам водородного атома, миграциям связи и отщеплению (присоединению) веществ кислотно-основного характера, пригодны в качестве катализаторов соединения, представляющие собой твердые кислоты и основания протонного и апротонного типа. Для более точного подбора твердых катализаторов можно руководствоваться, с одной стороны, сведениями о проведении тех же или аналогичных реакций в виде жидкофазных гомогенных процес- [c.57]

    Имеется достаточно данных для предноложсния, что реакция оксосинтеза является гомогенно-каталитической реакцией. Условия успешного проведения процесса приблизительно соответствуют условиям, при которых карбонилы кобальта являются устойчивыми, хотя имеется очень мало количественных данных о равновесных состояниях, которые позволили бы точно определить эти последиие условия. Стехиометрия реакций требует суммарного присоединения 1 моля окиси углерода и 1 моля водорода на 1 моль олефина. Однако один атом водорода присоединяется к одному атому углерода, а окись углерода и второй атом водорода присоединяются к другому углеродному атому двойной связи. Весьма желательно поэтому изучение последовательности этих ирисоединений, если только они не происходят одновременно. Так как атомы водорода присоединяются к различным углеродным атомам, то обоснованный механизм реакции должен дать объяснение энергетических трудностей, сопряженных с расщеплением водорода в гомогенной среде. [c.298]

    Катализируемое палладием (II) присоединение воды к этилену является важнейшей частью процесса синтеза ацетальдегида (см. разд. 15.6.3.1 и 15.6.3.10). Образующиеся из олефинов комплексы с а-связями углерод—металл играют роль нестабильных промежуточных продуктов в ряде таких реакций, как гомогенное гидрирование, изомеризация и полимеризация олефинов (см. разд. 15.6.3.2, 15.6.3.3 и 15.6.3.4). [c.272]

    Реакция (1) представляет собой первичную стадию терли -ческого распада фенола взаимодействие образующегося при этой реакции атомарного водорода с молекулой фенола [реакция (2)] приводит к отрыву гидроксильной группы от бензольного ядра (подобно деалкилированию алкилбензолов [396]). Этот процесс ускоряется давлением водорода, так как последнее определяет скорость реакции (4) и аналогичных реакций (5) с участием молекулярного водорода, генерирующих атомарный водород. Процесс разрыва ароматического кольца также связан с участием атомарного водорода [411], присоединение которого к одному из углеродных атомов фенола приводит к снижению прочности связи между этим и соседним с ним атомами углерода. Позднее на основании исследовапия гомогенного деструктивного гидрирования крезолов было высказано предположение [412], что процесс расщепления ароматического кольца происходит главным образом в результате присоединения атома водорода в орто-положение в гидроксильной группе. [c.228]

    Каталитические процессы могут быть гомогенными (катализатор находится в растворе реакционной смеси) и гетерогенными (реакция, протекающая в жидкой или газовой фазе, осуществляется на поверхности катализатора). Роль катализатора заключается в активации реагирующих молекул. Это достигается либо присоединением катализатора к веществу, что вызывает дальнейшие реакции, либо адсорбцией вещества на активных центрах катализатора, что активирует определенные связи, вызывает их диссоциацию и т. и. Особое место занимают биокатализаторы — ферменты, представляющие собой сложные белки. Ферменты ускоряют строго определенные реакции. [c.74]

    Такую же стереохимию (син-присоединение) имеет гидроборирова-ние алкинов, несмотря на то, что эта реакция проводится в гомогенных условиях. Этот метод гидрирования алкинов применяется для алкинов с концевой тройной связью. [c.111]

    Двойная связь С=С очень реакционноспособна также в реакциях гомолитического типа, о чем свидетельствуют многочисленные подробно изученные процессы радикальной полимеризации олефинов, присоединения электрофильных реагентов в присутствии перекисей и других источников свободных радикалов против правила Марковникова и многие другие реакции, реализующиеся в мягких условиях. Они обычно не сопровождаются перестройкой углеродного скелета олефина, поскольку, как отмечалось выше, радикальный путь изомеризации углеводородных радикалов в гомогенных условиях энергетически невыгоден. Однако процессы гетерогенно-каталитического гидрирования и дегидрирования в ряде случаев сопровождаются изменением строения углеродной цепи. Следовательно, в этих условиях создается возможность реализации гомолитического механизма скелетной изомеризации алкильных радикалов. [c.13]

    Завершая рассмотрение различных олигонуклеотидных праймеров, следует упомянуть о предъявляемых требованиях к их качеству. Праймеры являются довольно критичным компонентом секвенирующих реакций. Как уже отмечалось выше, читабельность радиоавтографа геля или однозначность результатов, получаемых в автоматическом сек-венаторе ДНК, будет зависеть от гомогенности 5 -конца праймера. Поскольку при химическом синтезе олигонуклеотидов, начинающегося с З -конца, эффективность каждой реакции присоединения очередного звена никогда не составляет 100%, то неочищенный продукт будет представлять собой смесь основного продукта и более коротких олигонуклеотидов. Легко подсчитать, что чем длиннее будет синтезируемый олигонуклеотид, тем ниже содержание основного продукта. В связи с этим очищенные праймеры будут давать более лучшие результаты, но очистка праймеров требует дополнительных усилий и значительно увеличивает их стоимость. Что касается коротких модульных праймеров (5-, 6-, [c.75]

    В гомогенной реакции присоединение протона к одному или нескольким атомам кислорода в молекуле паральдегида, по-видимому, ослабляет связь С —О. Поскольку, однако, в случае гетерогенной реакции было показано, что сульфаты ведут себя аналогично ферменту, можно также предположить ослабление связи С —О, которое вызвано не только адсорбцией кислородных атомов паральдегида на активных центрах (бренстедовских и льюисовских кислотных центрах), но и взаимодействием между центрами иной природы и остальной частью молекулы субстрата. В табл. 31 приведены константы скорости реакции первого порядка к, найденные для деполимеризации паральдегида в бензоле при 30°С на некоторых твердых кислотных катализаторах, а также в присутствии трихлоруксусной кислоты. Здесь же даны величины кислотности при //д< + 3,3 [34]. Как следует из таблицы, активность, отнесенная к единице концентрации кислотных центров, для гетерогенных катализаторов выше, чем для трихлоруксусной кислоты. Если взять за основу сравнения эту величину (для < -3), то исследованные катализаторы дадут следующий ряц N 80, СиЗО, А120з 8Ю = 1100 320 1, характеризующий относительную активность образцов. [c.128]

    Если продукт захвата [ёА] электрохимически неактивен, VA = = 1, /а = 0 и наблюдаемый фототок равен току эмиссии / = /э. В случае его окисления на электроде с отдачей одного электрона га=0, /а=—/а и фототок не наблюдается. Наконец, при восстановлении [ёА] на электроде с присоединением одного электрона VA = 2 и = 2/э. Если в системе протекает ряд гомогенных и гетерогенных реакций с участием [ёА], VA оказывается дробной величиной и может быть функцией потенциала электрода. В соответствии с (6.38) связь между фототоком и потенциалом электрода при целочисленных значениях а не зависит от природы акцептора И определяется законом пяти вторых для фотоэмиссии, открытым А. М. Бродским, Ю. В. Плесковым, Ю. Я. Гуревичем, 3. А. Ротенбергом, В. А. Бендерским, Я. М. Золотовицким и Л. И. Коршуновым, согласно которому /э пропорционален или, что то же самое, и ° Е (кривая I на рис. 6.12). [c.218]

    Изучение кинетики присоединения брома в негидроксильных растворителях связано с экспериментальными трудностями. Имеется обзор ранних работ в этой области [15] и нет необходимости обсуждать их в этой книге. Было показано [23], что в четыреххлористом углероде в качестве растворителя возможно несколько механизмов. Например, реакция может протекать гетерогенно на полярной поверхности или, при более высоких концентрациях, как гомогенная реакция высокого кинетического порядка. В хлороформе или хлорбензоле кинетическая форма приближается к третьему порядку [уравнение (7-3)]. Установлено, что присоединение к аллилбензоату, особенно в хлорбензоле, индуцирует реакцию присоединения к коричной кислоте, которая в отсутствие аллилбензоата в тех же условиях почти не реагирует с бромом. Это указывает на большую сложность механизма реакции. Наиболее вероятное объяснение состоит в том, что какое-то промежуточное соединение, образующееся в процессе присоединения к аллилбензоату, [c.155]

    Гомогенные катализаторы на основе комплексов переходных металлов низкой валентности способствуют проведению реакций монооксида углерода и формиата с молекулярным водородом, алкенами, алкинами, спиртами, аминами, металлоргани-ческими соединениями, а также реакции присоединения гало-генводородов к ненасыщенным связям. [c.542]

    В среде диметилсульфоксида и гексаметилфосфамида удалось осуществить катализируемую грег-бутоксид-анионом реакцию присоединения ароматических гетероциклических соединений к ненасыщенным углеводородам с сопряженными кратными связями (гомогенное алкилирование). Известна также катализируемая основанием реакция изомеризации алкинов, протекающая в этанольном растворе гидроксида калия. По своей депротонирующей способности эти системы занимают промежуточное положение между системами гидроксид-ион — вода и амид натрия — аммиак. В роли депротонирующего агента может выступать также анион диметилсульфоксида. [c.83]

    Гидрирование — реакция присоединения, осуществимая для большинства ароматических систем. Термохимические данные по гидрированию наряду с данными о теплотах сгорания послужили базой для расчета эмпирической ЭР — одного из первых количественных критериев ароматичности (см. разд. 1.3.3), Молекулярный водород, как правило, не взаимодействует с ароматическими соединениями в отсутствие катализатора даже при высокой температуре. При гетерогенном катализе [1081, 1082] реакция гидрирования протекает на поверхности катализатора— переходного металла У1П группы, который адсорбирует водород и органическое соединение. В результате адсорбции водорода связь между атомамиг в его молекуле ослабевает и гомолитически разрывается, после чего происходит последовательное присоединение свободных радикалов — атомов водорода. При гомогенном катализе [212, 1083] водород активируется За -результате включения в координационную сферу комплекса переходного металла, например I [c.478]

    Способность бортриалкилов претерпевать гидрогенолиз с образованием алкилдиборанов в сочетании с реакцией присоединения последних по кратной углерод-углеродной связи используется для гомогенного каталитического гидрирования олефиновых углеводородов [59, 60]  [c.290]

    Совершенно подобные в принципе схемы были предложены для объяснения механизма перемещения двойных связей в ненасыщенных углеводородах при действии на них гомогенных (серная кислота) или гетерогенных (никель) катализаторов. Туркевич и Смит [337] исследовали изомеризацию бутена-1 в бутен-2 в присутствии серной или фосфорной кислот, содержащих тритий, и показали, что скорость реакции перемещения двойной связи изменяется пропорционально скорости водородного обмена, причем обе скорости при небольших концентрациях кислоты пропорциональны последним. В случае фосфорной кислоты энергия активации изомеризации оказалась на 3,6 ккал1моль меньше, чем для реакции обмена. Это различие показывает, что в обеих реакциях участвуют не свободные ионы водорода и трития, но их атомы, связанные, вероятнее всего, с кислородом. Упомянутый факт авторы считают доказательством неприемлемости теории Уитмора 201], объясняющей эту и подобные реакции присоединением ионов водорода по двойной связи. [c.536]

    Было показано, что при 93 К степень превращения в реакции присоединения сероводорода <к этилену, пропилену и другим олефинам лишь в несколько раз меньше степени соответствующего гид-робромирования [385]. Освещение смесей сероводорда с олефи-нами при 77 К к реакции гидросульфирования не приводит. Методом дифференциально-термического анализа найдено, что при низких температурах сероводород и олефины представляют смесь кристаллов, не образующих молекулярного соединения. Очевидно, для осуществления реакции при низких температурах в твердой фазе необходимо хотя бы частичное присутствие гомогенной фазы. В реакциях гидробромирования олефинов возможность образования при низких температурах молекулярных комплексов донор-но-акцепторного типа приводит к образованию такой специфической гомогенной фазы, в которой протекание реакции не связано со значительными перемещениями молекул. Отсутствие молекулярных комплексов в системе сероводород—олефин требует значительных перемещений реагирующих частиц, которые затруднены в гетерогенной системе. [c.109]

    В гетерогенном катализе, сравнительно с гомогенным, трактовка процесса осложняется уменьшением степени симметрии системы (увеличение пространственных затруднений за счет поверхности катализатора). Поэтому пространственно затрудненные реакции будут протекать более однозначно (при присоединении водорода образуется преимущественно термодинамически менее стабильный г мс-продукт, тогда как при гомогенном восстановлении возможно образование и грамс-изомера). В известных работах Линстеда исследовались такие пространственно затрудненные реакции гидрирования. Эти работы, к сон алению, носили скорее качественный характер кинетика реакций и связь кинетических данных с термодинамическими функциями не изучалась. [c.303]

    В монографии подробно рассмотрен фактический материал но асимметрическим реакциям, опубликованный за последние годы. Обсуждены реакции ахиральных реагентов с хиральными эфирами а-кетокислот, хиральными альдегидами и кетонами, асимметрические реакции присоединений по двойной связи С = О (циангид-риновый синтез, альдольная конденсация, реакции Реформатского и Дарзенса), перенос водорода от хиральных восстанавливающих агентов к ахиральным субстратам (восстановление по Меервейну — Понндорфу — Верлею, восстановление реактивами Гриньяра и металлгидридными комплексами). Рассмотрены реакции асимметрического присоединения к алкенам, асимметрический синтез аминокислот, включая и каталитические реакции, асимметрические перегруппировки и реакции элиминирования и, наконец, асимметрические синтезы по гетероатомам (сера, азот, кремний, фосфор). Вкратце рассмотрены вопросы абсолютного асимметрического синтеза, стереоспецифической полимеризации и асимметрического катализа (гетерогенного и гомогенного). В изложении последних вопросов наблюдается известная несистематичность наряду с обзором ряда известных, ставших уже классическими работ приведены данные некоторых последних статей по стереоспецифической полимеризации и гомогенному асимметрическому катализу, причем иногда дается неправильная оценка этих работ. [c.6]

    Были попытки установить причины, а также определить виды перегруппировок, происходящих при различных типах кислотного и щелочного катализа в гомогенных системах. Протонная теория в общей форме признает, что внутримолекулярный электролиз начинается мгновенно с отщеплением или присоединением протона. В результате смещения электронов, вызванного кислотным катализатором, у атомов реагирующей молекулы происходит перемещение валентных электронов, которое вызывает миграцию двойных связей и положительную поляризацию прежде неполярной связи водородного атома, причем последний принимается акцептором протонов — основанием (Лоури). Обратное происходит при щелочном катализе, ксгда отщепление протона сопровождается быстрыми электронными перемещениями в результате миграции валентных электронов происходят перемещение двойных связей и образование отрицательного заряда на другом конце молекулы, а не на том, который первоначально был отрицательным. Вновь образованный отрицательный заряд нейтрализуется протоном, освобожденным кислотой, и перегруппировка реагирующей молекулы завершается присоединением протона к гомополярной связи. Как было указано раньше, кислотный и щелочный катализ в гомогенных системах можно подразделить на реакции, которые 1) каталитически активируются исключительно кислотами это —гидролитическое расщепление моно-, ди- и полисахаридов, декстрина, крахмала и сложных эфиров, а также разложение простых иров и эфироподобных соединений, алкилацетатов, глюкозидов и пр. (табл. 65)  [c.206]

    Развитие и углубление представлений о нуклеофильном присоединении к тройной связи, создание новых способов активация анионов и ацетилена, систематическое применение в химии ацетилена суперосновных J)eд на базе специфических растворителей, краун-эфиров в гомогенных и двухфазных системах, обеспечивающих односторонний и регулируемый еренос нужных анионов из водной фазы к реагенту, находящемуся в органической фазе,— все это способствует формированию научных основ поиска новых и совершенствования уже известных реакций ацетилена и его, ближайших производных. .  [c.63]

    Для реакций миграции двойной связи в алкенах (т. е. миграции атомов водорода) под действием гомогенных катализаторов на основе переходных металлов было установлено два основных механизма. Первый из них заключается в присоединении алкена к гидриду металла с образованием металлалкильного производного [8] с последующим -элиминированием, приводящим к изомерному алкену [схема (5.7) дополнительные лиганды для простоты опущены]. Типичными примерами реакций изомеризации, протекающих по этому механизму, являются реакции, катализируемые соединениями родия. [c.175]

    Сделаны первые попытки создания радикально-цепной теории, основанной на трактовке активных центров как свободных валентностей [58, 2] и на механизмах полупроводникового катализа. Влияние контактных реакций на орто-пара-щеаращеъже водорода и изотопный обмен целыми радикалами при этих реакциях [59] указывают на существование лабильных радикалов или радикалонодобных форм при классическом органическом катализе. В то же время делается очевидным, что как и в гомогенном катализе, в жидкостях в качестве отправного элементарного акта чаще, чем образование обычных ковалентных связей и переход электронов, происходит образование лабильных комплексов присоединения со всем широким набором химических связей, встречающихся в электронной химии лигандов и твердых тел. Дальнейшая конкретизация структуры и свойств этих соединений и изучение закономерностей химии двухмерных поверхностных координационных соединений — задача ближайшего времени. Вторая актуальная задача — установление роли свободных радикалов и цепных реакций в осуще- [c.511]

    Подобное различие в масс-спектрах вицинальных дидейтероалканов, полученных при гидрировании индивидуальных изомерных нормальных алкенов в растворе на гомогенном катализаторе, позволило авторам работы [8] уверенно определять положение двойной связи. К сожалению, метод гидрирования в растворе неприменим в реакционной хромато-масс-спектрометрии. Некоторые сложности возникают и при использовании в условиях газофазного гидрирования, реализуемого в хромато-масс-спектрометрии, гетерогенных катализаторов на базе переходных металлов, которые не обеспечивают такого селективного дейтерирования, поскольку при проведении реакции как в растворах, так и газовой фазе наряду с присоединением дейтерия происходит обмен почти всех атомов водорода субстрата на дейтерий [9]. Однако наши исследования показали, что для некоторых разветвленных алкенов наблюдается высокая степень селективности насыщения двойной связи дейтерием. [c.47]

    Систематические исследования гомогенного катллиаа в реакциях ацетилена работы Кучерова, Ньюленда, Фаворского, Клебанского и др.). Наибольшее распространение на этом этапе получила химическая теория катализа, в связи с чем на первый план были выдвинуты задачи определение стадий реакции и изучение про- межуточных соединений ацетилена с катализатором, попытки их изолирования и идентификации. Ньюленд и сотрудники на основе исследований ртутного катализа пришли к выводу, что воздействие катализаторов на ацетилен заключается в своеобразной подготовке тройной связи к дальнейшему присоединению реагента. Однако отсутствие физически-обоснованных представлений о природе элементарного каталитического акта, об электронном строении и природе ацетиленовой связи явилось причиной разногласий по вопросу о характере активации ацетилена. [c.101]


Смотреть страницы где упоминается термин Гомогенные реакции присоединения по С—С-связи: [c.425]    [c.26]    [c.425]    [c.23]    [c.92]    [c.180]    [c.325]    [c.174]    [c.125]   
Смотреть главы в:

Алкилирование. Исследование и промышленное оформление процесса -> Гомогенные реакции присоединения по С—С-связи




ПОИСК





Смотрите так же термины и статьи:

Реакции гомогенные

Реакции присоединения



© 2025 chem21.info Реклама на сайте