Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диолефины получение

    Глава 23. Полимеризация моноолефинов и диолефинов. Получение синтетического каучука................................ 647 [c.639]

    ПОЛИМЕРИЗАЦИЯ МОНООЛЕФИНОВ И ДИОЛЕФИНОВ. ПОЛУЧЕНИЕ СИНТЕТИЧЕСКОГО КАУЧУКА [c.647]

    Микроструктура полимеров диолефинов, полученных в присутствии катализаторов —щелочных металлов > [c.152]

    Использовались диолефины, полученные в результате разделения фракции 65—115° С (2 мм рт. ст.) продуктов крекинга парафинов. [c.113]


    Иногда могут оказаться необходимыми дополнительные ступени подготовки исходного продукта, если этот продукт был получен в результате крекинга и содержит диолефины или перекиси. Некоторые диолефины вступают в реакцию с растворителем (фенолом) и образуют неактивный смолистый продукт. Диолефины можно удалить при помощи таких методов, как обработка глинами, каталитическое или химическое воздействие. Перекиси можно восстановить [c.105]

    Крекинг-бензины, полученные при высоких температурах и низких давлениях, содержат больше ароматических и непредельных углеводородов, включая диолефины как с открытой цепью, так и циклические. [c.50]

    Процессы производства олефиновых и диолефиновых углеводородов путем каталитической дегидрогенизации впервые были широко использованы США во время второй мировой войны. Методы получения олефинов были разработаны за несколько лет до войны в результате интенсивной исследовательской работы в период от 1930 до 1940 гг. Однако в то время эти методы были малорентабельными. Кроме того, относительно небольшой спрос на газообразные олефины удовлетворялся производством их на установках каталитического крекинга. С начала войны спрос на олефины и диолефины как сырье для производства алкилированного бензина и синтетического каучука способствовал строительству многочисленных дегидрогенизационных установок. [c.189]

    Дегидрирование бутана до бутенов является пока относительно дорогим процессом для получения моторных бензинов и, вероятно, может быть использовано только для получения более цепных химических продуктов. Применение процесса в этом случае будет ограничено теми районами, где испытывается нужда в бутСнах и стоимость бутанов достаточно низкая. Однако совершенствование и удешевление процесса дегидрирования бутанов могло бы иметь своим результатом расширение сферы применения как моноолефинов, так и диолефинов. [c.210]

    При пиролизе гексадецена [42, 43] в условиях низких температур полученные газы имеют насыщенный характер, но с повышением температуры все в большем количестве образуются газообразные олефины и водород. Отсутствие в составе газов диолефинов с длинной цепью свидетельствует о том, что они расщепляются, давая либо парафин и низкомолекулярный диолефин, либо диолефин плюс олефин плюс водород. Таким образом объясняется присутствие в конечных продуктах пиролитических реакций бутадиена [44]. [c.300]

    Равновесное превращение бутана в олефины и диолефины (рис. VII-4) можно без труда рассчитать, используя полученные результаты. [c.384]


    Одним из наиболее широко распространенных способов получения олефинов и диолефинов для производства полимерных материалов является процесс каталитического дегидрирования низкомолекулярных парадное. [c.234]

    Полученные в термических процессах бензины (бензины термического крекинга, замедленного коксования и др.) имеют октановое число 50—70, что не удовлетворяет современным требованиям, поэтому их подвергают гидроочистке, а затем уже направляют на каталитический риформинг. Сырье для каталитического риформинга не должно содержать более 1% непредельных углеводородов, в связи с этим бензины термического происхождения подвергают гидроочистке не только для удаления серы и азота, но и с целью гидрирования содержащихся в них моно- и диолефинов. [c.14]

    Бензины каталитического крекинга, а также бензины, полученные в процессе пиролиза, имеют достаточно высокие октановые числа в значительной мере за счет наличия в них непредельных углеводородов. Гидроочистку таких бензинов ведут таким образом, чтобы, но возможности не затрагивая непредельные углеводороды с одной двойной связью, очистить бензин от сернистых соединений и диолефинов. [c.14]

    При получении ароматических углеводородов бензин пиролиза подвергают двухступенчатому гидрированию. На первой ступени гидрируют диолефины, на второй — моноолефины. Гидрирование олефинов требует дополнительного расхода водорода, однако общий баланс Нз на нефтехимическом предприятии с использованием в качестве исходного сырья бензина остается положительным. Специ- [c.32]

    При этом выделяется водород. Процессы ведут при температурах 530—660° С в присутствии окисных катализаторов. Аналогичным образом из изопентана путем дегидрирования получают изопрен. Применяются и некоторые другие способы получения диолефинов. [c.324]

    Газы нефтепереработки. Другим крупным источником получения легких углеводородов являются газы, получаемые при переработке нефти и газового конденсата. Газ, получаемый на таких предприятиях, содержит не только парафиновые, но и непредельные углеводороды — олефины, диолефины, а также сероводород (при переработке сернистых нефтей). Этим он отличается от газа, получаемого при стабилизации нефти на промыслах п газобензиновых заводах. [c.296]

    Получение термическим путем диолефинов, являющихся исходным сырьем для производства синтетического каучука, представляет значительные трудности. Применение катализаторов открывает и в этой области блестящие перспективы. [c.243]

    Монография делится на следующие части. В гл. 1 описана история развития химической переработки нефти. В гл. 2 приводятся сведения о сырье, используемом нефтехимической промышленностью, а именно об углеводородах, присутствующих в нефти или получающихся в качестве побочных продуктов на нефтеперерабатывающих заводах, а также об общих методах разделения углеводородов. Главы 3—6 посвящены химии парафинов, а главы 7—11 — производству и химической переработке олефинов. Производство других типов углеводородов диолефинов, нафтенов, ароматических углеводородов и ацетилена — описано в гл. 12—15. Главы 16—20 посвящены получению и реакциям основных продуктов химической переработки нефти. В главе 21 приведен краткий обзор химических побочных продуктов, в основном неуглеводородов, получающихся на нефтеперерабатывающих заводах. Глава 22 представляет собой краткий очерк экономики нефтехимических производств, влияние конкретных местных условий на выбор сырья, методов получения и путей использования продуктов. В приложении даны точки кипения простейших углеводородов, общие сведения и схемы. [c.12]

    Образующиеся олефины способны подвергаться дальнейшим превращениям, а именно разложению и конденсации. В числе продуктов крекинга парафинов находятся олефины, диолефины, ароматические и нафтеновые углеводороды, а при высоких температурах и ацетилен. Выяснение термодинамической возможности взаимных переходов углеводородов одних типов в другие имеет существенное значение для производства олефинов, описанного в данной главе, и для термических методов получения других углеводородов, которые рассматриваются в последующих главах. [c.103]

    Если реакция (Ж) не доходит до конца, то остается некоторое количество циклических диолефинов. Диолефины, полученные из лимонена, состоят главным образом из экзоцикли-ческих диолефинов 2,4(8)- и 3, 8(9)-л-ментадиенов [c.349]

    Настоящая книга посвящена аллену и его различным производным — чрезвычайно интересному классу соединений. По химии аллена накопился большой экспериментальный материал, который до сих пор был обобщен лишь в раде разрозненных обзоров, посвященных частным вопросам химии аллена 1-10]. Целью настоящей монографии является попытка рассмотрения свойств аллена и его производных комплексно, а также попытка оценить перспективу использования этих соединений. До недавнего времени аллен по праву считался одним из наименее изученных углеводородов класса диолефинов. Полученный впервые в 1865 г. аллен долгое время оставался в тени. Большее внимание привлекли производные аллена, первое сообщение о синтезе углеводородов ряда аллена появилось в 1888 г. Полинепредель-ные углеводороды неоднократно использовались исследователями как исходные соединения для синтеза самых разнообразных органических соединений, а также как мономерные продукты для полимеризации. Стоит отметить, что одна из первых попыток синтеза искусственного каучука была предпринята с 1,3-диме-тилалленом. [c.3]


    Исследование углеводородов с прямой цепью методом инфракрасной спектроскопии показало, что непредельные соединения представляют собой олефины с двойной связью на конце, а также с двойной связью внутри цепи в траке-положении. Сопряженные диолефины не были обнаружены. Достаточное согласие, полученное для значений, рассчитанных из данных по инфракрасной спектроскопии для суммы олефинов с двойной связью на конце и с двойной связью внутри цепи в транс-положении, и значений, рассчитанных из бромных чисел для всех олефинов, указывает, что другие типы, как несопряженные диолефины или олефины с двойной связью внутри цепи в цис-положошш, присутствуют только в очень малых количествах. Соединения такого типа не могут быть обнаружены методом инфракрасной спектроскопхш. Эти результаты указывают на неполноту достижения термодинамического равновесия, хотя олефины с двойной связью внутри цепи в цис- 0 траис-полотениы присутствуют приблизительно н равных количествах. [c.66]

    Например, натуральный каучук, состаи которого можно выразить формулой ( sHg), , имеет интерцепт рефракции около 1,0600. Это соответствует сред-нему значению 1,0602, полученному для 18 несопряжсиных диолефинов. Гидро- [c.257]

    Из непредельных углеводородов, найденных в бензине термического крекинга (табл. 3), олефииы с открытой цепью значительно преобладают над циклоолефинами. Диолефины присутствуют в незначительном количество. Подобно парафинам, отмеченные выше алифатические олефииы имеют нормальную или слегка разветвленную структуру. Следует иметь в виду, что приведенные сведения об углеводородах, найденных в бензинах термического крекинга, относятся к товарным бензинам, полученным при относительно умеренных температурах (от 450 до 500° С) и давлениях (около 34 а/и)  [c.50]

    До возникновения повышенного спроса на стирол в связи с принятой с началом войны в США программой производства синтетического каучука его получали в небольшом количестве путем дегидрирования этилбензола. Для производства бутадиена в нефтяной промышленности применялись процессы высокотемпературного термического крекипга лигроинов и газойлей. При этом получались также другие ценные диолефины, такие как изопрен и циклопентадиен. Выходы бутадиена составляли всего лишь от 2 до 5% на сырье. К концу второй мировой войны процесс термического крекинга был также использован для получения так называемого qui kie бутадиена. Однако большая часть бутадиена получалась в результате дегидрирования бутенов. Применение бутана п тсачестве сырья для получения бутадиена составляло лишь небольшую долю намеченной программы. Широкое применение нашел сравнительно дорогой процесс превращения этилового спирта в бутадиен. Разработанный в Германии процесс получения бутадиена из ацетилена не был принят. После рассмотрения всех процессов правительство США утвердило план производства бутадиена, приведенный в табл. 1. [c.189]

    Таким образом каталитическое дегидрирование широко используется для получения олефинов, диолефинов и стирола. В данной главе рассматриваются некоторые наиболее важные аспекты этих трех реакций. Другая, не менее важная "реакция дегидрирования, связанная с образованием ароматических углеводородов, рассмотрена в главе XXIX. [c.190]

    То что смола образуется при окислении только определенных типов углеводородов, является дальнейшей иллюстрацией к изучению окисления высококрекированных бензинов при температурах, соответствующих температуре их хранения [61]. Отдельные 5-градусные фракции дистиллятов парофазного крекинга окислялись при 25 и 38° С и давлении 1,4 кГ см в течение 1 и 2 недель соответственно. После испарения полученных продуктов на паровой бане была обнаружена смола, образовавшаяся в результате окисления. Если построить кривую зависимости количества образовавшейся смолы от температуры кипения фракции, то получаются 3 экстремальные точки, соответствующие приблизительно температурам кипения сопряженных диолефинов и циклических олефинов. Типичными представителями каждой группы будут [c.77]

    Разбавленная серная кислота, например 75%-ной концентрации, заполимеризует диолефины и удалит вещества, портящие цвет нефтепродукта, но не сможет обеспечить очистки дистиллята от серы [12, 40—45]. Удаление олефинов из бензина вызывает уменьшение октанового числа, в то время как очистка от сернистых соединений улучшает приемистость бензина к тетраэтилсвинцу. Таким образом, суммарный эффект очистки в отношении октанового числа может оказаться равным нулю [46]. В нефтезаводской практике наблюдались случаи, когда в результате сернокислотной-очистки у крекинг-дистиллята, полученного из парафинового сырья, октановое число снижалось, а у крекинг-дистил-лята, полученного из ароматизированного газойля, октановое число повышалось. [c.229]

    Индивидуальные газообразные углеводороды, которые получаются либо непосредственно из сырой нефти или природного газа, либо путем крекинга более тяжелых нефтепродуктов, используются для производства химических продуктов, пластмасс и синтетического каучука (см. гл. XIII) или как сырье процессов каталитического превращения — полимеризации и алкилирования, ведущих к получению жидких углеводородов (см. гл. II). Большинство процессов каталитического превращения базируется на использовании реакционной способности олефинов и диолефинов, которые содержатся в газе. Часто ненасыщенные соединения получают дегидрированием пли деметанизацией насыщенных углеводородов приблизительно такого же молекулярного веса. Так, этан моншо дегидрировать в этилен, а пропан либо дегидрировать в пропилен, либо разложить па этилен и метан. Эти и подобные реакции [1 —10]1 имеют место в термических процессах, протекающих при 550—750° С. Термическое разложение Taiioro типа легко объясняется радикальным механизмом. По существу аналогичный характер имеют реакции разложения жидких углеводородов. Тел не менее дегидрирование H-oj xana и к-бутиленов, которое [c.296]

    Обычно очистка сводится к применению адсорбирующих земель в паровой фазе (способ Грея). Необходимо отметить, что бензин парофазного крэкинга содержит всегда меньше серы, чем исходное сы рье. При таких условиях очистка сводится главным образом i удалеиню диолефинов. Адсорбирующие земли при парофазном крэ-кинге вызывают полимеризацию. Тяжелое масло, полученное полимеризацией диолефинов, непрерьгоно удаляется из очистительной банши. [c.310]

    В табл. 49 показаны температуры плавленпя кристалличес1шх соединопий, полученных путем взаимодействия некоторых диолефинов с малеиновым ангидридом. [c.223]

    Бензиновые фракции, получаемые при производстве этилена, пропилена, бутилена, бутадиена пиролизом углеводородных газов и низкооктановых бензинов, содержат 40—65 вес. % ароматических, около 20 вес. % олефиновых и 10—15 вес. % диолефиновых углеводородов. Применение их в качестве компонента автомобильного бензина или сырья для получения ароматических углеводородов без предварительной очистки невозможно из-за высокого содержания в них моно- и главным образом диолефинов, а также примесей сернистых, азотистых и кислородсодержащих соединений. Облагораживание таких бензинов методом селективной гидроочистки было проведено на сульфидном вольфрамникелевом, алюмокобальтмолибденовом, алюмоникелевом и алюмопалла-диевом катализаторах [32, 46—49]. Результаты облагораживания на двух последних (низкотемпературных) катализаторах показали, что оптимальное содержание палладия в катализаторе составляет 0,5, а никеля — около 10 вес. % [46—49]. В присутствии алюмопалладиевого катализатора глубина гидрирования непредельных углеводородов повышается с увеличением температуры, давления и с уменьшением удельной объемной скорости подачи сырья. Зависимость глубины гидрирования непредельных углеводородов от давления и удельной объемной скорости подачи сырья показана на рис. 44 [47]. [c.199]

    Наиболее благоприятным сырьем для получения олефинов являются парафины, при термическом расщеплении которых-в тге-зультате дегидрирования и распада цепи получаются газообразные и жидкие парафины с меньшей молекулярной массой и олефины. При пиролизе пяти- и шестичленных циклоалканов наряду с водородом и олефинами образуются диолефины, в частности бутадиен. Присутствие последнего в продуктах пиролиза играет решающую роль в получении ароматических углеводородов. Согласно одной из гипотез, ароматические углеводороды образуются в результате вторичной реакции конденсации бутадиена с этиленом и его гомологами  [c.181]

    Для извлечения ароматических углеводородов из гидрированных бензинов пиролиза, так же как из катализатов риформинга, наиболее часто применяется экстракция. Широкое распространение получила экстракция смесью Н-метилпирролидона с этиленгликолем (процесс Аросольван ) [102], обеспечивающая в сочетании с последующей ректификацией получение высококачественных товарных ароматических углеводородов. В качестве экстрагентов применяются также гликоли, сульфолан, диметилсульфоксид и другие растворители [124]. При переработке узких гидроочищенных фракций пиролиза, содержащих более 75% одного какого-либо ароматического углеводорода (чаще бензола) применяется экстрактивная ректификация с Ы-метилпирролидоном (процесс Дистапекс ) [125], диметилформамидом [126] или другим растворителем. Двухстадийное гидрирование узкой фракции бензина пиролиза (Сб—Се) с последующей экстракцией гидрогенизата осуществляется и в процессах других фирм. Так, в одном из процессов на первой ступени гидрируются диолефины и стирол на катализаторе из благородного металла (давление 2,7—6,2 МПа, температура 65—218°С), а на второй ступени на алюмокобальтмолибденовом катализаторе гидрируются олефины и удаляются сернистые соединения [127]. [c.186]

    Меньшие выходы бензина и большие выходы газа, характерные для парофазного крекинга в сравнении с низкотемпературным крекингом под давлением, обусловлены не какими-либо конструктивными недо-статкамп, а самой химической природой процесса. Естественно, поэтому, что для получения максимальных выходов бензина необходимо применять крекинг под давлением. Что касается высокотемпературного крекинга, то он сможет найти применение для специальных процессов, например для получения олефинов, диолефинов и т. д. [c.60]

    Кроме этих реакщ-ш протекает реакция полимеризации моноолефинов. Полученные полимеры остаются в очищаемом продукте и, имея более высокую температуру кипения, ухудшают фракционный состав бензинов. Чтобы удалить полимеры пз бензина, применяют вторичную перегонку. Диолефины и циклоолефины при полимеризации лают высокомолекулярные смолообразные вещества, переходящие в кислый гудрон. [c.320]

    Высшие олефины присутствуют во всех фракциях крекинг-бензинов, полученных термическими или каталитическими методами. Однако с увеличением числа атомов углерода в цепи число изомеров так быстра возрастает, что становится практически невозможным выделить какой-либо индивидуальный олефин с помощью технических средств, которыми располагает современная промышленность. Так, например, в пределах 41,2— 73,3° кипит 13 изомерных гексенов. Низшая температура приближается к температуре кипения триметилэтилена (38,6°) — наиболее высококипящего амилена, высшая — превышает температуру кипения иапболеё низко-кипящего гептена. Кроме того, в пределах 41,2—73,3° кипит еще пятЬ парафинов, четыре диолефина и два нафтена. [c.133]

    В одном из обзоров методов получения дивинила из углеводородов нефти Иглофф и Халла [1] отмечают особую склонность Q-, Q- и Q-углеводородов к образованию дивинила. Поэтому весьма возможно, что этот диолефин получается при термическом крекинге в результате любого из трех процессов  [c.206]


Смотреть страницы где упоминается термин Диолефины получение: [c.561]    [c.677]    [c.316]    [c.216]    [c.75]    [c.77]    [c.164]    [c.121]    [c.693]    [c.270]    [c.59]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.172 , c.180 , c.723 ]




ПОИСК





Смотрите так же термины и статьи:

Диолефины

Диолефины из получение их разложением дихлорпроизводных парафинов

Другие методы получения диолефинов путем пиролиза

Магний амальгама его получение диацетонового при реакции диолефинов

Озон получение альдегидов с диолефинами

Полимеризованные сульфоны, получение их из двуокиси серы и диолефинов

Получение непредельных углеводородов при помощи пиролиза. Олефины, ацетилен и диолефины

Промышленные способы получения олефинов и диолефинов методами дегидрирования

Фенол, получение с диолефинами



© 2025 chem21.info Реклама на сайте