Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электродные электронные реакции

    В электрохимических системах (электролитных ваннах или химических источниках электрической энергии — элементах) особое значение приобретают электродные электрохимические реакции, протекающие с поглощением либо отдачей молекулами, атомами или ионами электронов. Именно контакт находящихся в электролите частиц реагирующего вещества с поверхностью электрода (электронным проводником) определяет собой особенности превращения электрической энергии в химическую и обратно. Уже отмечалось, что по этой причине механизм электрохимических процессов существенно отличается от обычного химического превращения материи, когда между реагирующими частицами вещества в растворе (расплаве) имеется непосредственный контакт. [c.23]


    Электроды. Основной частью любого электрохимического устройства являются электроды — проводники с электронной проводимостью, имеющие различную конфигурацию (плоские сплошные пластины, перфорированные пластины, цилиндрические и др.), контактирующие с электролитом. На поверхности электродов протекают электродные электрохимические реакции, т. е. реакции, связанные с переходом электронов между электродом и частицами раствора (расплава) электролита. [c.6]

    В разделе 6.9 упоминалось, что в период с 1884 по 1887 г. Сванте Аррениус разработал теорию, в соответствии с которой электролиты (соли, кислоты, основания) в водных растворах диссоциируют на электрически заряженные атомы или группы атомов, называемые катионами и анионами. Данная глава посвящена, в частности, явлениям, которые наблюдаются при действии электрического тока на расплавленные соли и ионные растворы. Установлено, что электронные реакции на электродах можно описывать как процессы окисления или восстановления атомов или групп атомов и что химические реакции, называемые окислительно-восстановительными реакциями, часто удобно рассматривать как две электродные реакции. [c.304]

    Если скорость электрохимической стадии (переноса электронов, реакции перехода) меньше скорости диффузии деполяризатора, электродный процесс контролируется скоростью переноса заряда. Последняя характеризуется гетерогенными константами скорости переноса [c.26]

    Процессы, при которых на электродах происходит отдача или присов динение электронов, называются электродными или электронными реакциями. [c.203]

    Необходимо отметить, что отдавать и присоединять электроны при электродных процессах могут также частицы, которые не принимают участия в переносе заряда. В приэлектродном пространстве реагируют те частицы, которые в данной системе наиболее легко отдают или присоединяют электроны. Реакции электросинтеза органических веществ классифицируются следующим образом. [c.5]

    Демонстрируя зависимость электронных реакций от свободной энергии адсорбции реагирующих веществ, Парсонс [173] показал, что ток обмена во время электролитического выделения водорода оказывается сильным в случае тех металлов, которые способны легко адсорбировать атомарный водород. Ток обмена, который представляет собой электродный ток при обратимом электродном потенциале, служит удобной мерой каталитической активности. Эта величина может быть вычислена экспериментально путем применения уравнения Тафеля [174] и нахождения угла наклона графика зависимости стенени поляризации от логарифма силы тока на катоде, а также нахождения точки пересечения этого графика с осью координат. По мере того как стандартная свободная энергия адсорбции водорода на различных металлах приближается к нулю, ток обмена достигает максимума. Металлы, характеризующиеся высокими значениями теплоты адсорбции, уменьшают ток обмена, так как абсолютная величина стандартной свободной энергии адсорбции водорода, имеющей отрицательное значение, увеличивается. Медленная реакция адсорбированных атомов и ионов водорода, по-видимому, определяет скорость выделения водорода, и это подтверждается наличием связи между током обмена и свободной энергией адсорбции. [c.377]


    Изменение окислительной способности количественно выражается изменением значений Е . Нормальный электродный потенциал реакции (4), равный —2,87 в, указывает на то, что ион фтора Р" с трудом отдает свой электрон. Наоборот, молекула Рг стремится присоединить электроны. Следовательно, Ра легко восстанавливается, т. е. является сильным окислителем. Потенциал Е реакции (7) равен —0,53 в. Иод-ион Г имеет умеренную склонность к отдаче электрона, т. е. к окислению Г до 1г. [c.530]

    Другая группа реакций — быстрые реакции — исследуются полярографически при условии, что в объеме раствора между компонентами реакций имеет место равновесие, а прохождение химического процесса фиксируется только у поверхности электрода. Это условие реализуется в результате электрохимического восстановления или окисления одного из компонентов реакции и смещения при этом соответствующего равновесия у поверхности электрода, либо в результате появления нового химического взаимодействия с участием продуктов электродного процесса. Эти реакции можно называть также электродными химическими реакциями, понимая под этим процессы, проходящие на электроде за исключением стадии переноса электронов (электрохимическая стадия). [c.16]

    Естественной основой классификации реакций являются различные возможности распределения электронов в процессе химического превращения. Различают в первую очередь два основных типа реакций реакции, протекающие путем переноса электронов, и реакции, протекающие путем разрыва и образования ковалентных связей. К первой категории относятся реакции между атомами и радикалами, приводящие к образованию электровалентных связей (например, реакции между атомами Na и С1), электродные реакции при электролизе и те окислительно-восстановительные реакции, которые состоят исключительно из передачи и получения электронов. Реакции, относящиеся к этому классу, обладают, как правило, очень малыми или нулевыми энергиями активации, и поэтому их скорости чрезвычайно велики или же они протекают практически мгновенно. [c.184]

    Концепция ионно-электронного равновесии дает естественное истолкование природы редокси-электродов. Уравнение электродной реакции редокси-электрода принято писать в виде [c.229]

    Из уравиений (21.8) и (21.9) следует, что в тех случаях, когда восстановление совершается по электронному механи шу, скорость катодной реакции и электродный потенциал не зависят от pH раствора. [c.437]

    На этот вопрос следует дать отрицательный ответ. Э.д.с. восстановления Ре в Ре(тв.) не равна + 0,36 В. Допустимо вычитание потенциала одной электродной реакции из потенциала другой при вычитании соответствующих полуреакций в том случае, когда для результирующей полной реакции в электрохимическом элементе соблюдается баланс числа теряемых и приобретаемых электронов. Но недопустимо суммирование потенциала двухэлектронной полуреакции с потенциалом одноэлектронной полуреакции для получения потенциала результирующей трехэлектронной полуреакции. [c.181]

    При обсуждении соотношения между изменением свободной энергии и напряжением гальванического элемента надо обратить внимание на то, что п-это число электронов, перенос которых осуществляется согласно полному сбалансированному уравнению электрохимической реакции, а не число их в отдельных электродных полуреакциях. [c.580]

    Любая электродная реакция связана с изменением окислительно-восстановительного состояния участвующих в ней веществ, и поэтому все электроды являются окислительно-восстановительными. Однако обычно окислительно-восстановительными электродами называют такие, у которых в электродной реакции металлы или газы непосредственно не участвуют, а металл этих электродов (чаще всего платина), обмениваясь электронами с участниками окислительно-восстановительной реакции, принимает потенциал, отвечающий установившемуся окислительно-восстановительному равновесию  [c.174]

    Электрохимический механизм в виде протекающей с участием свободных электронов электрохимической реакции, при которой ионизация атомов металла [см. уравнение (271)] и восстановление окислительного компонента коррозионной среды [см. уравнение (326) ] проходят не в одном акте и их скорости зависят от величины электродного потенциала металла, имеет место в подавляющем большинстве случаев коррозии металлов в электролитах и является, таким образом преобладающим. [c.181]

    Главными причинами катодной поляризации, т. е. отставания процесса ассимиляции электронов от поступления их на катодные участки, являются а) замедленность катодной реакции, которая приводит к возникновению перенапряжения водорода-, б) концентрационная поляризация по молекулярному водороду вследствие замедленности процесса отвода образующегося молекулярного водорода с поверхности металла, которая наблюдается до насыщения при-электродного слоя электролита водородом, когда становится возможным выделение его в виде пузырьков, в которых рнг = 1 атм. [c.251]


    Следовательно, уравнение реакции на первом электроде, следует переписать в противоположном направлении и сложить с уравнением реакции на втором электроде, умножив их на такие коэффициенты, чтобы число принятых электронов равнялось числу отданных. Электродные потенциалы не умножаются на коэффициенты, а алгебраически складываются  [c.91]

    Почему при суммировании двух полуреакций с любым одинаковым числом электронов для вычисления э. д. с. суммарной реакции достаточно просто сложить электродные потенциалы полуреакций, не принимая в расчет числа электронов в реакции  [c.91]

    Электродные потенциалы металлов, у которых в процессе обмена, определяющего потенциал, участвуют не только собственные, но и другие ионы и атомы, называются неравновесными или необратимыми. Для неравновесных потенциалов формула Нернста (3) неприменима, так как реакции, происходящие на металле, т. е. потеря и приобретение электронов, осуществляются разными путями и потенциал не может характеризовать наступления равновесия какой-то одной реакции на электроде. В табл. 4 [c.26]

    Уравнение электродной реакции записывается так, чтобы слева располагались вещества в окисленной форме и электроны, а справа вещества в восстановленной форме  [c.467]

    Хиллсон и Райдил [ 34] были одними из первых, кто изучал влияние облучения на относительно простой электродный процесс - реакцию выделения водорода на ртути. Ими были обнаружены лишь небольшие кинетические эффекты. Недавно удалось определить переходный фототок при импульсном облучении ртутного электрода в кулоностатических условиях [415]. В переходном режиме возникают сольватированные электроны, которые реагируют с акцепторами [ 418, 419] или с окисью трехвалентного азота [ 35]. Сольватированные электроны образуются под действием фотоэффекта [ 32, 33] только в катодных процессах (хотя имеется противоположное мнение [360, 361]), поскольку рабочие потенциалы при измерении перенапряжения водорода обычно редко превышают 1,3 В (Е ), даже на ртути и свинце, а расчетный стандартный потенциал гидратированного электрона (е ) составляет около -2,6 В Ey ). Следовательно, при обычных катодных потенциалах (без облучения) генерируется чрезвычайно малое количество е -. Можно показать, что этот вывод не нарушается при необратимости процесса образования е (в соответствии с реакцией 2eэq— Н2 + 20Н в которой образуется водород). Таким образом, образование происходит с заметной скоростью только при соответствующем облучении, и, следовательно, маловероятно, чтобы это был основной механизм катодного процесса [33], как предполагалось в работах [ 360, 361]. [c.542]

    Из уравнений (1-58) — (1-62) следует, что с ростом pH раствора величина предельного кинетического тока уменьшается, стремясь к нулю, а потенциал полуволны становится отрицательнее, причем с уменьшением отношения /пр//д величина Д /./ДрИ уменьшается, стремясь к нулю [131]. При понижении же pH раствора или увеличении его протонодонорных свойств величина предельного кинетического тока, как видно из уравнения (1-58), ас-симптотически приближается к /д, приобретая при этом характерные свойства предельного диффузионного тока. Однако, если р/Са<СрН, то на потенциал полуволны все еще продолжает оказывать влияние предшествующая переносу электронов реакция протонизации и зависит от pH раствора, поэтому такие волны получили название квазидиффузионных [132]. По-видимому, большинство полярографических волн восстановления органических соединений, Еу которых зависит от pH раствора, являются квазидиффузионными собственно электрохимической стадии их электродного процесса предшествует протонизация деполяризатора [57, 133]. Нетрудно видеть, что в средах, в которых рКа деполяризатора меньше pH раствора, величина Д /ДрН объемных квазидиффузионных волн равна —2,3 НТ аПеР [см. уравнение (1-59), в котором в этом случае /пр//д=1]- [c.46]

    Обратимый характер переноса первого электрона и сопутствующие ему химические реакции обусловливают особенности формы первой волны и влияния на ее параметры различных факторов [4]. Так, если Х не является галогеном, то в отсутствие ионов галогена в растворе форма 1-й волны описывается уравнением обратимого одноэлектронного процесса с последующим быстрым бимолекулярным взаимодействием электродных продуктов [см. гл. I уравнение (44)]. При восстановлении RHgX, где X — галоген, в отсутствие галоген-ионов в растворе ионы галогена возникают у поверхности электрода в результате электродного процесса [реакции (I) и (П1)], причем их приэлектродная концентрация тем выше, чем больше ток. Образовавшиеся ионы галогена реагируют с исходной солью RHgX по реакции (II), что приводит к смещению потенциала к более отрицательным значениям, как и в случае объемных каталитических волн в небуферных средах, когда в результате процесса возникают ионы ОН , при условии, что высота волны еще пропорциональна концентрации катализатора [10]. Форма волны в обоих случаях описывается выражением [c.294]

    Рассматривая в книге главным образом данные классической полярографии, хотелось бы подчеркнуть перспективность при изучении быстрых электродных химических реакций также и других электрохимических методов хронопотенциометрни [29, 30], осциллографи-ческой полярографии [31], инверсионной хроновольт-амперометрии [32, 33], импульсной полярографии [34] и др. Хотя в книге и не будет рассматриваться кинетика гетерогенной реакции переноса электронов — направление, которое также успешно исследуется с помощью классической полярографии, следует указать на большую перспективность в этом случае других электрохимических методов (см. обзор Танаки [35]). [c.26]

    Относительная роль электро1Юв в установлении электродного равновесия зависит от устойчивости пэодуктов их взаимодействия с молекулами растворителя, т. е. от устойчивости сольватирован-ных электронов. Из принципа детального равновесия, примененного к реакции (90), следует, что [c.29]

    Отдельные, или частные, электродные реакции соответствуют химическим (электрохимическим) превращениям, сумма которых дает общую электродную реакцию. Сумма электродных реакций для двух электродов данной электрохимпческой систем]) даст о.б-щую реакцию электрохи.мической -системы. В ее уравнение не входят электро-ны, поскольку в каждой из двух электродных реакций участвует одно и то же число электронов, но на одном электроде они принимаются частицами (/г, = ), а на другом — отдаются ( , = = —п). Если катодное выделение серебра из цианистого комплекса [c.295]

    Если электрохимический акт ограничивает скорость всего электродного процесса, то наблюдающееся смещение потенциала под током называется часто либо перенапряокением замедленного разряда (замедленной ионизации), либо, особенно в последнее время, перенапряжением переноса заряда. Однако сущность собственно электрохимической стадии не сводится только к изменению валентного состояния частиц (акты разряда и ионизации) или только к переносу заряда через границу раздела электрод — электролит. Приобретение (или потеря) частицей электрона ириводит одновременно к изменению ее физико-химического и энергетического состояния. Так, например, в ходе реакции [c.345]

    Из уравнения (17.146) вытекает, что в общем случае на электрохимическое перенапряжение может накладываться (или даже сделаться преобладающей) концегтрационная поляризация. Для металлических электродов это может быть связано с замедленностью доставки частиц А и отвода частиц В (диффузионное перенапряжение) или с замедленностью каких-либо химических стадий, предшествующих акту переноса заряда, либо следующих за ним (реакционное перенапряжение). Для полупроводниковых электродов помимо этих возможностей появляются их аналоги па стороне полупроводника — замедленность транспортировки электронов или дырок в зону электродной реакции илн от нее (диффузионное перенапряжение) и замедлетюсть генерации пары электрон — дырка (аналог реакционного неренапряжения)  [c.380]

    Нарисовать электролитическую ванну для электролиза раствора Ni b на инертных электродах. Указать направление движения электронов и ионов. Привести электродные реакции и указать анод и катод. [c.216]

    V Стандартный электронный потенциал. Для реакции, протекающей а стандартных условиях, связь энергии Гиббса и электродного потег циала выражается уравнением [c.219]


Смотреть страницы где упоминается термин Электродные электронные реакции: [c.162]    [c.528]    [c.132]    [c.175]    [c.197]    [c.165]    [c.296]    [c.315]    [c.347]    [c.363]    [c.364]    [c.375]    [c.381]    [c.177]    [c.288]    [c.194]    [c.595]    [c.67]   
Общая химия (1964) -- [ c.203 ]




ПОИСК





Смотрите так же термины и статьи:

Электродные реакции



© 2025 chem21.info Реклама на сайте