Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеофильное замещение в бензольном кольце

    Реакционная способность арилгалогенидов в реакциях нуклеофильного замещения может увеличиться при наличии электроотрицательных заместителей в бензольном кольце в орто- и пара-положениях по отношению к атому галогена, например  [c.70]

    Нитробензолы вступают в реакции электрофильного и нуклеофильного замещения по бензольному кольцу. [c.150]


    Охарактеризуйте влияние электроноакцепторных групп в бензольном кольце на реакционную способность арилгалогенидов в реакциях нуклеофильного замещения. Следующие соединения расположите в порядке возрастания активности атома хлора  [c.135]

    Высокую реакционную способность хинолина и изохинолина в реакциях нуклеофильного замещения можно объяснить тем, что все три главные канонические формы трех возможных бициклических промежуточных анионов содержат неизмененное бензольное кольцо  [c.101]

    Если электрофильное замещение в бензольном ядре связано с замещением протона , то нуклеофильное замещение реализуется, как правило, при наличии в кольце какого-либо заместителя (—С1, - F, SO,H, -OR, —NO,, — N, —N=N 1), способного отщепляться в виде аниона. В некоторых случаях возможно замещение гидрид-аниона. [c.253]

    Объясните, почему наличие нитрогруппы в бензольном кольце повышает реакционную способность соединения к нуклеофильному замещению. Предскажите результаты следующих реакций, для (а), (б) и (в) приведите механизмы  [c.146]

    Соединения, в которых атом галогена соединен с атомом углерода, соседним с ароматическим кольцом (например, бен-зилбромид СбНз—СНг—Вг или 1-хлоро-1-фенилэтан СеНв— —СНС1—СНз), проявляют значительно большую активность в реакциях нуклеофильного замещения по сравнению с соединениями, в которых галоген находится дальше от бензольного кольца (сравни с описанными в разд. 4.2 аллилгалогенидами). Вследствие этого бензилгалогениды и аналогичные им соединения склонны проявлять свойства лакриматоров. [c.71]

    Для бензольного кольца наиболее характерны реакции электро-фильного замещения (см. 12.8.4) и реакции фенольного гидроксила, а для пропановой цепи - нуклеофильного замещения и элиминирования. В пропановой цепи наиболее активно а-положение, содержащее спиртовую или простую эфирную группировку. В нуклеофильных реакциях эти группировки участвуют в образовании активных промежуточных частиц карбкатиона в кислой среде и хинонметида в щелочной и нейтральной средах (см. 12.8.5). [c.428]

    Электрофильная сила диазоний-катиона сравнительно невысока, так как в рассредоточении положительного заряда в нем участвуют я-электроны бензольного ядра (ч-Л/-эффект фенильной группы), в котором в орто- и пара-положениях по отношению к группе N2+ создается значительный дефицит электронной плотности. По силе воздействия на бензольное кольцо диазогруппа превосходит нитрогруппу и соизмерима с группой (СНз)зН+. Это подтверждается тем, что в соли л-хлорбензол-диазония, как и в полинитрохлорбензолах, возможно замещение атома галогена на нуклеофильные реагенты по механизму SN2 (см. разд. 5.3.2), например  [c.437]


    Традиционно существенным разделом органической химии является создание высокоэффективных процессов получения разнообразных органических соединений. В значительной степени решение этой задачи связано с разработкой инструментария - эффективных методов получения широкого ряда различных по структуре ароматических продуктов, содержащих функциональные группы различной природы. В частности, это относится к азот- и галогенсодержащим ароматическим структурам многоцелевого назначения. Реакции ароматического нуклеофильного замещения являются эффективными инструментами синтеза разнообразных полифункциональных ароматических соединений. Нами исследована реакция замещения активированного и неактивированного атомов галогена в бензольном кольце на феноксигруппу, содержащую различные заместители  [c.155]

    Низкая активность пиридина в реакциях электрофильного замещения объясняется двумя причинами. Во-первых, пиридиновое кольцо по своей природе менее нуклеофильно, чем бензольное. Во-вторых, при контакте пиридина с электрофильными агентами (Гал+, N02+ и, конечно, кислоты, содержащиеся в реакционной среде) сразу же образуются пиридиниевые соли. Вполне естественно, что соли обладают повышенной устойчивостью к атакам электрофиль-ных агентов, так как образование системы с двумя положительными зарядами энергетически невыгодно. [c.43]

    В силу высокой электроотрицательности атома фтора накопление таких атомов в бензольном кольце существенным образом влияет на зарядовые характеристики атомов углерода, увеличивая их положительный заряд. Это создает предпосылки высокой подвижности атомов фтора в полифторированных ароматических соединениях в реакциях нуклеофильного замещения и делает возможным протекание внутримолекулярной нуклеофильной циклизации за счет отщепления атома фтора, находящегося в оршо-положении к функциональной группе, имеющей нуклеофильный центр. Число таких примеров велико, и они легли в основу одного из наиболее важных и общих методов синтеза фторсодержащих конденсированных гетероциклических соединений. В рассматриваемых реакциях, в результате которых получаются гетероциклы, исходными компонентами служат фторсодержащие производные бензола и бинуклеофильные реагенты. Тем не менее работы по синтезу гетероциклических соединений по этой методологии продолжаются, особенно в связи с синтезом лекарственных препаратов. Приведем лишь несколько таких примеров. [c.266]

    В реакциях нуклеофильного замещения, как и в реакциях электрофильного присоединения, кольцо пиридина ведет себя аналогично бензольному кольцу, содержащему сильную электроноакцепторную группу. Нуклеофильное замещение протекает легко, особенно в положение 2 и 4, например  [c.1026]

    Образование я-комплекса (XII) активирует фтор к нуклеофильному замещению в такой же степени, как введение в бензольное кольцо трех нитрогрупп в положения 2,4,6. [c.610]

    Реакции электрофильного замещения протекают преимущественно в бензольном кольце с атакой в положения 5 и 8 в пиридиновом кольце преобладают реакции нуклеофильного замещения. Сильные окислители разрушают бензольное кольцо, не затрагивая пиридинового при этом образуется пиридин- [c.25]

    Чтобы объяснить наблюдаемое отклонение от линейности, когда X становится все более электронодонорный, следует предположить, что замещенное бензольное кольцо в некоторой степени начинает проявлять прямое влияние на реакционный центр в эфире (25), по сравнению с тем влиянием, какое обычно имеет место для механизма 5м2. При этом важно, что при увеличении электронодонорности заместителя X будет увеличиваться нуклеофильность замещенного бензольного кольца и повышаться его способность функционировать (конкурируя с -ОАс) в качестве соседней группы (см. разд. 4.4.5) или внутреннего нуклеофила, например, при X = МеО [см. формулу (28)]. Этот альтернативный механизм реакции должен включать, таким образом, в качестве медленной, скоростьлимитирующей стадии образование циклического фенониевого иона (29) как промежуточного соединения (ср. разд. 5.2). Затем происходит его быстрое раскрытие под действием ОАс с образованием обычного продукта ацетолиза (30)  [c.419]

    Первая стадия нуклеофильного замещения атома галогена (промежуточное образование аниона) протекает медленнее второй стадии (отщепление аниона) и лимитирует скорость всего процесса. Действительно, 2,4-динитро-1-фторбензол реагирует с метоксидом натрия значительно быстрее, чем динитрохлорбензол. Если бы отрыв галогенид-иона от промежуточно образовавшегося комплекса на второй стадии определял скорость всего процесса, то динитрофторбеызол должен был бы быть менее реакционноспособным, поскольку энергия связи С—гораздо больше (450 кДж/моль), чем энергия связи С—С1 (275 кДж/моль), и, следовательно, вытеснение фторид-иона энергетически менее выгодно, чем вытеснение хлорид-иона. Более высокая реакционная способность динитрофторбензо-ла объясняется большим —/-эффектом фтора по сравнению с хлором. Поэтому на атакуемом нуклеофилом атоме бензольного кольца дефицит электронной плотности выше у динитро-фторбензола. Следовательно, отщепление галогенид-иона идет быстрее и на суммарную скорость всего процесса влиять не может. [c.403]


    В зависимости от типа и условий проведения реакции ковалентная связь С—N (углерод бензольного кольца и азот диазогруппы) может претерпевать гетеролитический или гомолитический разрыв. В первом случае электронная пара переходит к атому азота такие реакции можно рассматривать как реакции нуклеофильного замещения диазогруппы. Гетеролитический разрыв связи С—N происходит самопроизвольно при нагревании соли диазония. При этом образуется чрезвычайно неустойчивый реакционноспособный фенил-катион, в котором в отличие от бензил-катиона отсутствует возможность рассредоточения положительного заряда. Реакции такого типа протекают по двух-стадипному механизму SnI. [c.454]

    Заместители (орнентанты) первого рода ОН, OR, O OR, SH, NH,2, NHR, Alk, Hai. Эти заместители не имеют кратных связей. Они способны смещать электронную плотность в сторону кольца, т. е. обладают электронодонорными свойствами. Облегчая вхождение электрофильных реагентов в бензольное кольцо, эти заместители ориентируют новый заместитель в орто- и пара-положения. Такие заместители называются орто- и /uipa-ориентан-тами. При действии нуклеофильных реагентов реакция замещения идет с трудом, а реагент становится в мета-положение. [c.286]

    Заместители (ориентанты) первого рода —ОН, —OR, —O OR, —SH, —NH2, —NHR, —Alk- Hal. Они смещают электродную плотность в сторону бензольного кольца. Облегчают вхождение в бензольное кольцо электрофильных реагентов, ориентируя их в орто- и яара-положения. При действии нуклеофильных реагентов реакция замещения идет с трудом, а реагент становится в л ета-положение. [c.90]

    В тех случаях, когда возможно нефотохимическое (темновое) взаимодействие между двумя частицами, возбуждение одной из ннх может существенно повлиять на характер взаимодействия. В качестве примера можно привести реакцию нуклеофильного замещения в бензольном кольце. Известно, что нитрогруппа преимущественно активирует по отношению к нуклеофильным реагентам орто- и параположения. Поэтому щелочной гидролиз м-, п-диметоксинитробен-зола приводит к образованию в качестве первичного продукта замещения лг-метокси-п-оксинитробензола. При освещении основным продуктом становится л-окси- -метоксинитробензол  [c.159]

    При наличии двух нлн более актшгфуюхщос электроиоакцепторных заместителей в бензольном кольце арнлазиды могут быть получены также и в результате нуклеофильного замещения галогена по механизму 5>,Дг. [c.1723]

    Главным и, возможно, почти единственным типом реакции, известным для 1-бензопирилия, является нуклеофильное присоедине-Hile по Сг-атому. Электрофильное замещение по бензольному кольцу пока, по-видимому, не описано. [c.185]

    Любая другая функциональная группа, которая присутствует в молекуле арилгалогенида, вступает, конечно, в характерные для нее реакции. Нас особенно будут интересовать реакции электрофильного замещения в бензольном кольце. Как было показано в разд. 11.5, галогены влияют очень необычно на реакцию электрофильного замещения они обладают дезактивирующим действием, оставаясь ор/тго,лара-ориентантами. Низкая реакционная способность галогенов в нуклеофильном замещении в ароматическом ряду и аномальное влияние на реакции электрофильного замещения в ароматическом ряду обусловлены одними и теми же структурными особенностями арилга-галогенидов. [c.781]

    Все эти структуры гораздо более устойчивы, чем соответствутощие структуры, образующиеся при атаке производных бензола, что связано с электроноакцепторным влиянием атома азота. Структура III особенно устойчива, поскольку в ней отрицательный заряд локализован на атоме, который более всего склонен его принимать, — на электроотрицательном атоме азота. Поэтому понятно, что нуклеофильное замещение протекает быстрее для пиридинового кольца по сравнению с бензольным и быстрее в положения 2 и 4, чем в положение 3. [c.1027]

    Из реакций замещения (8) у лигнина важное значение имеют реакции электрофнльного замещения (8е) в бензольном кольце и реакции нуклеофильного замещения (8ь)) в пропановой цепи, в том числе реакции сольволиза, которые идут по ионным механизмам. [c.427]

    Природный лигнин древесины и выделенные лигнины в присутствии кислотного или щелочного катализатора вступают во взаимодействие с фенолами. Так, при нагревании древесины с избытком фенола в присутствии кислоты лигнин переходит в раствор с образованием феноллигнина. Реакция идет, как и при конденсации лигнина, по механизму ну1Слеофиль-ного замещения через промежуточный бензильный карбкатион. Фенол выступает в роли внешнего нуклеофильного реагента, присоединяющегося к карбкатиону (схема 12.43, а). Фенол в присутствии кислотного катализатора расщепляет связи а-О—4 в фенилкумарановых структурах (см. схему 12.43, б). В щелочной среде взаимодействие фенолов с лигнином происходит через промежуточный хинонметид. Подобные реакции происходят при получении лигнинфенолоформальдегидных смол с заменой на лигнин части фенола. Лигнин, как фенол, и полученный феноллигнин далее конденсируются с формальдегидом. Получаемые термореактивные смолы могут использоваться в качестве связующих (исходное сырье технический щелочной лигнин) и для получения пластмасс (исходное сырье гидролизный лигнин). Многоатомные фенолы, со структурой типа резорцина, имеющие не менее двух активных положений в бензольном кольце, могут в результате реакции конденсации с лигнином сшивать его фрагменты. Поэтому некоторые фенольные экстрактивные вещества затрудняют кислую сульфитную варку (см. 13.1.2). [c.456]

    Казалось бы, что поскольку элек рофильное замещение в ряду тиофена протекает легче, чем в ряду бензола, то нуклеофильное замещение должно быть менее эффективным. Это, однако, далеко от истины. Теоретические исследования, рассмотрение интермедиатов и экспериментальные данные показывают, что для обоих типов реакций замещения наблюдается сходное (более чем тысячекратное) увеличение реакционной способности (см. табл. 19.1.7). В отличие от бензолов при любом взаимном расположении галогена и нитрогруппы в молекуле галогеннитротиофена наблюдается сильная активация галогена в реакциях нуклеофильного замещения. Это становится понятным при рассмотрении интермедиатов Майзенхаймера (см., например, схемы 20, 21) (1) в о-комплексе, образуемом тиофеновым соединением, нитрогруппа более эффективно участвует в делокализации отрицательного заряда, чем в случае бензольного аналога (2) в случае тиофенов достигается лучщее, чем в случае бензолов, сопряжение нитрогруппы с кольцом, обусловленное больщим вкладом структур типа (37) по сравнению с (38)  [c.247]

    Арены, как и алкены, обладают нуклеофильным характером. Однако с самого начала необходимо подчеркнуть, что в отличие от ненасыщенных алифатических и алициклических углеводородов образование продуктов присоединения протекает в случае аренов очень медленно. Окислители атакуют бензольное кольцо лишь в очень жестких условиях. Напротив, замещение атомов водорода положительно заряженной группой протекает относительно легко. Эти реакции носят название электрофильного замеи ения (обозначается 5е). Такого рода реакции долгое время рассматривались в качестве признака ароматического характера различных соединений. [c.263]

    Существенные отличия от такого типичного поведения наблюдаются для положения 3 изохинолина — особая реакционная способность а-положения пиридина, которая обсуждалась выше, свойственна и для положения 1 изохинолина, но не для положения 3. Так, в случае нуклеофильного замещения в 3-гало-геноизохинолине в образующемся интермедиате невозможна делокализация отрицательного заряда без нарушения ароматичности бензольного кольца. В результате такой интермедиат значительно менее стабилен, и реакционная способность положения 3 изохинолина понижена. [c.101]

    Индолы, так же как пирролы и фураны, вступают только в очень немногие реакции нуклеофильного замещения. Для осуществления таких взаимодействий, как известно, необходимы определенные условия так, например, при наличии нитрогруппы в бензольном кольце, а также в отсутствие водорода при атоме азота происходит викариозное нуклеофильное замещение (разд. 2.3.3) [96]. [c.429]

    Хорошо известно [66], что протектор шины, изготовленный из бутилкаучука, имеет высокое сцепление с дорогой, обеспечивает повышенную комфортабельность езды и менее подвержен тепловому старению. Однако все эти преимущества сводились на нет из-за низкой износостойкости. В конце 1980-х годов фирма Эксон Кемикл (США) выпустила новый тип эластомера, основой которого также был изобутилен - бром-со (изобутилен-р-метилстирол). Вначале получают сополимер на основе изобутилена и р-метилстирола, который затем бромируют по метильной группе в бензольном кольце. Бромбензил - это термически стойкая и активная группа по отношению реакций алкилирования или нуклеофильного замещения для осуществления структурирования. Данный каучук дает резины с динамическими свойствами аналогичные свойствам резин из БК, в том числе высокие амортизационные свойства при низких температурах. Лабораторные испытания показали, что динамические свойства резин, содержащих новый каучук, характеризуются более высоким сцеплением с мокрой дорогой, при этом сопротивление качению не повышается. Натурные испытания шин 195/75К14 на полигоне в Техасе [67] с протектором из нового каучука с белой сажей в качестве наполнителя и силановым сшивающим агентом показали равнозначный износ протектора в сравнении с протектором на основе каучука общего назначения при повышении прогнозируемого сцепления с мокрой дорогой без ухудшения прогнозируемого сопротивления качению. [c.109]

    Влияние заместителей на ход э.чектрофильного замещения в ферроценовом ядре аналогично влиянию в бензольном ряду. Так, электроноакцепторные заместители уменыкают способность к дальнейшему замещению. что особенно сильно проявляется в замещенном и в несколько более слабой стенени в другом циклопентадиенильном кольце [16, 17]. Электронодонорные заместители (алкильные группы), напротив, облегчают электрофильное замещение, прежде всего в то кольцо, в котором они находятся. В алкилферроцены (в противоположность ферроцену) можно ввести три ацетильные грунны по реакции Фриделя — Крафтса [18] при аминометилировании алкилферроценов образуются как моно-, так и дизамещенные производные [19]. Нуклеофильное замещение атомов водорода в ферроцене неизвестно. [c.73]

    НЫ, оно аналогично интрогруппе облегчает нуклеофильное замещение групп в бензольном кольце, выступая в роли акцептора электронов. Последняя роль проявляется также в кислотных свойствах окснбеизофурок-сана н в образовании тт-комплексов бензофуроксанов с ароматическими углеводородами. [c.314]

    Взаимодействие а-аминокислот с ДНФБ является реакци нуклеофильного замещения в бензольном кольце. Такое замец ние становится возможным за счет влияния дву) сильных эле троноакцепторных нитрогрупп. [c.334]

    В условиях реакции Геша замещение происходит только у одного атома углерода молекулы фенола. Очевидно, что после замещения и образования соли кетимина, которая содержит имо-ниевую группу, оттягивающую электроны от кольца, нуклеофильная реакционная способность бензольного кольца резко понижается. [c.196]


Смотреть страницы где упоминается термин Нуклеофильное замещение в бензольном кольце: [c.174]    [c.168]    [c.2235]    [c.174]    [c.380]    [c.504]    [c.531]    [c.295]    [c.295]    [c.314]    [c.314]    [c.388]    [c.266]   
Смотреть главы в:

Теоретические основы органической химии -> Нуклеофильное замещение в бензольном кольце


Теоретические проблемы органической химии (1956) -- [ c.358 , c.366 ]




ПОИСК





Смотрите так же термины и статьи:

Замещение нуклеофильное



© 2025 chem21.info Реклама на сайте