Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алкилирование нефтепродуктов

    Подробно рассматриваются такие вопросы, как химический состав нефтей и нефтяных фракций очистка нефтяных фракций физическими и химическими методами теория термо-ката-литических процессов нефтепереработки (крекинг, пиролиз, риформинг, гидрирование, алкилирование) теоретические аспекты применения и эксплуатационных свойств нефтепродуктов. При этом большое внимание уделяется термодинамическим и кинетическим закономерностям, механизма реакций, теории катализа, теории сорбционных процессов и процессов экстракции, явлениям детонации, стабильности нефтепродуктов. [c.4]


    Агрессивный, легкокипящий фтористый водород трудно перевозить на дальние расстояния, и поэтому значительные его количества (около 80%) производят на месте потребления. Конечной продукцией, таким образом, оказывается другое вещество, при получении которого фтористый водород служит промежуточным реагентом. Учитывая все эти обстоятельства, точно оценить объем производства и области применения HF достаточно сложно. Ориентировочная, но не очень далекая от истины картина представляется следующим образом большая часть фтористого водорода (порядка 80%) расходуется поровну на производство фтороуглеродов и алюминия также равные доли, но на порядок меньшие (по 4%) приходятся на алкилирование нефтепродуктов и синтез [c.69]

    В нефтеперерабатывающей промышленности перемешивание как технологическая операция применяется при компаундировании нефтепродуктов, синтезе присадок, производстве консистентных смазок, сушке светлых нефтепродуктов, проведении некоторых нефтехимических процессов, например, алкилировании, защелачивании и очистке легких нефтяных дистиллятов. Перемешивание применяют при проведении реакций в гомогенных и гетерогенных средах. [c.474]

    Следует отметить, что для США, обладающих огромным автопарком, исторически характерно высокое потребление автомобильного бензина и других моторных топлив. Удельный вес остаточного котельного топлива относительно невелик (табл. П.1), причем около 50% потребностей в этом продукте удовлетворяется за счет импорта (основная статья импорта нефтепродуктов), главным образом из стран Карибского бассейна. В связи с этим для нефтепереработки США характерна высокая доля деструктивных процессов (каталитического крекинга, гидрокрекинга, коксования), позволяющих. получать из мазута более ценные продукты — моторное топливо и нефтехимическое сырье (табл. П.2), а также значительная доля процессов, обеспечивающих формирование качества товарных нефтепродуктов (риформинга, алкилирования, гидроочистки и др.). В целом доля вторичных процессов составляет 141% (табл. И.З), а глубина переработки нефти, оцениваемая по выходу моторных топлив и сырья для нефтехимии, превышает 75% (табл. П.4 и П.5). [c.26]

    Многочисленные исследования, посвященные изучению реакции алкилирования ароматических углеводородов, указывают на неослабевающий интерес к теоретическим и практическим аспектам этого важнейшего направления промышленного органического синтеза, дающего широкий ассортимент необходимых народному хозяйству продуктов. Между тем производство ароматических углеводородов является лишь одним из многочисленных направлений исиользования этой интересной и весьма перспективной реакции. Следует отметить, что уже в настоящее время при обсуждении энергетической программы необходимо обратить серьезное внимание на возможность широ кого исиользования разнообразных процессов, основанных на реакции алкилирования, которые могут быть использованы как для синтеза топливных компонентов из нефтепродуктов и природного газа, так и для переработки твердых горючих ископаемых. Единичные поисковые исследования, проведенные с целью выяснения этой актуальнейшей проблемы, указывают на перспективность подобного подхода. В соответствии с этим следу- [c.264]


    В конце 30-х —начале 40-х годов, когда в промышленную практику начал внедряться процесс сернокислотного алкилирования, стоимость кислоты была низкой, а потребности в алкилате ограниченными кроме того, отработанный катализатор можно было использовать в других процессах, например для очистки бензинов и смазочных масел [1]. Поэтому и не было особой нужды в регенерации катализатора. К тому же в ходе исследований процесса алкилирования было показано, что существовавшие тогда процессы регенерации серной кислоты, используемой для очистки нефтепродуктов, можно проводить и для регенерации катализатора алкилирования с получением свежей серной кислоты любой заданной концентрации. [c.224]

    Ввиду роста ироизводства жидкой безводной фтористоводородной кислоты, применяемой в настоящее время в промышленных условиях для целей алкилировання (наряду с серной и фосфорной кислотами), нельзя исключать вероятности ее использования также и для целей очистки нефтепродуктов от серы. [c.317]

    Важнейшими из вторичных процессов является термический и каталитический крекинг, риформинг, алкилирование, коксование и гидроочистка нефтепродуктов. На рис. 7.1 представлена общая схема переработки нефти и нефтепродуктов. [c.122]

    Выбор схемы переработки нефти зависит от структуры потребления — соотношения между отдельными нефтепродуктами, их доли в общем потреблении нефтепродуктов по району. Экономические районы нашей страны имеют разную структуру потребления. Так, в Европейской части СССР и на Урале топливные ресурсы ограничены и имеется дефицит в топливе. Поэтому в этих районах требуется большое количество топочного мазута и, следовательно, целесообразна менее глубокая схема переработки нефти. В восточных районах, где имеются большие ресурсы угля и гидроэнергии, в потреблении нефтепродуктов наибольший удельный вес имеют светлые нефтепродукты. В этих районах целесообразно строительство заводов с глубокой схемой переработки нефти, в составе технологической схемы таких заводов значительное место будут занимать процессы коксования, крекинга, алкилирования, полимеризации и др. [c.370]

    НЕФТЕХИМИЧЕСКИЙ СИНТЕЗ — получение веществ путем химической переработки нефтепродуктов и углеводородов нефтяных и природных газов. Для этого используют процессы гидрирования, дегидрирования, алкилирования, галогенирования, полимеризации, конденсации, циклизации, окисления, нитрования, сульфирования и др. [c.173]

    К основным специальным процессам переработки нефтепродуктов относятся 1) каталитический крекинг, 2) алкилирование, 3) полимеризация, [c.10]

    В настоящее время крекинг является основным направлением переработки нефти и включает такие процессы, как крекинг тяйсёЙ1х нефтей и нефтепродуктов для получения крекинг-бензина, термическое превращение низкооктановых бензинов и лигроинов с целью повышения их октановых чисел, получение бензинов из газов крекинга путем полимеризации олефинов или алкилирования олефинами изобутана, каталитический крекинг и т. д. У нас в Союзе более 50% всего вырабатываемого бензина получается путем крекинга тяжелых нефтепродуктов. Вполне понятен поэтому тот повышенный интерес, который проявляется в настоящее время к термическим и каталитическим реакциям углеводородов и тот широкий размах исследовательских работ в этом направлении, который наблюдается в последнее десятилетие. Детальное изучение термических и каталитических реакций индивидуальных углеводородов даст возможность подвести надежную теоретическую базу под дальнейшее развитие бензиновой промышленности. [c.5]

    Несомненно, большой оныт, накопившийся в нефтеперерабатывающей промышленности США в области производства компонентов высокооктановых бензинов, и наличие необходимого углеводородного сырья позволили быстро организовать и развить производство тетрамеров пропилена и использовать бензол риформинг-бензина для получения додецилбензола методом каталитического алкилирования. Процесс сульфирования додецилбензолов также был быстро разработан на основе богатого опыта сернокислотной очистки и сульфирования нефтепродуктов. [c.396]

    Недостатком сернокислотного алкилировання является довольно значительный расход серной кислоты вследствие разбавления ее побочными продуктами реакции. Наименьший расход кислоты наблюдается, если в качестве олефинового сырья применяют чистые бутилены при использовании пропилена расход кислоты увеличивается примерно втрое. Как было показано выше, расход кислоты связан также с интенсивностью перемешивания реакционной смеси и с температурой, повышение которой увеличивает степень разбавления кислоты. Увеличивается расход кислоты и при наличии в сырье таких примесей, как сернистые соединения и влага. Затраты на катализатор можно снизить при использовании отработанной кислоты для иных целей (например, для очистки масел и других нефтепродуктов), а также при ее регенерации. [c.299]


    Благодаря тому, что проектно-строительные фирмы располагают собственным научно-исследовательским аппаратом, занимающимся разра15откой новых производственных процессов, они содействуют развитию и совершенствованию химической технологии. Так, фирмой Kellogg Со. впервые была разработана техноло гичеокая схема термического и каталитического крекинга, а также полимеризации, изомеризации и алкилирования нефтепродуктов. Ей принадлежат процессы де-асфальтизации и депарафинизации пропаном нефтяных фракций [17]. [c.569]

    По обч ему переработки нефт и и производству нефтепродуктов ведущее мес го в мире принадлежит США (табл. 11.9). Сверхглубокая степень переработки нефти, ярко выраженный бензиновый профиль НПЗ США достигается широким использованием вторичных процессов, таких, как каталитический крекинг (-38 %), каталитический риформинг (-23 %), гидроочистка и гидрообессеривание (-54 i), гидрокрекинг (7,2 %), коксование, алкилирование, изоме — ризагия и др. (табл. 11.10). Наиболее массовый продукт НПЗ США [c.283]

    Индивидуальные газообразные углеводороды, которые получаются либо непосредственно из сырой нефти или природного газа, либо путем крекинга более тяжелых нефтепродуктов, используются для производства химических продуктов, пластмасс и синтетического каучука (см. гл. XIII) или как сырье процессов каталитического превращения — полимеризации и алкилирования, ведущих к получению жидких углеводородов (см. гл. II). Большинство процессов каталитического превращения базируется на использовании реакционной способности олефинов и диолефинов, которые содержатся в газе. Часто ненасыщенные соединения получают дегидрированием пли деметанизацией насыщенных углеводородов приблизительно такого же молекулярного веса. Так, этан моншо дегидрировать в этилен, а пропан либо дегидрировать в пропилен, либо разложить па этилен и метан. Эти и подобные реакции [1 —10]1 имеют место в термических процессах, протекающих при 550—750° С. Термическое разложение Taiioro типа легко объясняется радикальным механизмом. По существу аналогичный характер имеют реакции разложения жидких углеводородов. Тел не менее дегидрирование H-oj xana и к-бутиленов, которое [c.296]

    В промышленности широко используется проведение реакций в струе газа, проходящего через реактор, который может быть или пустым, играя роль только области, где поддерживается постоянная температура, или заполненным слоем зер-неного катализатора. Примерами реакций, осуществляемых в потоке в промышленных масштабах, могут служить реакции термического и каталитического крекинга нефтепродуктов, каталитического алкилирования, иолимеризации, гидро- и дегидрогенизации углеводородов, дегидратации и дегидрогенизации спиртов, гидратации олефинов, галоидирования, нитроваиия охислами азота, синтеза аммиака, получения серной кислоты контактным способом, синтеза моторного топлива н т. п. Поэтому и лабораторные опыты по изучению кинетики многих в.ажных широко применяемых в промышленности реакций проводятся также в потоке. Вследствие того, что реакции этого типа проводятся обычно при постоянном давлении и сопровождаются в большинстве случаев изменением объема участвующих в реакции веществ, уравнения кинетики этих процессов должны отличаться от уравнений, выведенных выше для условия ПОСТОЯННОГО) объема. Кроме того, и сам метод расчета кон-стаит скоростей реакций, протекающих в потоке, должен отличаться от методов расчета констант скоростей реакций,осуществляемых при постоянном объеме, так как очень трудно определить время пребывания реагирующих веществ в зоне реакции (так называемое время контакта). [c.48]

    Наиболее массовым нефтепродуктом в США является автобензин. За последние годы был принят ряд законов, ограничивающих использование в бензинах антидетонационных присадок на основе свинца, поскольку образующиеся при сжиганий таких бензинов соединения свинца загрязняют атмо сферу, а главное быстро отравляют катализаторы дожига выхлопных газов В 1984 г. потребление бензина, не содержащего свинцовых антидетонаторов достигло 62% от общего его потребления, а к 1990 г. должно возрасти до 70—90% (табл. П.10). Однако отказ от использования свинцовых антидето наторов не означает снижения требований к октановым числам бензина которые вследствие необходимости повышения топливной экономичности, ав томобилей должны оставаться на достаточно высоком уровне (табл. П.10 11.11). Поэтому в целях увеличения производства высокооктановых компо нентов бензина (риформата, алкилата, крекинг-бензина н др.) цреддолагается повысить мощность и жесткость процесса каталитического риформинга, в том числе за счет дальнейшего увеличения числа установок, работающих на би- и полиметаллических катализаторах (76,3% в 1983 г.), а также строительства установок непрерывного риформинга. Предусматривается расширить мощности традиционных процессов производства высокооктановых компонентов бензина (алкилирование, изомеризация) и новых каталитических процессов, например получения димеров пропилена (димерсол). Намечается также заметно повысить октановое число крекинг-бензина в результате применения в процессе ККФ специальных новых катализаторов. [c.29]

    Поэтому было решено осуществить реконструкцию завода, для которой после анализа ряда комбинаций процессов переработки остатков (гидродеметал-лизация+ККФ, деасфалыизация+ККФ и др.) было выбрано сочетание процессов гидрообессеривания мазута и замедленного коксования. В ойе реконструкции, закончившейся в 1983 г. и потребовавшей около 1 млрд. долл. капиталовложений, были построены установки гидрообессеривания мазута (4 млн. т/год), замедленного коксования остатка (и. к. 552°С) вакуумной перегонки гидрообессеренного мазута (3 млн. т/год), гидрообессеривания газойля коксования (1,6 млн. т/год) и производства водорода (80 тыс. т/год), а также установки алкилирования, аминной очистки, ГФУ, получения серы и очистки стоков. Проведенная реконструкция дала возможность, несмотря на ухудшение качества сырья, не только не снизить, но даже увеличить выход светлых нефтепродуктов. Одновременно резко сократилось производство остаточного котельного топлива (см. табл. VI.26). [c.155]

    В 1980 г. закончилась совместная реконструкция НПЗ фирмы Галф (мош ность по первичной переработке 4,9 млн. т/год) и НПЗ фирмы Тексако (мощность по первичной переработке 8,4 млн. т/год), расположенных на расстоянии около 2 км друг от друга в Милфорд Хавене (Великобритания). На обоих заводах топливного профиля с неглубокой переработкой нефти до реконструкции имелись установки атмосферной перегонки, риформинга и гидроочистки дистиллятов. В ходе реконструкции были построены установки вакуумной перегонки мощностью соответственно 2 и 3,5 млн. т/год, а также общие для обоих НПЗ установки ККФ (2,9 мли. т/год), фтористоводородного алкилирования и изомеризации бутана, что позволило резко увеличить производство светлых нефтепродуктов (табл. VI.27). [c.157]

    Наличие своей нефти обусловило стабильность загрузки технологических мощностей. В течение 2000 года объемы производства нефтепродуктов не только не уменьшились, но был расширен их ассортимент, улучшено качество по эксплуатационным и экологическим характеристикам. Отмечен рост производства автомобильных бензинов к уровню 1999 года на 11,7%, или на 308,5 тыс. тонн. Впервые предприятие полностью перешло на выпуск неэтилированных бензинов, в 1999 году их доля в общем объеме производства составляла лишь 45,3%. Боле чем на 20% возросло производство дизельного топлива зимнего . На 7,5% к уровню 1999 года увеличен выпуск масел и смазок, что связано с повышенным спросом на эти виды продукции на рынке сбыта. Высокие показатели переработки достигнуты за счет постоянного совершенствования производства путем его модернизации и реконструкции. В 2000 году в реконструкцию и развитие было вложено 302,7 млн рублей. Благодаря этим вложениям в 2001 году согласно Программы техперевооруже-пия будет введена в строй крупнейшая в России установка сернокислотного алкилирования и завершена реконструкция установки риформинга с непрерывной регенерацией катализатора. Ввод названных установок позволит без изменения объемов переработки нефти увеличить производство бензинов с улучшенными экологическими характеристиками, в том числе начать выпуск бензина АИ-98. [c.16]

    Р1зв( стные законы термодинамики позволяют оценить роль давления ири термическом расщеплении нефтепродуктов. Повышение давления способствует смещению равновесия в сторону полимеризации олефинов и алкилирования парафинов, поскольку данные реакци 1 протекают с уменьшением объема. В связн с этим высокое данление препятствует глубокому расщеплению сырья и снижает сбразование низших углеводородов и особенно олефинов. Очевидно, понижение давления и повышение температуры должны действовать в обратном направлении. [c.37]

    Из развитых промышленных стран наиболее крупные мощности имеют НПЗ в Западной Европе (Италия, Франция, ФРГ, Великобритания), а также в Японии. НПЗ развитых стран Западной Европы и Японии характеризуются меньшей, чем у США, глубиной переработки нефти этот показатель наименьший у Японии и Иташи (ниже 60%) и средний для НПЗ у Франции, Англии и ФРГ. Низкая глубина переработки нефти в Японии и Италии обусловлена отсутствием у них собственных ресурсов угля и природного газа. Выход моторных топлив низок на НПЗ Японии и Италии (53,7 и 50% соответственно) и достаточно высок ( 60-6б%) на НПЗ ФРГ, Франции и Англии. Наиболее высокий показатель после США и Канады по отбору бензина - на НПЗ Англии ( 25%). Этот показатель на НПЗ остальных стран составляет 12-22%. Соотношение бензин дизельное топливо на НПЗ Западной Европы в пользу дизельного топлива, поскольку в этих странах осуществляется интенсивная дизелизация автомобильного транспорта. В структуре производства нефтепродуктов на НПЗ двух стран - Японии и Италии -первое место занимает котельное топливо (35 и 37% соответственно). На НПЗ остальных развитых стран Западной Европы его производство довольно незначительное (17-20%). По насыщенности НПЗ вторичными процессами (прежде всего углубляющими переработку нефти) западноевропейские страны и Япония существенно уступают США (см. табл. 1.9). Доля углубляющих нефтепереработку процессов (термические, гидрокрекинг, каталитический крекинг и алкилирование) в США в 1985 г. составила 60,8%. Для увеличения выхода моторных топлив в Западной Европе реализуется программа широкого наращивания мощностей процессов глубокой переработки нефти, прежде всего установок каталитического крекинга, висбрекинга, гидрокрекинга и коксования. Поскольку в США действующих мощностей каталитичес- [c.23]

    Для удовлетворения растущих требований народного хозяйства в нефтепродуктах совершенствуются и усложняются способы цереработки нефти. Внедряются новые технологические процессы каталитический крекинг, каталитический риформинг, гпдроочистка и автогидроочиСтка, полимеризация, алкилирование, изомеризация и другие методы химической переработки нефтепродуктов и заводских газов, в результате которых получаются высококачественные нефтяные и химические продукты. [c.5]

    Серия процессов, предназначенных для превращения сырой нефти и ее фракций в целевые нефтепродукты, включающая термический крекинг, каталитический крекинг, полимеризацию, алкилирование, реформинг, гидрофекинг, гидроформинг, гидрогенизацию, гидрообработку, гидрофайнинг, экстракцию растворителями, депа-рафинизацию, обезмасливание, кислотную обработку, фильтрацию с отбеливающей землей и деасфальтизацию. [c.8]

    Для повышения качества бензинов широкое применение получили процессы алкилирования изонарафиновых и ароматических углеводородов непредельными углеводородами, изомеризации и полимеризации нефтяных фракций. Повышение качества светлых нефтепродуктов и масел — повышение стабильности, обессеривание, снилшпие коксуемости — эффективно обеспечивается применением гидроочистки. [c.580]

    Дистилляция нефти), в результате к-рой, в зависимости от профиля предприятия (см. Нефтепереработка), отбирают т. наз. светлые (бензины, керосины, реактивные и дизельные топлива) и темные (мазут, вакуумные дистилляты, гудрои) нефтепродукты. Для увеличения выходов и повышения качества светлых нефтепродуктов, а также получения нефтехим. сырья Н. направляют на вторичную переработку, связанную с изменением структуры входящих в ее состав углеводородов (см., напр., Алкилирование, Гидрокрекинг, Ка-тамтический крекинг. Каталитический риформинг, Коксование). Удаление нежелат. компонентов (сернистых, смолистых и кислородсодержащих соед., металлов, а также полициклич. ароматич. углеводородов) достигается очисткой нефтепродуктов (см., напр., Гидроочистка, Деметаллиза-tfun). Для дальнейшего повышения качества полученных нефтепродуктов к ним добавляют спец. в-ва (см. Присадки к смазочным материалам. Присадки к топливам). [c.235]

    Промышленные ироцессы химической переработки нефтяного сырья позволяют получать дополнительное количество свотлых нефтепродуктов (коксование, каталитический крекинг, гидрокрекинг), значительно улучшать их качество (главным образом бензинов), используя как компоненты товарных топлив фракции каталитического риформинга, каталитического крекинга, изомеризации, алкилирования, а также исходные мономеры для нефтехимического синтеза ароматические и непредельные углеводороды (бензол, толуол, ксилолы, этилен, пропилен и др.). Эти процессы химической нереработки нефти и ее фракций делятся на термические и термокаталитические. По способу промышленного оформления их можно разделить на периодические, полинепрерывные и непрерывные. [c.78]

    В гидрогенизационных процессах протекает большое число реакций деструкции и гидрирования, разрыва и перегруппиро вки ароматических и нафтеновых колец, гидрокрекинга и гидроизомери-зацин, алкилирования и деал килирования, гидрогенолиза и др. При жестких условиях появляются продукты меньшей молекулярной массы, что указывает на разрыв связей С—С в молекулах сырья. Эти реакции гидрогенолиза, или гидрокрекинга, нашли щри-менение в промышленности (производстве бензина и других нефтепродуктов из угля или тяжелых нефтяных остатков). [c.209]

    Реакции гидрокрекинга очень сложны наряду с расщеплением и гидрированием протекают изомеризация, разрыв и нерегруппи-ровка циклов, алкилирование, гидродеалкилирование и др. Механизм гидрокрекинга сходен с механизмом каталитического крекинга, но усложнен реакциями гидрирования. Гидрокрекинг алканов низкой молекулярной массы при гидрировании нефтяных фракций нежелателен, так как приводит к образованию легких углеводородов, вплоть до метана. При переработке высококипящих фракций и нефтяных остатков гидрокрекинг алканов желателен, так как в результате образуются углеводороды, по температуре кипения соответствующие светлым нефтепродуктам. Такие реакции протекают под давлением и в присутствии окисных или сульфидных катализаторов. [c.210]

    При крекинге нефтепродуктов процесс коксообразования вызывается в первую очередь ароматическими углеводородами (алкилиро-ваннымп). Чем выше молекулярный вес ароматического углеводорода (алкилированного), тем скорее идут процессы коксообразования. Этот вывод, основанный на изучении кинетики крекинга индивидуальных углеводородов, подтверждается также изучением кинетики коксообразования нефтяных продуктов, где увеличение молекулярного веса нефтяной фракции вызывает увеличение скорости образования карбоидов. В качестве примера приводим данные Саханова и Тп,иичеева по кинетике коксообразования (126в) при крекинге веретенного и машинного дестиллатов грозненской беспарафиновой нефти (табл. 176). [c.212]

    Эти нефтепродукты получают при помощи фракционирования сырой нефти, термического крекинга и риформинга, легкого крекинга (висбре-кии1 а), каталитического крекинга и риформинга, фракционирования жидких продуктов крекинга, стабилизации бензина и концентрирования газоп, алкилирования газообразных парафиновых углеводородов олефинами, полимеризации газообразных олефинов. [c.218]

    В нефтеперерабатыващей и нефтехимической промьппленности основными источниками сернокислотных отходов являются процессы сернокислотного алкилирования изопарафинов, очистки нефтепродуктов, производства сульфонатньк присадок, синтетических моющих средств, синтетических спиртов и т.д. В общем количестве сернокислотных отходов, образующихся в отрасли, доля ОСК от процессов сернокислотного алкилирования составляет 24 [I]. [c.39]

    Нефть или нефтепродукты Алкилированная серная кислота Нефтесернокислотная смесь Окисление Кислый гудрон [c.48]

    Лит Товарные нефтепродукты Свойства и приментие Справочник, под ред ВМ Школьникова, 2 изд, М. 1978, с 18-19, СмидовичЕВ, Крекинг нефтяного сырья и переработка углеводородных газов, 3 изд, М, 1980, с 287-303, ГуреевА А ЖоровКЗ М, Смидович Е В, Производство высокооктановых бензинов, М, 1981, с 80 в6, Алкилированне Исследования н промышленное офо(м ение процесса, пер с англ М, 1982. В Г. Спиркин. [c.91]


Смотреть страницы где упоминается термин Алкилирование нефтепродуктов: [c.30]    [c.37]    [c.30]    [c.37]    [c.88]    [c.154]    [c.23]    [c.11]    [c.5]    [c.6]    [c.218]    [c.107]    [c.226]   
Смотреть главы в:

Успехи химии фтора -> Алкилирование нефтепродуктов

Успехи химии фтора Тома 1 2 -> Алкилирование нефтепродуктов


Успехи химии фтора (1964) -- [ c.31 , c.37 ]

Успехи химии фтора Тома 1 2 (1964) -- [ c.31 , c.37 ]




ПОИСК







© 2024 chem21.info Реклама на сайте