Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Зона устойчивых потенциалов

    При быстром введении в исходный золь электролита в количестве, достаточном для перезарядки поверхности, коагуляция вообще не происходит. Это вызывает появление второй зоны устойчивости золя. Еще большее увеличение содержания электролита в дисперсионной среде приводит к сжатию диффузных частей двойных электрических слоев, что снова уменьшает значение электрокинетического потенциала и вместе с тем приводит к снижению устойчивости золя появляется второй порог коагуляции (точка Сз, рис. X—20) и вторая зона коагуляции золя, с четко выраженной областью быстрой [c.296]


    Зона защитного действия электрического дренажа определяется расстоянием от точки дренажа до того контрольного вывода или пункта измерения, где при включении электрического дренажа устанавливается устойчивый потенциал не менее минимально допустимых значений. [c.275]

Рис. 51. Изменение С-потенциала и зоны устойчивости в случае неправильных рядов коагуляции. Рис. 51. Изменение С-потенциала и <a href="/info/335941">зоны устойчивости</a> в случае <a href="/info/72823">неправильных рядов</a> коагуляции.
    Явление неправильных рядов. Ионы трех- и четырехвалентных металлов Ре+++, А1+++, Т1г++++, а также ионы Н+ и ОН при добавлении их к золю во все возрастающих концентрациях ведут себя совершенно особым образом сначала, по достижении порога коагуляции, они, как и все ионы, вызывают коагуляцию золя (дают первую зону коагуляции ), нр затем при дальнейшем увеличении концентрации, наоборот, возрастает устойчивость золя и коагуляция отсутствует ( зона устойчивости ) наконец, при еще более высоких концентрациях вновь наступает коагуляция золя ( вторая зона коагуляции ). Такое чередование коагуляции с ее отсутствием и получило наименование зон коагуляции , или неправильных рядов . Это явление хорошо иллюстрируется рис. 30 и связано с перезарядкой коллоидных частиц, вызываемой высоковалентными ионами и с величиной критического потенциала Скр.. На рис. 30 две зоны коагуляции заштрихованы, между ними не заштрихованная часть—зона устойчивости с максимальным выражением ее в точке В, где +С имеет максимальное значение. [c.136]

    Связь g-потенциала с коагуляцией особенно хорошо обнаруживается в неправильных рядах и может быть проиллюстрирована следующим примером. Ионы трех- и четырехвалентных металлов Fe , Al ", La , Th . а также ионы Н и ОН при добавлении их к золю во все возрастающих концентрациях ведут себя совершенно особым образом сначала, по достижении порога коагуляции, они, как и все ионы-коагуляторы, вызывают коагуляцию золя (дают первую зону коагуляции ), но затем при дальнейшем увеличении концентрации, наоборот, возрастает устойчивость золя и коагуляции не происходит (зона устойчивости) наконец, при еще более высоких концентрациях электролита наступает коагуляция золя ( вторая зона коагуляции ). Такое из- [c.333]


    Связь С-потенциала с коагуляцией хорошо проявляется в возникновении неправильных рядов или зон коагуляции и может быть проиллюстрирована таким примером. Ионы трех- и четырехвалентных металлов, а также большие органические катионы, будучи добавляемы к отрицательному золю в возрастающих количествах, ведут себя соверщенно особо. Вначале, по достижении порога коагуляции, они, как и другие ионы-коагуляторы, вызывают коагуляцию золя (первая зона коагуляции). Затем в новой порции золя при более высокой концентрации электролита коагуляция не наступает (зона устойчивости). Наконец, при еще более высокой концентрации электролита коагуляция снова происходит (вторая зона коагуляции). Во второй зоне устойчивости, как это легко установить электрофорезом, коллоидные частицы имеют уже не отрицательный заряд, а положительный. Очевидно, сильно адсорбируемые высокозарядные катионы и большие органические катионы могут входить в гельмгольцевскую часть двойного слоя в сверхэквивалентных количествах. Благодаря этому в диффузную часть двойного слоя входят сопутствующие им анионы, что изменяет знак С-потенциала. [c.244]

    При наложении электрического потенциала на полоску бумаги, смоченную 0,5 М соляной кислотой, ионы, металлов, находящихся в основном в виде комплексных ионов, передвигаются с различной скоростью в противоположных направлениях. Раздвижение зон зависит от констант устойчивости комплексных ионов и селективности ионов в процессе адсорбции на целлюлозе. [c.350]

    Однако, результаты полевых и лабораторных геохимических исследований, показывают, что поведение радионуклидов здесь является более сложным, т.к., во-первых, изотопный состав радионуклидов пока не стабилизировался и формирование промежуточных продуктов радиоактивного распада заведомо не завершилось во-вторых, - при взаимодействии этих продуктов с подземными и технологическими водами образуется сложное сочетание различных соединений, состав и устойчивость которых зависят от ряда геохимических факторов состава, растворимости и сорбционных свойств вмещающих пород, значений окислительно-восстановительного потенциала в потоке флюидов, активности карбонатных анионов, изменений равновесия в соединениях углерода, состояния органического вещества и т.д. в-третьих, - в окрестностях зон ПЯВ формируется ряд геохимических барьеров, которые могут служить накопителями радиотоксичных изотопов. Поэтому, с одной стороны, неосторожное вскрытие этих барьеров может усугубить радиационную опасность промысла, а с другой, - эти барьеры при разумном с ними обращении могут сыграть роль защитных экранов, способствующих оздоровлению радиационной и экологической обстановки. С этих позиций идеология всеобщей промывки промысла, обеспечивающей якобы разбавление концентрации радионуклидов до безопасного уровня, считается неприемлемой. [c.84]

    Так как электрифицированный транспорт перемещается, нагрузка изменяется, то катодная зона перемещается но сооружению, а амплитуда потенциала изменяется. Поэтому на сооружении обычно кроме устойчивой анодной зоны в районе подстанции и катодной зоны по середине между тяговыми подстанциями имеются и знакопеременные зоны, разделяющие анодные и катодные зоны. [c.77]

    Концентрация электролита. Добавки электролитов обычно улучшают флокулирующее действие как заряженных, так и незаряженных полимеров [2, 125, 127, 129, 130]. При этом уменьшается доза реагента, которая необходима для достижения определенной степени флокуляции, одновременно с этим расширяется зона флокуляции. Это объясняется, с одной стороны, дополнительным уменьшением агрегативной устойчивости дисперсии вследствие сжатия двойного слоя и снижения (для многозарядных ионов) заряда и потенциала частиц, а с другой — тем, что вследствие уменьшения адсорбции неионных полимеров с ростом ионной силы раствора увеличивается концентрация ВМС, отвечающая стабилизации системы. [c.136]

    Если катод находится в среде, в которой его самопроизвольная пассивация при периодической поляризации либо затруднена, либо невозможна вследствие больших значений и , то потенциал катода смещается в область активного растворения. При наличии эффективной зоны катодной защиты возможно смещение и поддержание потенциала в этой области. Для этого необходимо изменить вид поляризации — периодическую заменить непрерывной. Это приводит к удорожанию средств регулирования потенциала и уменьшению надежности системы анодной защиты. Возможно принудительное возвращение потенциала катода из области активного растворения в устойчивое пассивное состояние, т. е. анодная защита катода при периодической поляризации. Для этого необходимо во время пауз замыкать катод на анод, и катод будет иметь такой же потенциал, как на аноде, т. е. соответствовать области устойчивого пассивного состояния. [c.90]

    Регулятором потенциала устанавливают область регулирования (ф1 — фг) с таким расчетом, чтобы стационарный потенциал протектора (фз) находился внутри этой зоны (рис. 7.2). При включении поляризующего тока происходит одновременное смещение потенциалов защищаемого аппарата и протектора до верхней границы интервала регулирования. Как будет показано далее, при смещении потенциала исследованных нами графитовых протекторов положительнее стационарного значения (фз) происходит накопление заряда на поверхности. При достижении фг поляризующий ток отключается, и накопленный протектором заряд расходуется на уменьшение скорости спада потенциала. В это время потенциалы защищаемого аппарата и протектора постепенно снижаются до нижней границы зоны регулирования, что приводит к повторному включению поляризующего тока после чего начинается новый цикл зарядки поверхности протектора. По мере формирования устойчивого пассивного состояния плотность необходимого защитного тока (г з) снижается. Когда плотность тока протектора окажется достаточной для сохранения пассивности, снижение потенциала прекращается. Это состояние защиты протектором сохраняется до тех пор, пока не возникнут факторы, приводящие к возрастанию плотности защитного тока (резкое изменение уровня, температуры, концентрации и других параметров технологического раствора в аппарате). Эти нарушения в ходе технологического процесса приводят к повторным включениям регулятора потенциала на время их действия. [c.127]


    Для поддержания зоны защитных потенциалов в области устойчивой пассивности использован единичный контур регулирования и контроля потенциала (рис. 8.23) унифицированной автоматической системы анодной защиты Донец-12 [5], позволяющий поддерживать потенциал в заданном режиме. За счет уменьшения скорости коррозии улучшилось качество продукции, увеличилась степень конверсии мономера. Экономическая эффективность составила 213 тыс. руб./год. [c.167]

    В устойчивой анодной зоне блуждающих токов интенсивность процесса коррозии не зависит от солесодержания и величины pH реальных грунтов, а степень коррозионной опасности непосредственно определяется, в основном, поверхностной плотностью тока утечки. Сила тока, протекающего по сооружению, и величина потенциала его по отношению к близкой точке земли характеризуют опасность электрокоррозии лишь косвенно. Например, при большом положительном потенциале, но высоком сопротивлении изоляции плотность тока утечки будет невелика, в то время как при незначительном положительном потенциале по отношению к земле, но при малом переходном сопротивлении изоляции может возникнуть большая плотность тока утечки. [c.210]

    Измерение и контролирование результирующего потенциала в автоматических устройствах производится обычно относительно вспомогательного электрода, располагаемого вблизи защищаемого сооружения. Такая система контроля и регулирования работает надежно только в том случае, если автоматическая катодная станция подключается в устойчивой анодной зоне, которая во времени не изменяет своего положения, т. е. не перемещается вдоль подземного сооружения. В противном случае такая система оказывается не эффективной. [c.271]

    Как видно из рис. 1, расстояние между линиями остается постоянным при изменении состава раствора. Это расстояние соответствует разности потенциалов анода и катода, равной 1,23 в. Эта величина является минимальным напряжением, необходимым для разложения воды, так называемым напряжением разложения. Неза-штрихованная полоса на графике (рис. 1), между линиями анодного и катодного потенциала, образует зону термодинамической устойчивости воды. Вне этой зоны вода является термодинамически неустойчивой и может разлагаться, либо [c.23]

    Свободная конвекция, наложенная на вынужденное движение в канале, формирует в условиях отсоса сложное смешанноконвективное движение, которое деформирует диффузионный пограничный слой и существенно меняет локальные характеристики массообмена. Интерферограммы и распределения безразмерной концентрации показаны на рис. 4.17 и 4.18. На начальном участке, до потери концентрационной устойчивости (Яа< <Кас), развитие диффузионного пограничного слоя идентично процессу с устойчивым распределением плотности. При Ка = Кас появляются конвекция и деформация профиля скорости. Далее течение принимает форму вихревых шнуров, что приводит к сильным пульсациям толщины диффузионного пограничного слоя, причем амплитуда пульсаций имеет определенную периодичность, достигая максимального значения в зоне формирования потенциала неустойчивости. [c.145]

    Анализ кривых на рис. 25.3 показывает, что понижение стабильности золя идет параллельно с понижением -потенциала для всех электролитов, однако характер зависимости —с различный. При добавлении одно- и двухзарядных противоионов происходит монотонное понижение -потенциала и при критическом его значении золь переходи из устойчивиси состояния в ниустойчивие. На графике это отражается двумя зонами устойчивого золя и коагуляции. В случае многозарядных ионов-коагуляторов начиная с АР+ отрицательный -потенциал исходного золя в первой устойчивой зоне понижается и доходит до критического значения, отвечающего первой зоне коагуляции — образованию осадка-коагулята. Затем идет дальнейщее понижение -потенциала, его значения переходят через изо-электрическую точку, в которой I = 0. Происходит перезарядка и наблюдается повыщение уже положительного -потенциала за счет сверхэквивалентной адорбции ионов АР+ (см. 25.3). Этот участок кривой отвечает пептизации коагулята. Образуется положительный золь, устойчивость которого и значение -потенциала достигают максимума, а затем уменьшаются до второго критического значения, при котором положительный золь коагулирует уже под действием ионов ЫОз (вторая зона коагуляции). Таким образом, при действии многозарядных ионов-коагуляторов золь последовательно проходит через две зоны стабильности и две зоны коагуляции (см. рис. 25.3, 3,4). [c.436]

    Величина порога коагуляции зависит и от природы противоионов, что свидетельствует о важной роли диффузного слоя в процессе коагуляции. Коагуляция сопровождается уменьшением элек-трокинетического потенциала, а заряд поверхности может при этом оставаться неизменным. В зависимости от концентрации коагулянта выделяются зоны устойчивости, медленной и быстрой коагуляции. Если его концентрация ниже порога коагуляции, то скорость коагуляции так мала, что можно считать коллоидный раствор устойчивым. При повышении концентрации коагулянта выше пороговой скорость коагуляции увеличивается (зона медленной коагуляции). После достижения определенной концентрации и при дальнейшем ее повышении скорость коагуляции практически не зависит от концентрации введенного электролита (зона быстрой коагуляции). [c.117]

    Наконец, диаграммы Пурбе дают обоснование некоторых возможных методов защиты металлов от коррозии. Так, согласно диаграмме, переход из области коррозии (точка Е — зона преобладания ионов Ре-+) в область устойчивости (зона преобладания металлического железа) может быть достигнут сдвигом потенциала системы в отрицательную сторону (движение от точки Е за горизонталь /), что составляет сущность широко расиростраиениого метода катодной защиты. Из диаграммы также следует, что ири повышении рИ до известных пределов начинается образование новых твердых неметаллических фаз, которые, воз1шкая на поверхности feтaллa, могут. ащищать его от коррозии и переводить в состояние пассивности (движение от точки Е по горизонтали за кривую 4). [c.192]

    Повьш1ение температуры оказывает влияние на устойчивость коллоидных растворов. Это влияние не однозначно. С одной стороны, повышение температуры приводит к частичной десорбции ионов с поверхности ядра, к уменьшению его заряда. Это приводит к уменьшению общего скачка потенциала и соответственно к уменьшению дзета-потенциала. С другой стороны, повышение теипературы отвечает увеличению интенсивности хаотического движения ионов в растворе. Распределение ионов в слое жидкости, прилегающей к поверхности, становится более равномерным. В результате меньшее их количество остается в адсорбционном слое, толщина диффузного слоя становится больше, что приводит к увеличению дзета-потенциала. Отметим также, что повышение температуры увеличивает кинетическую энергию коллоидных частиц, что позволяет им преодолевать более высокий потенциальный барьер и входить в зону, где преобладающими становятся силы притяжения. Таким образом, повышение температуры, с одной стороны, способствует коагуляции, с другой стороны, препятствует ее протеканию. Поэтому заранее нельзя предсказать, как именно повлияет повышение температуры на устойчивость конкретного коллоидного раствора. Тем не менее опыт показывает, что в большинстве случаев повышение температуры вызывает коагуляцию. [c.422]

    В предыдущей главе описаны кинетические законы, которым следуют химические реакции, причем весь процесс рассматривался только на молекулярном уровне. В то же время в реальных условиях эволюция химических систем привела к последовательному образованию множества сложных динамических структур, подготовивщих переход химической эволюции в биологическую. Поэтому проблема возникновения микро- и макроорганизаций в неравновесной системе, получающей от внешней среды вещества и энергию (например, развивающейся в изотермических условиях), исключительно важна. Возможно ли возникновение упорядоченности— временной и пространственной — в исходно однородной системе, в которой протекают химические реакции Трудность решения этой задачи обусловлена тем, что нет столь надежного признака устойчивости неравновесных систем, какими для равновесных является экстремум соответствующего термодинамического потенциала. Поэтому приходится прибегать к изучению кинетики процессов и в ней искать условия возникновения упорядоченности. В наиболее общей форме эта задача решена Тьюрингом (1952), показавшим, что в результате развития химической реакции при постоянной температуре и диффузионном перемешивании концентрации промежуточных продуктов реакции могут распределяться в пространстве неравномерно, образуя зоны различной концентрации. [c.325]

    Чтобы ош5оать наличие устойчивых ирфкуляционных зон за пластинами, в течение. вводятся вихри с заданными интенсивностями Гм. . Комплексный потенциал Жл(1) отроится методом суперпозиции особенностей и представляется в виде [c.8]

    Столь значительный сдвиг потенциала анодного нарушения пассивного состояния (потенциала пробоя ) в сторону отрицательных значений для пришовной области ведет к особой опасности локального нарушения пассивности в тех коррозионных средах, где нержавеющая сталь при отсутствии напряжений находится в устойчивом пассивном состоянии, с образованием условий для усиленной локальной коррозии (в том числе коррозионного растрескивания) при наличии коррозионных гальванопар на поверхности сварного соединения типа активная пришовная зона — пассивная остальная поверхность. [c.223]

    Явление неправильных рядов объясняется тем, что при весьма малых количествах введенного электролита многовалентных ионов, недостаточно, чтобы скоагулировать золь. При этой концентрации, электролита -потенциал частиц выше критического его значения.. При несколько больших количествах электролита его ионы проявляют уже коагулирующее действие. Этот интервал концентраций отвечает значениям электрокинетического потенциала частиц от крит одного знака до крит противоположного знака. При еще несколько больших концентрациях многовалентные ионы перезаряжают коллоидные частицы и золь становится, опять устойчивым.. В этой зоне -потенциал снова выше критического значения, но обратен по знаку -потенциалу частиц исходного золя. Наконец,, при высоком содержании введенного электролита многовалентные ноны скоза и уже окончательно коагулируют золь по механизму концентрационной коагуляции. [c.300]

    П.к. протекает по электрохим. механизму (см. Коррозия металлов). Линейная скорость углубления питтинга при стабилизировавшейся П.к. металла М может достигать 10-10 мм/год. Это обусловлено тем, что в питтинге локализуется анодная р-ция М = М -Ь ге (z-зарядовое число иона), а катодная р-ция чаще всего протекает в намного большей по размерам зоне пов-сти вокруг питтинга, если защитный слой достаточно электропроводен. Таким св-вом обладают мн. пассивирующие слои (см. Пассивность металлов), окалина, возникающая при высокотемпературной газовой коррозии, катодные металлич. покрьггия и др. Наиб, специфична по своему механизму П.К. пассивных металлов, обычно связанная с воздействием того или иного активирующего аниона А (СГ, Вг", NS, SOj, СЮ и др.) на активные центры пассивирующего слоя (дефекты). Такие центры периодически выходят на пассивную пов-сть по мере ее растворения, образуя участки с кратковременно повыш. локальной скоростью растворения, к-рые могут стать зародышами питтингов. В водных и мн. водно-орг. средах превращение зародыша в устойчиво развивающи я питтинг обычно происходит при условии, что потенциал коррозии металла превышает нек-рое значение, наз. критич. потенциалом питтингообразования (миним. потенциал П.к.). Для металла, потенциал коррозии к-рого находится в пассивной или активной области (Я, р илн соотв., рис. 1) (см. Анодное растворение), при достижении происходит резкий рост анодного тока растворения. Вероятность развития зародыша питтинга превышает вероятность его гибели (репассиваций) вследствие того, что вблизи активных центров из-за ускоренного миграц. подвода анионов-активаторов А повышена их локальная концентрация в р-ре, а на самих центрах соотв. адсорбция. В результате при Е , пасси- [c.547]

    В работе [32] проведено сравнительное исследование каталитической активности металлического хрома,а также карбидов СгдС2 и Сг,Сд при ароматизации к-гексана ик-октана. Было обнаружено отсутствие каталитической активности у хрома и ароматизирующая способность у обоих карбидов хрома, причем Сг Сз оказался более активным. Отсутствие каталитической активности у хрома может быть связано с тем обстоятельством,что,несмотря на наличие у хрома формально средней по величине акцепторной способности, при окружении его соседними атомами в кристаллической решетке металла осуществляется образование стабильной конфигурации Принятие я-электронов,например водорода в реакциях дегидрогенизации,при этом сильно затруднено или вообще невозможно, что и показано на опыте [33] значительно легче может происходить отдача х-электронов и появляться каталитическая активность в соответствующих реакциях. При образовании карбидов хрома эта стабильная конфигурация нарушается и происходит донорно-акценторное взаимодействие между атомами хрома и углерода, которое сводится к передаче внешних (главным образом 4 ) электронов хрома на коллективизацию с р-электронами углерода. При этом в связи с относительно небольшой величиной для хрома и высоким ионизационным потенциалом атомов углерода вероятен не только переход х-электро-нов хрома в направлении остова атома углерода, но и частичное нарушение 3( -конфигурации с соответственным повышением акцепторной способности хрома. С повышением относительного содержания углерода в карбидных фазах хрома увеличивается вероятность образования связей между атомами углерода (что следует также из усложнения структурных мотивов атомов углерода при увеличении отношения С/Сг), которые стремятся в пределе к образованию устойчивой конфигурации типа характерной для алмаза (что эквивалентно резкому повышению ионизационного потенциала атомов углерода), и в конечном счете ко все большей возможности нарушения 3 -конфигурации атомов хрома. Это вызывает резкий рост каталитической активности при переходе от хрома к его карбидам, в которых атомы углерода образуют цепи. В случае окиси хрома, вследствие высокого ионизационного потенциала кислорода, коллективированные электроны хрома и кислорода резко смещены в направлении атомов кислорода, что содействует нарушению устойчивой конфигурации -электронов хрома, повышает акцепторную способность его остова и вызывает высокую каталитическую способность окиси хрома, например в реакциях типа дегидроциклизации парафиновых углеводородов. Исходя из этого окислы вообще должны обладать относительно высокими каталитическими свойствами, особенно низшие окислы переходных металлов, так как высшие окислы, как правило, являются полупроводниками с большой шириной запрещенной зоны, затрудняющеь электронные переходы. Последнее относится и к некоторым другим тугоплавким фазам в областях их гомогенности, когда при уменьшении содержания неметалла в пределах этих областей появляются энергетические разрывы, как это происходит, например, для нитридов титана и циркония [33—35]. [c.243]

    Создание устойчивого пассивного состояния сплава может быть также осуществлено путем повышения эффективности катодного процесса коррозионной системы. Ранее считалось, что для повышения коррозионной устойчивости всегда желательно возможное понижение катодной эффективности. Однако такое положение действительно только при обычном нормальном ходе анодных ноляризационных кривых, т. е. когда смещению потенциала в положительную сторону соответствует увеличение анодного тока и смещению потенциала в отрицательную сторону — увеличение катодного тока. При наличии пассивирующихся коррозионных систем, когда анодная поляризационная кривая не представляет монотонной зависимости между током и потенциалом (это детально было разобрано выше), минимальные коррозионные токи будут соответствовать пересечению катодной и анодной кривых на поляризационной диаграмме коррозии на участке устойчивого пассивного состояния. В этих условиях вполне вероятен случай, когда более эффективному катодному процессу будет соответствовать меньший коррозионный ток по сравнению с системой, имеющей меньшую катодную эффективность. Учитывая, что токи в области устойчивой пассивности могут быть на несколько порядков меньше, чем токи в зоне активного анодного растворения, очевидно, сколь значительным может быть снижение коррозии при правильном использовании явления пассивирования (перевода коррозионной системы в пассивное состояние). [c.85]

    Было исследовано влияние одновременного легирования компонентами, повы-шаюш,ими пассивируемость (Сг, Мо) и катодную эффективность (Р(1) на коррозионное и электрохимическое поведение титана [126]. Подобные сплавы показали максимальную пассивируемость и максимальную устойчивость в серной и соляной кислотах по сравнению со всеми известными сплавами на основе титана. Повышение коррозионной устойчивости сплавов —15%Мо и Т1—15% Сг при легировании их 2% Рс1 может быть пояснено на основе анализа поляризационных кривых для этих сплавов в растворе 80%-ной Н2504 при температуре 18° С (рис. 64). Из диаграммы видно, что легирование титана 15% Мо снижает критический ток пассивирования г п и смещает в бо.лее отрицательную сторону потенциал полного пассивирования Легирование титана 15% Сг несколько увеличивает критический ток пассивирования, но сильно сдвигает в отрицательную сторону потенциал пассивирования, особенно потенциал полного нассивирования Еаа- Потенциал коррозии всех этих сплавов, дополнительно легированных 2% Рс1, вследствие весьма низкого перенапряжения водорода на тонкодисперсных включениях палладия, постоянен и приблизительно равен нулю вольт следовательно, он находился в зоне нестабильной пассивности сплавов (заштрихованная горизонталь на рис. 64). В этих условиях коррозионная устойчивость [c.94]

    При наличии блуждающих токов постоянного направления (устойчивые катодные или анодные зоны) система поляризованных протекторов преобретает новые свойства. Так, если потенциал трубопровода положительнее потенциала протектора, то в его цепи будет протекать защитный ток, величина которого определяется потенциалом, создаваемым блуждающим током в катодной зоне. Защитный ток может уменьшиться до нуля, если потенциал трубопровода под действием катодного блуждающего тока сравняется с потенциалом протектора. Если потенциал трубопровода отрицательнее потенциала протектора, то диод будет препятствовать втеканию катодного тока через протектор. [c.273]

    В зоне ДГ2 в интервале от 0,2-0,4 до первых десятков метров в восстановительных условиях в результате жизнедеятельности микроорганизмов формируются устойчивые аутигенные минералы сидерит, сульфиды железа и марганца, лептохло-риты и др. При этом расход углерода ОВ на преобразование окисных соединений в закисные составляет 0,054 г С на 1 г Ре, на преобразование эквивалентных количеств оксида железа и сульфата в пирит — 0,205 г С па 1 г Ре. В зависимости от величины окислительно-восстановительного потенциала в осадке создаются определенные соотношения окислительных и восстановительных форм тех элементов, которые способны в этих условиях образовать соединения разной степени окисленности. [c.42]


Смотреть страницы где упоминается термин Зона устойчивых потенциалов: [c.35]    [c.358]    [c.459]    [c.97]    [c.14]    [c.191]    [c.61]    [c.300]    [c.434]    [c.214]    [c.50]    [c.152]    [c.166]    [c.84]    [c.18]    [c.547]    [c.174]    [c.188]   
Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 (1987) -- [ c.259 ]




ПОИСК







© 2025 chem21.info Реклама на сайте