Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Величина молекул

    При нагревании алифатических сульфохлоридов выше 100"" в зависимости от величины молекулы, а также от того, является ли сульфохлорид первичным или же вторичным, всегда рано или поздно образуется некоторое количество хлористого водорода, большое количество двуокиси серы, олефинов и хлористых алкилов. При этом протекают две, в. корне отличные друг от друга реакции  [c.386]

    В твердых телах расстояния между молекулами очень малы, силы сцепления имеют наибольшую величину. Молекулы твердого тела (олеблются около какого-то среднего положения. При переходе вещества из твердого состояния в жидкое расстояния между мо- [c.19]


    При образовании свободных радикалов согласно теории Ф. О. Райса должны образовываться также и олефины различной величины молекул [84]. [c.284]

    Зная средний молекулярный вес, нельзя определить фактического распределения сульфохлоридной группы в смеси парафиновых углеводородов относительно величины молекул отдельных парафиновых углеводородов. [c.377]

    Степень капиллярной активности зависит от многих факторов. Во-первых, решающую роль играет величина молекулы, определяемая длиной цепи углеводорода, и, во-вторых, состав самой гидрофильной группы и положение ее в молекуле углеводорода. Как правило, по способности вещества уменьшать поверхностное натяжение воды опреде- [c.408]

    Если определять смачивающую способность таких солей сульфокислот с учетом действия всегда находящейся в соли сульфокислот поваренной соли и наносить значения концентрации в г/л как функцию числа углеродных атомов или как ф/ункцию температурных пределов разгонки исходных углеводородов, то получается кривая, изображен-на5 на рис. 71. Эта кривая показывает, что смачивающая способность сначала возрастает с ростом величины молекулы, затем при определенной величине молекулы достигает своего максимума и после этого снопа падает. [c.410]

    Рис. VI-2 показывает влияние величины молекул на каталитический крекинг и-парафинов при 500° С и отношение скорости каталитического крекинга к скорости термического крекинга для этих углеводородов. [c.327]

    При определенной величине молекулы перемещение групп к центру, делая молекулу более компактной, снижает тенденцию к детонации. [c.416]

    Важная проблема растворимости в основе решается для полимеров так же, как и для обычных растворов. Как правило, линейные аморфные полимеры растворимы лучше кристаллических. Большая величина молекул высокомолекулярных веществ и гибкость их цепей, а также малая скорость диффузии приводят к тому, что процесс растворения протекает своеобразно. Первой стадией растворения аморфного полимера является набухание молекулы растворителя проникают в объем полимера и раздвигают полимерные цепи. Одновременно лишь небольшое число полимерных молекул переходит в жидкий растворитель, образуя раствор малой концентрации. Процесс набухания протекает до полного использования растворителя с образованием гомогенного раствора. Это имеет место, однако, лишь при наличии неограниченной взаимной растворимости жидкого растворителя и аморфного полимера. [c.257]


    В ультрамикроскопе можно заметить броуновское движение. При диализе и ультрафильтровании асфальтены. не/ проникают через мембраны, что повидимому зависит или от присутствия элементарного углерода или от большой величины молекул. [c.117]

    Искусственным путем теперь изготовляют цеолиты, являющиеся хорошими адсорбентами и обладающие порами постоянного размера (4Л, 5,Л и др). Соизмеримость размера пор с величиной молекул дает возможность использовать такие цеолиты для разделения компонентов газовых смесей и жидких растворов в зависимости от размеров молекул или ионов этих компонентов. Молекулярные сита, как называют такие адсорбенты, применяются для разделения углеводородов, осушки газов и других целей. [c.373]

    Свойства высокополимера сильно зависят также от степени полимеризации и, следовательно, являются функцией молекулярного веса. Кроме того, многие свойства полимера существенно зависят от распределения макромолекул по массе, т. е. от различной степени полимеризации. Характер такого распределения выражается кривыми, подобными представленным на рис. 24 (стр. 101). В зависимости от условий проведения процесса полимеризации можно получать полимеры, различающиеся не только по общей сте-. пени полимеризации, но и распределением молекул по массе. Можно получить полимер или более или менее однородным по величине молекул, выбирая условия полимеризации в зависимости от назначения продукта. [c.566]

    Переходя к рассмотрению особенностей внутреннего строения и свойств полимеров в указанных трех состояниях, мы начнем с высокоэластичного состояния, которое свойственно только высокомолекулярным веществам и в котором наиболее отчетливо выявляются особенности свойства, обусловленные большой величиной молекул. [c.573]

    Для линейных полимеров довольно характерна представленная на рис. 214 зависимость прочности на разрыв от степени полимеризации Р. При малых Р прочность мала, но быстро возрастает при увеличении степени полимеризации от 100 до 300 и, начиная с Р, равного 400, остается почти постоянной. Это объясняется тем, что при малой величине молекул полимера для разрыва его приходится преодолевать только сравнительно слабые силы межмолекулярного притяжения (молекулы скользят одна вдоль другой, а при боль, шей длине цепей, вследствие рассмотренных выше особенностей [c.588]

    При проведении крекинга главной целью ставится снижение среднего числа атомов углерода в молекуле, риформинг же предназначен для того, чтобы, сохраняя величину молекулы, изменить ее форму при этом н-пара-фины превращаются в парафины изостроения, а нафтены — в ароматические углеводороды. Самый первый процесс риформинга — термический риформинг — проводили при умеренной температуре и относительно высоком давлении. Каталитический риформинг вначале предназначался для дегидрирования Со-нафтенов в ароматические углеводороды, но затем его рас- [c.42]

    Величина молекул органических полимеров оценивается обычно значениями молекулярной массы или числом химических звеньев, из которых состоят цепные молекулы полимеров. Эти две характеристики связаны друг с другом очевидно, что число мономерных звеньев в цепи должно быть равно отношению -молекулярной массы полимера к молекулярной массе соответствующего мономера. Эта величина называется степенью полимеризации. [c.370]

    В кинетической области величина молекулы имеет значение с точки зрения ее геометрического соответствия строению активных центров кристалла катализатора. [c.89]

    Таким образом, молекулярная масса не может являться критерием для полной характеристики с [ол, однако среднее значение в какой-то степени позволяет судить о преимущественной величине молекул смолистых соединений нефти. [c.207]

    По величине молекулы смолы различных дестиллатов значительно отличаются между собой. [c.24]

    Из всех вторичных реакций, которые могут протекать при крекинге, лишь одна полимеризация олефинов не зависит от величины молекул и вплоть до 300° может происходить при обычном давлении  [c.107]

    Продукты с достаточно большой величиной молекулы (большое п) служат смазочными маслами, которые не растворимы в воде и обладают высоким [c.371]

    Была также высказана мысль, что все кристаллы имеют электрические заряды, проявляющиеся при нагреве или сжатии. Благодаря малой величине молекул такие заряды ощутимы лишь у самой поверхности, что и является причиной притяжения и сгущения паров и газов. Наиболее богаты электричеством активные металлы губчатой структуры, состоящие, по тогдашним взглядам, из металлических остриев . Эти идеи и представления интересны тем, что они интуитивно предвосхищают наши современные представле- [c.90]

    В некоторых случаях определение молекулярного веса с помощью какого-нибудь одного физического метода не может привести к правильному выводу о величине молекулы вещества. Если, например, попытаться определить величину молекулярного веса уксусной кислоты по упругости ее паров или по осмотическому давлению, то можно получить значения, существенно превыщающие истинное (определенное другим способом). Причиной аномалии является ассоциация молекул уксусной кислоты, вследствие чего получаются значения, относящиеся не к отдельным молекулам, а к молекулам, ассоциированным в комплексы (в больщинстве случаев — димерные). [c.12]


    Оба способа определения величины молекулярного веса — химический и физический — прекрасно дополняют друг друга, поскольку один из них устанавливает минимальное, а другой — максимальное значение часто для выяснения молекулярной формулы какого-либо соединения приходится применять оба эти способа. Чем сложнее построено вещество, тем большие трудности приходится преодолевать при выяснении его молекулярной формулы. Например, молекулярные веса многих сложных природных веществ, таких как белки, крахмал и т. п., определенные осмометрическим способом, не даЮ Т представления об истинных размерах их молекул, поскольку твердо установлено, что все эти вещества образуют в воде не истинные, а коллоидные растворы. Измерения, проведенные в подобных растворах, указывают обычно не величину молекул, а величину коллоидных частиц, которые могут быть построены из большого числа молекул. С другой стороны, очень трудно также получить представление и о минимальной еозможной величине подобных молекул, так как чрезвычайно редко удается синтезировать их однородные производные. Поэтому наши сведения о величине молекул многих важных природных веществ до сих пор еще соверщенно недостаточны. [c.13]

    Вещества, обладающие одинаковым химическим составом, но различными свойствами, называются изомерами, а само явление — изомерией. Изомерия может быть обусловлена различной величиной молекул или различным взаимным расположением атомов в молекуле. В первом случае говорят о полимерии (полимерные вещества), во втором — об изомерии положения (структурной изомерии). [c.27]

    Элементарный состав поликонденсатов изменяется с изменением величины молекулы поэтому, если молекулярный вес не слишком велик, то на основании данных анализа можно определить величину образовавшейся макромолекулы. [c.931]

    Рейнпрейсен, Кельбель) отличаются исключительной гибкостью и позволяют получать продукт с любой заданной величиной молекулы. [c.10]

    Чтобы избежать заметного образования ди- или полихлоридов, необходимо при хлорировании удовлетворяться низкими выходами (20—30% в пересчете на взятое количество углеводорода) и отгонкой отделять хлористый алкил от непрореагировавшего углеводорода. Для высокомолекулярных углеводородов, например для С20—С25, различия в температуре кипения между чистым углеводородом и соответствую-лцим хлористым алкилом с одинаковой длиной углеродной цепи уже настолько малы, что о разделении разгонкой не может быть и речи. При таких же величинах молекул, при которых еще возможно отделение углеводорода от хлористого алкила перегонкой, хлорированию должны подвергаться фракции с очень узкими пределами кипения, так как иначе нельзя добиться полного отделения хлористого алкила от отдельных углеводородов, входящих в состав данной фракции. [c.387]

    Для сульфохлорирования в промышленном масштабе, как это было детально рассмотрено выше, можно применять только продукты синтеза по Фишеру и Тропшу, т. е. когазины I и II и их фракции. Наибольший интерес до сих пор представляет сульфохлорирование когазина II (смесь углеводородов с пределами выкипания 230—320°), так как из сульфохлоридов с этой величиной молекулы при омылении щелочами получают растворимые в воде соли сульфокислот, которые обладают очень хорошими смачивающими и моющими свойствами и которые в широких масштабах используют в качестве сырья для производства моющих веществ. [c.399]

    Атермальные растворы можно рассматривать как такие идеальные по своим внергетическим свойствам растворы, которые не подчиняются закону Рауля вследствие значительного различия в величинах молекул компонентов и вытекающего отсюда значительного различия в молекулярных объемах. [c.253]

    Адсорбционная способность молекулярных сит основана на различном соотношении величины молекул и диаметров пор. Молекулы, имеющие размер значительно меньший, чем диаметр пор, сорбируются легко, в то время как более крупные молекулы не сорбируются совсем. Указанным методом можно отделять насьщенные углеводороды нормального строения от углеводородов пзостроения, циклических и ароматических углеводородов. [c.36]

    Температура процесса нитрования колеблется в широких пределах (от 150 до 600°) в зависимости от величины молекулы углеводорода. С увеличением молекулярного веса температура, пеобхо- [c.126]

    Иногда эти процессы называют риформингом, хотя если подразумевать нод риформингом (независимо от того, применяются и H Nt катализаторы или нет) такой процесс, в результате которого исходное сыр].о обогащается бен-ЗИН0ВЫЛ1И фракциями, то ни один из процессов каталитической переработки дистиллятов термического крекинга или риформинга не мол ет именоваться каталитическим риформингом. В конечном счете во все.х случаях мы пмеем дело лишь с улучшением отдельных качественных параметров исходного дистиллята. Но если под риформингом подразумевать любой процесс, который приводит к изменению формы (а не величины) молекул углеводородов исходного сырья, то любой процесс термокаталитической обработки дистилля-та можно назвать риформингом. Специфичность рассматриваемой группы процессов каталитического облагораживания дистиллятов термического крекинга и риформинга состоит в том, что в них используются алюмосиликатные катализаторы. [c.78]

    Предпринята попытка выяснить природу этих продуктов путем извлечения их с последующим детальным исследованием. Для этого 180 г отработанных молекулярных сит СаА загружали в аппарат Сокслета и проводили экстракцию поочередно н-гексаном и серным эфиром. Однако в процессе экстракции показатель преломления обоих растворителей, так же как и их окраска, не изменялся, что указывало на отложение коксообразных продуктов не на поверхности катализатора, а в полостях молекулярных сит. Мож1Ь) было полагать, что кокс либо не содер кал растворимых компонентов, либо величина молекул последних превышала размеры окон полостей цеолита. [c.306]

    Ч .сто образец нефтепродукта необходимо разделять на вещества, отличающиеся между собой не только но величине молекул, но и но их типу. Так, для удобства исследования обычно выделяют твердие парафины из раствора в жидких углеводородах. Нередко отдел 1ют также сумму углеводородов ароматического ряда от нафтенов и парафинов, для того чтобы анализировать затем отдел ьно эти две фракции. [c.75]

    В отношении взаимной растворимости жидкостей часто является применимым эмпирическое правило подобное растворяет подобное . Вещества, бли,зкие между собой по составу, строению и величине молекул, хорошо растворимы друг в друге. Так, углеводороды хорошо растворяются в углеводородах, спирты — в спиртах и т. д. Однако это правило нельзя толковать слишком широко. Известно много случаев, когда расплавленные металлы обнаруживают ограниченную растворимость один в другом, например в системах РЬ—2п, Сг—Си, А1—С(1. Нельзя ожидать, что все соли в расплавленном состоянии будут полностью смешиваться между собой во всех отношениях. Но соли, близкие между собой по своему составу, обладают хорошей взаимной растворимостью. [c.333]

    Частицы коллоида обладают значительно большими размерами и значительно большей массой, чем молекулы растворенного вещества в истинном растворе. Вследствие этого скорости теплового движения частиц коллоида и вызываемого этим движением процесса диффузии соответственно во много раз меньше, чем в истинных растворах. Чем крупнее частицы и чем соответственно меньше скорость их движения, тем меньше и скорость их диффузии. Это относится не только к коллоидным, но и к истинным растворам, н при сопоставлении различных кристаллоидов в истинных растворах также легко установить обрать1ую зависимость между величиной молекулы и скоростью диффузии (табл. 57). [c.512]

    Получение исходного материала (полупродукта). Для синтетических волокон это синтез полимеров — получение смолы. При всем разнообразии исходных полимерных материалов к ним предъявляются следующие общие требования, обеспечивающие возможность формования волокна и достаточную прочность его а) линейное строение молекул,позволяющее растворять или плавить-исходный материал для формования волокна и ориентировать молекулы в волокне б) ограниченная молекулярная масса (обычно от 15000 до 100 000), так как при малой величине молекулы не достигается прочность волокна, а при слишком большой возникают трудности при формовании волокна из-за малой подвижности молекул в) полимер должен бЕлть чистым, так как примеси, как правило, сильно понижают прочность волокна. [c.208]

    Активные угли газового тта, применяемые для тонкой очистки и разделения газов, адсорбции из растворов веществ с отпосительно малой величиной молекул и при небольших концентрациях, как катализаторы и носители катали-заюров (табл. 7,14 и 7.15). [c.392]

    Следовательно, под действием тепла молекула парафинового углеводорода распадается на две, с меньшим числом углеродных атомов, из которых одна является насыщенной, а другая— ненасыщенной. Скорость этой типичной мономолекулярной реакции зависит от температуры, с повышением которой она увеличивается. При постоянной температуре глубина крекинга зависит от продолжительности термической обработки. Неустойчивость парафинового углеводорода прп постоянной температуре связана, в свою очередь, с величиной молекул и растет с увеличением молекулярного веса. В случае крекинга индивидуального углеводорода влияние температуры и продолжительности термической обработки па степень его превращения взаимозаменяемы в известных пределах, т. е. для достижения одинаковой степени превращения мо кно, повышая температуру, одновременно уменьшить время нребываппя вещества в нагретой зоне и наоборот. Время, в течение которого углеводород находится в нагретой зоне, называют продолжительностью крекинга. Чем больше продолжительность крекпнга прн данной темнературе, тем больше степень превращения. Данные табл. 157 дают представлепие о влиянии молекулярного веса индивидуальных парафиновых углеводородоп и продолжительности крекинга на степень превращения (на реакции расщепления и конденсации) [31]. [c.225]

    Закономерности, установленные Карашем, можно представить в более удобной форме. А. В. Фрост [3] выразил зависимость теплоты горения от величины молекулы соединения, учитывая число углеродных и водородных атомов, находящи.хся в нем, тогда как Караш брал за независимую переменную число валентных электронов в молекуле. В результате Фрост получил следующее уравнение, позволяющее вычислить стандартную теплоту сгорания для алканов, алкеноБ, алкинов, цикланов, цикленов (в том числе и терпенов), ароматических углеводородов и полициклических ароматических углеводородов в жидком состоянии  [c.26]

    Сопоставляя полученные данные, можно прийти к следующим выводам. Прежде всего, молекулярная формула уксусной кислоты не может быть меньше, чем С2Н4О2, а молекулярная формула молочной кислоты — меньше, чем СзНеОз, так как совершенно ясно, что в любой молекуле соли не может содержаться меньше одного атома серебра. Однако это соображение еще не указывает верхнего предела для величины молекул обеих кислот уксуснокислое серебро, например, могло бы иметь молекулярную формулу С4Нб04Ад2, а молочнокислое серебро— СбНюОбАдг, что точно так же соответствовало бы результатам анализа. Таким образом, посредством подобного определения молекулярного веса химическим путем мы можем, следовательно, точно установить только наименьшие размеры молекулы, но не определить ее максимальную величину. Последнюю задачу можно разрешить, лишь определив величину молекулярного веса с помощью физических методов — по плотности паров или по величине осмотического давления. Однако эти результаты, в свою очередь, тоже не вполне однозначны, так как устанавливают для величины молекул исследуемого вещества лишь верхние границы, не исключая возможности существования также молекул меньших размеров. Так, например, для веществ, молекулы ко- [c.12]


Смотреть страницы где упоминается термин Величина молекул: [c.403]    [c.326]    [c.75]    [c.139]    [c.115]    [c.90]    [c.211]    [c.23]    [c.633]   
История химии (1975) -- [ c.418 ]

История химии (1966) -- [ c.398 ]




ПОИСК





Смотрите так же термины и статьи:

ВЛИЯНИЕ МОЛЕКУЛЯРНОГО СТРОЕНИЯ НА ВЯЗКОСТЬ НЖК 1 Влияние размеров и формы молекулы и ее фрагментов на величину вязкости и ее температурную зависимость

Величина заряда и подвижность молекул асфальтенов

Величина и размер поверхности молекул

Величина и форма белковых молекул

Величина и форма хлорофильной молекулы

Величина статистического сегмента цепных молекул

Величины энергии разрыва связей в молекулах углеводородов

Вещества протеиновые величина молекулы

Влияние величины и формы молекул полимеров на их клеящие свойства

Заместители в молекулах реагенто влияние на величину энергии возбуждения

Квантовомеханические выражения для физических величин молекул и преобразование выражения для энергии в виде суммы по группам центров

Квантовомеханические основы метода массового расчета физико-химических величин молекул

Молекула гибридизация дипольный момент, величина

Натрий азотнокислый, высаливание нейтральных молекул величина

Определение зависимости величины удерживаемого объема от числа атомов углерода в молекуле алифатических спиртов

Оценка величины атомной поляризуемости неполярной молекулы

Представление энтальпии образования молекулы как суммы величин, сопоставляемых отдельным связям

Разделение ионов и молекул, отличающихся пи величине

Расчет термодинамических величин из хроматограмм при низких заполнениях поверхности. Связь этих величин с химией поверхности адсорбента и структурой молекул

Связь величин удерживания с симметрией молекул

Сергеенкова, С. С. Васильев. Спектроскопическое исследование влияния величины тока и давления на возбуждение молекул азота в разряде в воздухе при средних давлениях

Уравнения зависимости теплоёмкости паров углеводородов от строения и величины молекулы

Физические величины, характеризующие молекулу в стационарном состоянии

Шевчук, Ю. Н. Богословский, В. И. Сахаров. Зависимость величин удерживания ацетиленовых и других высоконепредельных углеводородов от физических свойств и электронного строения молекул

Шевчук, Ю. Н. Богословский, В. К. Сахаров. Зависи, ность величин удерживания ацетиленовых и других высоконепредельных углеводородов от физических г свойств и электронного строения молекул

Экспериментальная величина энергии водородной связи Потенциальные функции молекул, соединенных водородными связями



© 2025 chem21.info Реклама на сайте