Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

структурированный

    При оценке остаточного сырья наряду с указанной классификацией следует учитывать, к какой дисперсной системе относится нефтяной остаток. Например, по классификаций [14] сьфье технологических процессов переработки остатков может быть отнесено к неструктурированной (яенаполненной) или структурированной (наполненной) дисперсной системе. Для выявления этого следует знать концентрации наиболее склонных к структурированию компонентов, а также показатели, влияющие на структурно-механические свойства остатков (вязкость, термическая устойчивость, устойчивость против расслоения, седиментация и пр.). [c.12]


    Нефтяные остатки относятся к структурированным нефтепродуктам и обладают определенной механической прочностью и устойчивостью против расслоения. Увеличение молекулярной массы, связанное с усложнением струтстуры молекул, ведет к увеличению степени объемного наполнения системы и соответственному возрастанию структурномеханической прочности и снижению показателя устойчивости. На эти показатели влияют и физико-химические свойства дисперсионной среды, компонентный состав и, в частности, межмолекулярные взаимодействия. При малых значениях сил взаимодействия (алканы, алкано-циклоалканы с низкой молекулярной массой) показатели прочности и устойчивости изменяются по экстремальным зависимостям. При увеличении сил взаимодействия в дисперсионной среде (арены с высокой молекулярной массой) также происходят экстремальные изменения указанных показателей [14]. [c.30]

    Растущая разветвленная полимерная цепь при взаимодействии с другой такой же цепью может образовать одну неактивную молекулу полимера по реакции рекомбинации. У этой молекулы могут повториться несколько раз реакции разветвления и последующего соединения друг с другом. В результате этого возникает полимер с высокой молекулярной массой и микрогель, представляющий собой структурированную трехмерную частицу каучука с размером [c.142]

    Скорость протекания этих двух конкурирующих реакций (деструкции и структурирования) определяется рядом факторов степенью распределения тиурама вг латексе, скоростью набухания частиц полимера в растворителе, применяемом для получения эмульсии или дисперсии тиурама Е, скоростью взаимодействия тиурама с полисульфидной группой, продолжительностью и температурой щелочного созревания латекса. Наряду с указанными факторами в значительной степени влияет глубина полимеризации с увеличением конверсии хлоропрена выше определенного предела возрастает тенденция к структурированию полимеров [17, 26]. Аналогично влияет и повышение температуры полимеризации, способствующей в большей степени увеличению скорости структурирования, чем деструкции полихлоропрена. Указанные факторы оказывают также влияние на молекулярно-массовое распределение полимера [26]. ------- [c.374]

    Для предотвращения образования структурированного полимера с чрезмерно высокой молекулярной массой обычно прибегают к принудительному обрыву роста полимерной цепи — регулированию молекулярной массы и обрыву процесса полимеризации при определенной конверсии мономеров (около 70%) путем введения стопперов. И тот и другой процесс протекают по механизму свободных радикалов. [c.143]


    Кроме того, опыт показывает, что нестабильность течения меньше у полимеров, макромолекулы которых имеют небольшое число длинноцепочечных разветвлений. Это, видимо, объясняется их склонностью к пластикации и меньшей долей эластически эффективных узлов в структурах, содержащих разветвленные макромолекулы, что способствует рассеянию энергии при деформации. Наличие в каучуках сильно структурированных (плотных) частиц также повышает стабильность течения смесей (но может ухудшать другие показатели), так как частицы нарушают регулярность сетки физических зацеплений и понижают ее способность к накоплению энергии внешней деформации. Например, при изучении вязко-упругих свойств акрилатных каучуков было показано, что разрушение структуры расплавов, усадка в формах и разбухание экструдатов резко уменьшается при введении в каучуки сильно сшитых частиц размером 50—300 нм [23]. При этом эластические эффекты определяются степенью структурирования частиц и мало зависят от их размеров. Аналогичные изменения, выразившиеся в уменьшении усадки и улучшении поверхности каландрованных изделий, наблюдали при введении частиц плотного геля в бутадиен-нитрильные каучуки [24]. На этом же принципе основано получение специального сорта НК с улучшенными технологическими свойствами [25]. [c.80]

    Модификация диеновых эластомеров не только улучшает технологические и физико-механические свойства смесей и вулканизатов в условиях существующей технологии, но и открывает ряд возможностей в интенсивно разрабатываемых новых процессах получения литьевых композиций и гранулирования каучуков. В первом случае целесообразно исследовать смесь, содержащую высокомолекулярный полиизопрен с функциональными группами и низкомолекулярные жидкие полимеры, при нагревании которой в присутствии сшивающих агентов из маловязкой наполненной системы образуется вулканизат с заданными свойствами, определяемыми в значительной степени присутствием высокомолекулярного полиизопрена. В другом случае может быть использовано частичное структурирование модифицированных полимеров для облегчения их грануляции или совмещение стадий модификации в массе и грануляции [62]. [c.240]

    Стабилизация хлоропреновых каучуков. Такие свойства хлоропреновых каучуков и резин, как пластичность, эластичность и другие физико-механические показатели, ухудшаются при длительном хранении, под влиянием высоких температур и других факторов. Ухудшаются в основном свойства каучуков, полученных с применением в качестве регулятора серы и в меньшей степени меркаптана. Эти явления вызваны главным образом структурированием и деструкцией. [c.379]

    Интересно отметить, что модификация и натурального каучука в искусственно приготовленных растворах, например введением гидроксильных групп по реакции электрофильного присоединения, с последующим добавлением в резиновую смесь диизоцианата повышает сопротивление разрыву смеси с 1,5 до 4,5—6,0 МПа и улучшает прочностные и эластические свойства вулканизатов. По существу такого же эффекта (введение в полимер гидроксильной группы и его структурирование) достигают при модификации НК нитрозофенолом и диизоцианатами. [c.233]

    Ввиду специфического поведения БНК при переработке, особенно в условиях высоких температур, рекомендуются следующие режимы смешения для мягких смесей с пластичностью 0,50—0,70 и смесей средней жесткости с пластичностью 0,36—0,05 смешение в резиносмесителях вместимостью 45 и 140 л по одностадийному режиму при температуре не выше 130 °С. Серу вводят в начале смешения в виде маточной смеси с наполнителем, а мягчители — раздельно. В том случае, если температура не превышает 130°С, целесообразно проведение одностадийного смешения, выше 130°С — двухстадийного. В первой стадии вводят только часть сажи и на второй стадии в концентрированную относительно каучука маточную смесь добавляют необходимое количество сажи. При двухстадийном смешении можно снизить температуру смешения первой стадии со 140—150 °С до 105—110 °С. Проведение двухстадийного смешения позволяет уменьшить скорость структурирования, улучшить технологические свойства и уменьшить склонность к под-вулканизации. Смеси повышенной жесткости (с пластичностью [c.362]

    Образующийся свободный радикал инициирует дальнейший распад полисульфидных связей в полихлоропренполисульфиде. Процесс деструкции продолжается до образования стабильных связей К—5—К. В отсутствие тиурама образующиеся полимерные радикалы реагируют по двойной связи или а-метиленовой группой других полимерных молекул, вызывая структурирование полимерных цепей. Процессы деструкции под влиянием тиурам-полисуль-фидных связей происходят частично при щелочном созревании латекса и значительно более интенсивно при вальцевании или термопластикации, с одновременным взаи1 одействием образующихся полимерных радикалов с тиурамом по вышеуказанной схеме. Применение указанной системы регуляторов обеспечивает получение низкопластичного полимера, легко подвергающегося выделению из латекса методом зернистой коагуляции с образованием ленты на лентоотливочной машине, механически достаточно прочной в процессах формования, отмывки и сушки. Полимеры, полученные в присутствии серы и содержащие тиурам, легко пластицируются в процессе механической обработки, особенно в присутствии химически активных пластицирующих соединений (дифенилгуанидина совместно с меркаптобензтиазолом и др.) [24]. По мере израсходования тиурама или его разложения при нагревании или длительном хранении преобладают процессы структурирования. [c.374]


    С повышением температуры количество звеньев 1,2 и 3,4 возрастает. Звенья 1,2 оказывают большое влияние на свойства полихлоропрена вследствие легкой изомеризации третичного атома хлора в легко гидролизующийся аллильный хлор. В результате гидролиза происходит поперечное сшивание полимерных цепей при хранении и переработке полихлоропрена и его тенденция к подвулканизации при приготовлении резиновых смесей. Структурирование может происходить под влиянием оснований при полимеризации в эмульсии с образованием эфирных связей между цепями [10]. [c.370]

    Эго объясняется прогрессивно увеличивающимся пространственным структурированием молекул с ароматическими остатками. В среднем в высококипящих маслах на каждую молекулу хлористого алкила приходится около двух ароматических остатков. [c.236]

    Температура влияет на скорость процесса и молекулярную массу сополимера. С повышением температуры возрастают скорости роста и обрыва молекулярных цепей. Повышение температуры способствует увеличению вероятности протекания нежелательных вторичных реакций — разветвления и структурирования, что отражается на пласто-эластических свойствах полимера. [c.249]

    Структурирование хлоропреновых каучуков обусловлено следующими факторами  [c.379]

    Свертывание — только один из путей повышения эффективности систем. Системы можно форсировать и другими преобразованиями. О некоторых из них, например об увеличении динамичности, мы уже говорили. Отметим здесь два изящных приема согласование ритмики частей системы и структурирование. [c.98]

    Согласов ие ритмики обычно не требует введения новых полей и веществ. В этом сила приема. Аналогично обстоит дело и с другим приемом — структурированием. Смысл приема — в придании веществам и полям определенной структуры для получения дополнительного эффекта. Типичный пример — изобретение по а. с. 536374 Способ профилирования материала типа пруткового путем наложения на заготовку ультразвуковых колебаний и ее пластической деформации, отличающийся тем, что, с целью получения на заготовке периодического профиля синусоидального характера, заготовку [c.99]

    Дробление структурированных полимеров позволяет использовать их в качестве модификаторов асфальта. Растворы отходов синтетического каучука можно применять как полимерные связующие и наполнители в промышленности строительных материалов. [c.143]

    Тип эпоксидной смолы для структурирования [c.438]

    В СССР широко проводятся исследовательские работы по синтезу жидких полимеров с функциональными группами, разработке условий и технологии структурирования и получения на и.х основе резиновых изделий (см. гл. 23). [c.14]

    При высоких конверсиях возможность образования структурированного полимера достаточно велика. Поэтому пользуются принудительным обрывом полимеризации при конверсии мономеров 60—65% путем введения в реакционную смесь специальных ингибиторов или стопперов. При рациональном регулировании ММР и стабилизации латексных частиц конверсия мономеров может быть повышена до 70% , но полностью доводить процесс до конверсии 100% нецелесообразно. [c.248]

    С увеличением содержания в каучуке акрилонитрила возрастает его склонность к структурированию. Для СКН-18 в начале окисления незначительно преобладает процесс деструкции, а затем протекает процесс структурирования. Для СКН-40 на всех стадиях окисления основным является структурирование [6]. Под действием облучения БНК структурируется меньше по сравнению с БСК. [c.358]

    С учетом влияния температуры на способность БНК к структурированию, условия сушки должны обеспечивать минимум возможности протекания этого нежелательного процесса. В воздушные сушилки каучук поступает в виде ленты с влажностью 40—50%. Температура сушки не более 130°С, продолжительность 1,0—1,5ч. При сушке в червячных прессах каучук предварительно отжимается до содержания влаги 10—12%. Температура сушки 160— 165 С, продолжительность —несколько секунд. [c.360]

    Для полимеров, регулированных серой, вследствие специфического механизма влияния этого регулятора, верхний предел конверсии выше и составляет 88—90%. Дальнейшее повышение конверсии хлоропрена приводит к ухудшению свойств, увеличению структурирования полимеров, понижению пластичности, растворимости, повышению усадки и увеличению тенденции к подвулканизации. [c.376]

    Галогенирование и гидрогалогенирование полиизопрена является, как уже отмечалось, одним из наиболее развитых методов получения на основе эластомеров материалов с новыми физическими свойствами пленок, покрытий, адгезивов, клеев и др. [1—5, 7, ст. 905—938]. Однако синтез полиизопрена с небольшим содержанием галогена и полностью сохраняющего эластичность систематически не проводился. Между тем на примере галогениро-ванного бутилкаучука [28] видно, что даже 1,5—3% галогена в цепи значительно улучшает адгезию, тепло- и атмосфероетойкость вулканизатов. В результате введения галогена повышается скорость серной вулканизации, возникает возможность структурирования аминами, активируются процессы радикальной прививки. [c.238]

    Галогенирование увеличивает реакционную способность двойных связей и, кроме того, приводит к возникновению в молекулах новых реакционных центров. Для галогенированных каучуков можно использовать вулканизующие системы, эффективные для структурирования обычного бутилкаучука. Разработано также значительное число систем вулканизации, реагирующих с аллильным хлором или бромом. Эффективным вулканизующим агентом галогенированных бутилкаучуков является окись цинка [18—20]. Отличительной особенностью бессерных вулканизатов галогенированных бутилкаучуков является высокая теплое гойкость. [c.353]

    Дальнейшее повышение конверсии приводит к ухудшению некоторых показателей появлению гель-полимера, снижению пластичности, ухудшению обрабатываемости, повышению полидисперсности и увеличению средней молекулярной массы. Это вызвано, ло-видимому, процессами структурирования в результате присоеди-Вения полимерных радикалов по двойным связям, [c.375]

    Кроме того, большое влияние на процессы структурирования и деструкции полихлоропрена оказывают окислительные процессы, развивающиеся по свободнорадикальному цепному механизму. [c.380]

    Однако наиболее существенным фактором, определившим бурное развитие химии и технологии жидких каучуков, было создание возможности перевода предприятий резиновой промышленности на совершенно новую, полностью автоматизированную, непрерывную технологию изготовления изделий. Принципиальное отличие этой технологии от известной состоит в том, что процессы смешения и структурирования жидких каучуков по сравнению с высокомолекулярными каучуками осуществляются без применения высокого давления и энергоемкого оборудования. При этом может быть достигнуто не только резкое. сокращение числа ингредиентов резиновых смесей, необходимых рабочих площадей и тяжелого оборудования, но и весьма значительное уменьшение численности рабочего персонала при практически полном устранении тяжелого ручного труда [1]. [c.412]

    Что может привести к локальному повышению конверсий и ухудшению свойств полимеров вследствие структурирования. Необходимо было уравнять продолжительность пребывания эмульсии в аппаратах при непрерывной полимеризации с продолжительностью процесса в периодических условиях. [c.378]

    Удаление разрушенного катализатора осуществляют путем водной экстракции. Для этого процесса разработано специальное оборудование, в котором происходит смешение высоковязких растворов полимера с водой, разделение полученной эмульсии, экстракция в прямоточно-противоточных системах. Отмывка полиме-ризата от катализатора проводится непосредственно после его разрушения, так как при хранении неотмытого раствора развиваются процессы структурирования полимера. [c.221]

    БНК, не содержащие антиоксидантов, очень легвд окисляются при этом преобладает процесс структурирования. При введении в каучук неозона Д скорость окисления резко снижается. Однако [c.357]

    Следующая технологическая стадия — дезактивация катализатора имеет целью обрыв реакции полимеризации и превращение компонентов катализатора в соединения, не вызывающие при дальнейшей об ботке полимеризата структурирования или деструкции гюлимера. Для дезактивации катализатора применяются соединения, реагирующие с компонентами катализатора с образованием водорастворимых комплексов. К таким соединениям, в частности, относятся алифатические спирты, кислоты, амины и др. ---------------- [c.221]

    Особенность строения получаемых таким методом полимеров заключается в том, что в концевые фрагменты полимерной цепи встроены уретановые мостики, наличие которых обусловливает ряд интересных свойств полимеров. Уретанфункциональные полимеры обладают более высокими физико-механическими свойствами, чем соответствующие полимеры, не содержащие, уретановых фрагментов проявляют аномальное поведение при течении и в процессе реакции структурирования, о чем более подробно будет сказано ниже. [c.432]

    Из установленных типов полимеров хлоропрена [2] наиболее ценным является растворимый и легкопластицирующийся -полимер, для получения которого необходимо применение регуляторов, предотвращающих структурирование в процессе полимеризации и обработки полимера. Наряду с этим для получения а-полимера необходимо соблюдение ряда условий, которые будут рассмотрены в дальнейшем. [c.369]

    Наряду с этим на процессы структурирования оказывают (рияние условия полимеризации повышение температуры, конвер-ии хлоропрена, природа и содержание регулятора, условия выделения каучука из латекса и сушки. [c.379]

    Некоторого улучшения технологических свойств резиновых смесей достигают, применяя для вулканизации галогенорганиче-ские соединения в сочетании с окислами металлов или солей алкилендиаминов с серой [20—22], а также используя структурированные полимеры [11]. [c.394]


Смотреть страницы где упоминается термин структурированный: [c.109]    [c.144]    [c.112]    [c.142]    [c.14]    [c.66]    [c.143]    [c.187]    [c.228]    [c.379]    [c.381]    [c.390]    [c.431]    [c.432]   
Прогресс полимерной химии (1965) -- [ c.9 ]




ПОИСК





Смотрите так же термины и статьи:

Бутадиен-нитрильные каучуки СКН структурированные

Время релаксации в структурированных

Время релаксации в структурированных системах

Гели я пространственно структурированные растворы

Дисперсные системы структурированные

Диэлектрические свойства сорбционно-структурированной воды

Железа окись, золь структурированные

Жидкостные системы структурированные

Жидкость структурированная

Жидкость структурированные, течени

Интегральные структурированные пенопласты

Использование стилей для оформления структурированных документов

Исследование вязкости структурированной жидкости с помощыз капиллярного вискозиметра

Исследование упруго-пластических свойств структурированных систем методом тангенциального смещения пластинки

Исследование упругопластических свойств структурированных систем методом тангенциального смещения пластинки

Керамические массы, шликеры и глинистые структурированные суспензии (пасты)

Координационно-структурированные полиарилаты

Модель течения структурированных жидкостей

Нефть как структурированная дисперсная система

О реологических кривых течения и вязкости структурированных жидкостей

ОСНОВНЫЕ МЕТОДИКИ ОПРЕДЕЛЕНИЯ РЕОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК СТРУКТУРИРОВАННЫХ ДИСПЕРСНЫХ СИ-СТЕМ

Образование и разрушение структурированных систем

Определение наименьшей пластической вязкости и предельного напряжения сдвига по Бингаму структурированного раствора ВМВ методом капиллярной вискозиметрии

Отвердители, структурирующие и сшивающие агенты

Полимеры, структурируемые излучением

Полистирол структурированный

Понижение внутренних напряжений с помощью структурирующих добавок

Почва, структурирующие добавки

Привитые и структурированные сополимеры ненасыщенных полиэфиров и пластические массы на их основе

Привитые и структурированные сополимеры, блок-сополимеры и пластические массы на их основе

Проницаемость пространственно-структурированных полимеров

Пространственно структурированные эфиры целлюлозы. Получение и свойства

Пространственно-структурированные

Пространственно-структурированные полимеры

Пространственные полимеры пространственно-структурированные

Прочность и деформация линейных и пространственно-структурированных полимеров в высокоэластическом состоянии

Раствор структурированные

Регенерация структурированных полимеров

Реологические кривые. Структурированные системы

Реологические свойства структурированных жидкообразных систем

СПЕЦИФИКА КОНЦЕНТРИРОВАННЫХ СТРУКТУРИРОВАННЫХ ДИСПЕРСНЫХ СИСТЕМ ПО СРАВНЕНИЮ С РАЗБАВЛЕННЫМИ КОЛЛОИДАМИ И ГРУБОДИСПЕРСНЫМИ СИСТЕМАМИ

Сильно структурированные и наполненные полимеры

Системы коллоидные структурированные

Системы структурированные, физико-химические свойства

Структурированные дисперсии полимеров

Структурированные интегральные пены

Структурированные пенопласты

Структурированные полимеры структуры

Структурированные растворители

Структурированные системы. Цели и методы их исследования

Структурированные тиксотропные системы

Структурирующие агенты

Структурирующие добавки

Структурирующие полимеры

Структурирующиеся лакокрасочные

Структурирующиеся лакокрасочные материалы

ТЕОРИЯ ТЕЧЕНИЯ СТРУКТУРИРОВАННЫХ ДИСПЕРСНЫХ СИСТЕМ

Технологическое топливное число Понятие и расчет (структурированная форма)

Течение структурированных

Условия дезагрегирования структурированных дисперсных систем

Физико-механические свойства высокополимеров и структурированных

Физико-механические свойства дисперсных и высокомолекулярных систем (элементы реологии) Деформация структурированных дисперсных систем и показатели, характеризующие ее

Христофоров, П. А. Окунев, О. Г. Тараканов, В. М. Мамонтов. Влияние структурирующих добавок на вязкость растворов сополимера акрилонитрила с акриловой кислотой

ЭЛЕМЕНТЫ МИКРОРЕОЛОГИИ И ТЕОРИИ ТЕЧЕНИЯ СТРУКТУРИРОВАННЫХ СИСТЕМ

структурированный ударопрочный



© 2025 chem21.info Реклама на сайте