Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нафталин на силикагеле

    На рис. XIX, 11 представлены изотермы адсорбции нафталина, бензола, толуола, циклогексена, гептена-1, циклогексана и метилциклогексана иа гидроксилированной поверхности кремнезема (крупнопористого силикагеля) из их бинарных растворов в предельном углеводороде. Из рисунка видно, что в ряду молекул углеводородов, обладаюш,их тг-электронными связями (ароматических и непредельных), адсорбция уменьшает ся прн переходе от нафталина (пример многоядерного ароматического углеводорода) к одноядерному бензолу, при введении алифатического заместителя (толуол) и далее при переходе к олефинам. Наконец, адсорбция цикланов (молекулы которых не имеют п- [c.536]


    В ряде патентов [114] в качестве катализаторов алкилирования нафталина этиленом, пропиленом и другими олефинами среднего молекулярного веса рекомендуются отбеливающие земли, глинозем или силикагель и природные глины. Реакция проводится обычно при повышенном давлении и температуре 200—400° С.,  [c.122]

    Наконец, на рис. 14.7 представлены изотермы адсорбции на одном и том же адсорбенте — силикагеле с гидроксилированной поверхностью из растворов в н-ал-канах (гексане, гептане) для ряда углеводородов с уменьшающейся способностью к образованию водородной связи с силанольными группами ароматических, цикленов, алкенов и цикланов. Наиболее сильно адсорбируется ароматический углеводород с конденсированными ядрами — нафталин. Углеводороды с двойной связью занимают промежуточное положение, а наиболее слабо адсорбируются цикланы. [c.257]

    Если же при насыщении объемного раствора происходит не расслаивание на две жидкости, а выделение кристаллов, роста адсорбции при приближении к насыщению не происходит. На рис. 14.12 представлены изотермы адсорбции нафталина из растворов в н-гептане на силикагеле, измеренные вплоть до выпадения кристаллов нафталина. Растворимость нафталина растет с ростом температуры, поэтому при 20° С можно получить более высокие значения адсорбции, чем при —20°С, за счет возможности достичь значительно более высоких концентраций нафталина. В той же области концентраций, в которой при этих температурах в объеме существует гомогенный раствор нафталина в н-гептане, рост температуры уменьшает адсорбцию при данной концентрации (как и адсорбцию из газовой фазы, см. рис. 8.1). [c.262]

Рис. 14.12. Влияние температуры на адсорбцию из бинарных растворов нафталина в к-гептане на силикагеле вертикальные линии — кристаллизация нафталина при насыщении объемного раствора Рис. 14.12. <a href="/info/15368">Влияние температуры</a> на адсорбцию из <a href="/info/12377">бинарных растворов</a> нафталина в к-гептане на силикагеле <a href="/info/1449716">вертикальные линии</a> — <a href="/info/401790">кристаллизация нафталина</a> при насыщении объемного раствора
    В качестве переносчиков энергии могут выступать ароматические углеводороды (бензол, нафталин и др.) и их производные. Кроме того установлено, что полиядерные ароматические соединения, адсорбированные на поверхности частиц силикагеля, оксидов алюминия и магния, способны передавать энергию возбужденного состояния молекулам Oj с образованием синглетного кислорода. Это говорит об участии Oji Ag) в гетерогенном фото-стимулированном окислении адсорбированных на поверхности частиц природного аэрозоля соединений. [c.157]


    Специфика превраи ений метана по сравнению с этаном, этиленом и ацетиленом. Последовательная дегидроконденсация метана. Так как наряду с углистым веществом, небольшим количеством летучих продуктов уплотнения (основное количество которых составлял нафталин) и водородом среди продуктов превращения метана на силикагеле отмечены также этан, этилен и ацетилен, были проведены сравнительные исследования [4, 5, 40, 41] метана, этана, этилена и ацетилена в строго одинаковых условиях. [c.172]

    В качестве иллюстрации последнего утверждения рассмотрим результаты сравнительного исследования образования продуктов уплотнения из этилена на силикагеле, 7-окиси алюминия и алюмосиликате в проточной системе [5, 70]. Выходы продуктов уплотнения приведены на рис. 9, газообразных веществ — на рис. 10. Кроме указанных веществ в продуктах найдены бутилен, нафталин, фенантрен, антрацен, флуорен, 2,3-бензантрацен, хризен, пирен, коронен и др. Из полученных данных видно, что имеют место не [c.183]

    В технике получается окислением нафталина в присутствии катализатора окиси ванадия на силикагеле при 460—480° С  [c.89]

    Газофазным окислением нафталина в трубчатом реакторе со стационарным слоем катализатора (У Ов с добавкой КгЗО на силикагеле) при атмосферном давлении и температуре 300-400 °С производят фталевый ангидрид, выход которого составляет около 90 %. Основными побочными продуктами являются малеиновый ангидрид и 1,4-нафтахинон. [c.851]

    Алкилаты после отгонки непрореагировавших исходных веществ были подвергнуты препаративному жидкостно-хроматографическому разделению на силикагеле (подвижная фаза — изооктан). Узкие фракции алкилатов, выделенные в результате разделения, были идентифицированы на основе их физико-химических показателен (молекулярная масса, элементный состав, коэффициент рефракции), масс-спектров и УФ-спектров как алкилпроизводные бензола, нафталина, фенантрена и содержали в себе, как правило, 2—3 алкилпроизводных разной молекулярной массы. [c.17]

    Тестирование колонок, заполненных обращенно-фазовыми адсорбентами (химически алкил-модифицированные силикагели типа С8, С16 и С18), лучше производить смесью "бензол-нафталин-антрацен" или "нафталин-антрацен-м-терфенил" при использовании элюента "ацетонитрил-вода" в соотношении от 60 40 до 75 25 по объему в зависимости от содержания углерода в адсорбенте. Для сорбентов, содержащих 12-14% углерода, предпочтительнее элюент "ацетонитрил-вода" в соотношении 55 45. При содержании углерода 16-18% и выше используются элюенты с содержанием ацетонитрила, большим 70% по объему. Расчет эффективности ведется по антрацену или м-терфенилу. При подготовке колонки к анализу беиз(а)пирена расчет эффективности целесообразнее проводить по бенз(а)пирену (рис. 2.6). В этом случае используется элюент "ацетонитрил-вода" в соотношении 75 25 или 80 20. [c.22]

    При работе на смешанном ванадий-калий-сульфатном катализаторе степень превращения нафталина характеризуется следующими показателями во фталевый ангидрид превращается 87— 91%, в 1, 4-нафтохинон 1—2,5%, в малеиновый ангидрид 2,8—3,3%, сгорает и переходит в другие продукты 2,0—4,1% исходного нафталина. Производительность ванадий-калий-сульфатного катализатора 65—70 г фталевого ангидрида с I кг катализатора в час, или 40—42 г фталевого ангидрида с I л катализатора в час (при выходе 86—91% от теоретического на стадии контактирования) Срок службы катализатора более 5 лет 2. Предполагается, что сульфат калия играет роль ингибитора, снижающего высокую активность катализатора (получаемого при применении высокопористого силикагеля) и повышающего его избирательность. [c.50]

    С помощью сделанных упрощений мы вычислили величину для адсорбции этилена, бензола и нафталина на гидроксилированной поверхности силикагеля. [c.41]

    И. Е. Н е й м а р к (Институт физической хилши им. Л. В. Писаржевского АН Украинской ССР, Киев). Принцип и физические основы метода люминесцирующего молекулярного зонда, состоящие в исследовании электронных спектров излучения молекулы-зонда в адсорбированном состоянии, изложены в [1]. В качестве зонда могут выступать молекулы, спектры люминесценции которых при различных типах молекулярных взаимодействий хорошо изучены. Зондом-адсорбатом нами были избраны молекулы нафталина. В качестве адсорбентов использованы катионированные цеолиты типа фожазита, силикагель и аморфный Na-алюмосили-кат. Процесс адсорбции и снятие низкотемпературных спектров люминесценции проводились в условиях высокого вакуума. [c.172]

    Приготовление нятиокиси ванадия. Наиболее удобным и активным контактом для окисления нафталина является пятиокись ванадия. Этот катализатор применяется на носителе (окись алюминия, силикагель), и метод приготовления сводится к пропитыванию носителя раствором ванадата аммония с последующей сушкой катализатора при 110° и прокаливанием при 400—600°. В последнее время для некоторых окислительных реакций применяется плавленая пятиокись ванадия. Для приготов.ле-ния этого катализатора используется ванадат аммония, который разлагают при 400° до пятиокиси ванадия, затем температуру повышают до 600°, при которой пятиокись ванадия плавится. После охлаждения эту застывшую массу дробят на кусочки размером 2—3 мм- Пятиокись ванадия активируют в реакторах реакционной смесью (углеводород -)- кислород). Эта активация но данным некоторых исследователей [79, 80] связана с образованием на поверхности окисла ванадия состава 204,34. [c.24]


    Нафталин (I) с примесью 8—11% метил-нафталина Фталевый ангидрид (II), малеиновый ангидрид (III), наф-тохинон (IV) Ванадий-калий-сульфатный на силикагеле (промышленный) газовая фаза, проток, стационарный слой, лабораторная или пилотная установка 385—395° С. Выход II — 83—92%, III — 1,4-5,9%, IV —2,6-5,3% [111] [c.467]

    Для предельных углеводородов индекс адсорбции на обычном товарном силикагеле равен пулю, для моноолефинов меняется от 2 до 4, для моноциклических ароматических углеводородов находится в пределах 22—31, а для производных нафталина 45—53. Значения индексов адсорбции на силикагеле для некоторых других органических соединений, включая некоторые неугловодородные соединения, следующие. [c.158]

    Массопередача в псевдоожиженном слое. Коэффициенты массопередачи были определены в таких процессах со взвешенным слоем, как испарение гранулированного нафталина в воздухе, осушка воздуха глиноземом или силикагелем и адсорбция четыреххлористого углерода из воздуха активированным углем, а также в процессах, в которых средой, вызывающей псевдоожижение, служила вода. Результаты Чжу, Калила и Веттерота , изображенные графически на рис. VIII-18, представляют, по-видимому, лучшую корреляцию, принимающую во внимание большинство параметров процесса. Эти данные можно также выразить следующими уравнениями  [c.284]

    Фталевый ангидрид сравнительно стабилен к дальнейшему окислению, поэтому реакцию ведут до практически полной конверсии нафталина. Выход 1,4-нафтохинона и малеинового ангидрида настолько мал, что их невыгодно выделять из полученных смесей, а основным побочным процессом является окисление до СОг. Наиболее эффективным катализатором окисления нафталина оказался УгОб с добавкой Кг504 на силикагеле, обеспечивающий при 360— 400 °С выход фталевого ангидрида 90%. [c.430]

    Метан. Метан отходящих газов гидрогенизационных заводов в Гельзенкирхене и Шольвене перерабатывался на ацетилен электрокрекингом в Хюльсе. Общая продукция ацетилена превышала здесь 40 ООО т в год. Большая часть этого ацетилена перерабатывалась через уксусный альдегид, алдоль в дивинил. Но здесь же находилась и установка по гидрированию ацетилена в этилен над палладием на силикагеле, установка по выделению водорода глубоким холодом и др. В дуге напряжением в 7 ООО в получается ацетилен чистотой 97—98%. Его приходится подвергать весьма сложной очистке. Помимо водорода, окиси углерода и этнлена, такой ацетилен содержит следующие иримеси (вгр на 1 м ) H N 1—3, нафталина 1—3, бензола 1—6, диацетилена 15—20, сажи 20—25. Однако при этом процессе себестоимость ацетилена меньше, чем генерируемого из карбида кальцпя. [c.167]

    Нефть арланского месторождения, расположенного в северо-западной части Башкирской АССР, является типичной высокосернистой нефтью этого района. Изучать углеводородный состав арланской нефти необходимо, чтобы выбрать направления ее переработки, а также использования получаемых из нее дистиллятов. Настоящая работа посвящена результатам изучения углеводородов ряда циклогексана, декалина и тетралина. Для изучения углеводородов ряда декалина и циклогексана нафтено-изопарафиновую часть фракций 180—200, 200—300 и 300—350 °С подвергали аналитическому дегидрированию на железо-платиновом катализаторе по методике, описанной в работе [8]. При дегидрировании производные циклогексана и декалина превращались соответственно в производные бензола и нафталина. Образовавшиеся ароматические углеводороды выделяли из-дегидрогенизатов адсорбционной хроматографией на силикагеле. Затем вторичные ароматические углеводороды разделяли на окиси алюминия на моно- и бициклические. Дегидрирование проводили в пять ступеней. Нафтено-парафиновые углеводороды фракций 180—200 и 200—300 °С дегидрировали в паровой фазе при 305—307 °С с объемной скоростью 0,6—0,7 ч а фракции 300—350 °С — в жидкой фазе при 315—320 °С. Из дегид-рогенизата фракции 180—200 С выделено 2,5% образовавшихся ароматических углеводородов, которые на 88,7% состоят из моноциклических и на 11,3%—из бициклических углеводородов. В пересчете на фракцию 180—200 °С циклогексановые углеводороды составляют 1,33%, декалиновые 0,17%. Из дегидрогенизата фракции 200—300° выделено 11,9% вторичных ароматических углеводородов, из которых на основе окиси алюминия получено 10,24% моноциклических и 1,66% бициклических углеводородов. Результаты дегидрирования и адсорбционного разделения дегидрогенизатов представлены в табл. 1—4. [c.19]

Рис. 16,1. Зависимости удельного удерживаемого объема Vg, i от среднего эффективного диаметра пор d и удельной поверхности s иликагеля при элюировании бензола ), нафталина (2) и фенантрена (3) н-гек-саном нри 25°С. Размер зерен силикагеля - 50 мкм Рис. 16,1. <a href="/info/869526">Зависимости удельного</a> удерживаемого объема Vg, i от <a href="/info/748739">среднего эффективного</a> диаметра пор d и <a href="/info/3771">удельной поверхности</a> s иликагеля при <a href="/info/763526">элюировании бензола</a> ), нафталина (2) и фенантрена (3) н-гек-саном нри 25°С. Размер зерен силикагеля - 50 мкм
    На рис. 16.5 показаны зависимости Ige от числа атомов углерода в молекуле пс для удерживания на силикагеле с гидроксилированной поверхностью конденсированных ароматических углеводородов и некоторых их моно- и диметилзамещенных, а также моно-н-алкилзамещенных нафталина при элюировании н-гексаном. Как и в случае моно-н-алкилзамещенных бензола (см. рис. 16.3), удлинение н-алкильного заместителя в нафталине приводит к уменьщению удерживания. Отметим также, что в ряду конденсированных углеводородов Ig/e увеличивается с ростом пс приблизительно линейно, хотя, как уже отмечалось при обсуждении рис. 16.4, удерживание изомерных конденсированных полиарома-тических углеводородов немного различается, что видно также и из рис. 16.5. [c.292]

    Нафталин, бициклический углеводород, легко окисляется в условиях, в которых бензол не затрагивается, а поскольку продукт реакции еще и стабилизован двумя мета-направляющими группами, то нет опасности дальнейшего окисления. В настоящее время фталевую кислоту получают парофазным каталитическим окислением нафталина (Гиббс). Пары нафталина в смеси с воздухом пропускают над катализатором при высокой температуре, причем образующаяся кислота превращается в ангидрид, который возгоняется и улавливается в конденсаторе в очень чистом виде. Результаты опытов, проведенных в условиях, сходных с производственными (Шрив, 1943), показали, что фталевый ангидрид может быть получен с выходом 76% при нагревании продажного нафталина до 460—480 °С в присутствии катализатора — окиси ванадия на силикагеле побочным продуктом реакции является а-нафтохинон. [c.346]

Рис. 4.44. Сравнение коэффициентов емкости на октадецилсиликагеле Гиперсил ODS (й ) и динамически модифицированных сорбентах (k ) силикагеле (а, удельная поверхность 200 м /г) и окиси циркония (б, удельная поверхность 9 м /г). Сорбаты / — флуоренон 2 — нафталин 3 — антрацен 4 — пирен. Данные из [141]. Рис. 4.44. <a href="/info/916745">Сравнение коэффициентов</a> емкости на октадецилсиликагеле Гиперсил ODS (й ) и <a href="/info/168197">динамически модифицированных</a> сорбентах (k ) силикагеле (а, <a href="/info/3771">удельная поверхность</a> 200 м /г) и окиси циркония (б, <a href="/info/3771">удельная поверхность</a> 9 м /г). Сорбаты / — флуоренон 2 — нафталин 3 — антрацен 4 — пирен. Данные из [141].
    Чистота растворителя. Ни один из используемых сегодня растворителей не имеет 100% чистоты. Наиболее общей примесью во многих органических растворителях является вода. В дополнение к этому каждый растворитель в зависимости от источника его получения и химической стабильности может содержать различные типы других загрязнений. Например, алифатический углеводород гексан может содержать кроме воды различные количества изомеров Се (таких, как метилциклопен-тан или триметилпентан), ненасыщенные соединения (такге, как 1-ге ксен или 2- метил-2-пентен), С5- и Ст-алифатические углеводороды и олефины, ароматические углеводороды (такие, как бензол и толуол) и даже более тяжелые ароматические-углеводороды (такие, как нафталин) и т.д. [147]. Эти различные соединения, хотя они присутствуют в небольших количествах, могут значительно влиять на некоторые применения ЖХ. Наличие олефинов и ароматических углеводородов в гексане-З величивает как поглощение в УФ-области, так и показатель, преломления и поэтому влияет на характеристики детектора. Более высокие концентрации изомеров С5 и Се могут изменить-значение к для неполярных соединений, разделяемых на неподвижных фазах, таких, как оксид алюминия или силикагель. Аналогичным образом вода будет влиять на удерживание, не только дезактивируя неподвижную фазу, но и также изменяя природу двух распределительных фаз в ЖХ-системе. [c.93]

    Проводили фавнение удерживания ароматических углеводородов и замещенных нафталинов на чистом силикагеле и слоях силикагеля, модифицированных аминогруппами. Более основные соединения (сложные и простые эфиры, кетоны) удерживаются на немодифицированном силикагеле сильнее, чем на силикагеле с привитыми аминогруппами, в отличие от нафтола-1, который значительно сильнее удерживается на модифицированном силикагеле, по-видимому, за счет водородных связей с привитыми аминогруппами. Ароматические углеводороды с большим числом ароматических колец сильнее удфживаются КНа -силикагелем, чем чистым силикагелем (но не оксидом алюминия). [c.71]

    К 3,5 г (0,01 моля) фосфина (I) в ТГФ при температуре -78% прибавляют по каплям 25 мл 0,8 М раствора нафт аленща натрия в этом же растворителе. Реакционную смесь перемешивают I ч, затем-растворитель и нафталин удаляют в вакууме. Остаток очищают с помощью метода колоночной хроматографии на силикагеле (элюент -гексан). Выход дифрсфена (П) 1,4 г (51%). Вещество можно дополнительно очистить путем кристаллизации из пентана, 5р 494 м.д. [214,3331.  [c.371]

    Поляков с сотрудниками [40—4П подошли к возможности получения силикагелей разной пористости путем сушки геля в парах специальных веществ (формователей), считая, что молекулы последних непосредственно участвуют в формировании пор адсорбента. Они показали, что обезвоживание геля в присутствии бензола, толуола, ксилола [40], нафталина и серы [41] приводит к значительному повышению адсорбционной емкости силикагелей. Закономерное возрастание последней от бензольного к кси-лольному образцу Поляков объясняет увеличением размера пор, обусловленным увеличением объема и веса молекул углеводородов-формователей. В дальнейшем [41] им отмечается большая роль в формировании пористой структуры гелей упругости пара этих веществ и величины их молекул в парообразном состоянии. [c.14]

    Кристаллы с большой упругостью пара (нафталин, ацетоксим) или дегидратирующиеся на воздухе (желтая кровяная соль) следует хранить в инертной жидкости (вазелиновое масло, например) или герметизированном сосуде, объем которого близок к объему кристалла. Обезвоживающиеся кристаллы хранят также в закупоренной посуде в присутствии капель воды. Гигроскопичные, расплывающиеся на воздухе кристаллы, например МпСЬ 2Н2О, хранят в сосудах с плотно притертой или замазанной пластилином крышкой совместно с силикагелем или хлористым кальцием. Кристаллы следует хранить таким образом, чтобы они не терлись друг о друга. Следует иметь в виду, что некоторые кристаллы подвергаются на свету фотолизу или реагируют с бумагой, ватой, деревом, металлом. Так, кристаллы йодноватой кислоты нельзя хранить в бумаге. Трудно дать исчерпывающие рекомендации по хранению конкретных кристаллов, можно лишь посоветовать обратить серьезное внимание на эту задачу. [c.156]

    Нафталин + пропилен Полифосфорная кислота, нанесенная на силикагель Отношение нафталина к пропилену (5-Ю) 1 150-240°С, 10-25 атм Изопропилнаф- талин Фильтро- вание 52 [c.24]

    Рис 2-10 Воспроизводимость вводимых обьемов при использовании крана-дозатора Колонки (а - г) О 25 мм (внутр диам) X 10 мм кварцевое стекло неподвижная фаза силикагель 8С-01 (5 мкм), модифицированный ОДС подвижная фаза ацетонитрил/вода (70 30) обьемная скорость 3 мкл/мин детектор иУГОЕС-100-111 длина волны 254 нм Показаны хроматограммы полученные в результате нескольких (трех или четырех) вводов одинаковых обьемов проб (0 02 мкм) состава бензол (/) нафталин (2) бифенил ( ), флуорен ( ) фенантрен (5) антрацен (6), флуорантен (7) пирен (8) [c.33]

    При окислении нафталина в 1,4-нафтохинон (Нх) на ванадий-калий-сульфатном катализаторе, нанесенном на силикагель, скорость образования 1,4-нафтохино1на подчинялась уравнению [404]  [c.247]

    На ванадий-калий-сульфатном катализаторе, нанесенном на силикагель, в присутствии сернистого ангидрида в безградиентном реакторе при 330—400 °С определены скорости частных реакций, протекающих при окислении нафталина. Образование 1,4-яафто-хинона, малеинового ангидрида я продуктов глубокого окисления [c.248]

    Деметанирование как элементарная стадия процесса поликонденсации пропилена наблюдалось в условиях дегидратации зо-пропилового спирта на катализаторе медь на силикагеле при 600—800° [68]. В ходе поликонденсации пропилена освобождался метан и водород с 2-3-кратным преобладанием мольных выходов метана по сравнению с водородом. При этом между скоростью углеобразования и скоростью метанообразования существует пропорциональная зависимость, и нет никакой корреляции для скоростей углеобразования и водородо-образования. Из этого следовало, что основной элементарной стадией процесса поликонденсации пропилена, приводящей к обезводороживанию продуктов уплотнения, является стадия деметанирования, а не дегидрогенизации, как бывает обычно в других случаях. Приведенная на рис. 11 схема поликонденсации согласуется с фактом нахождения в смолах нафталина, фенантрена, перилена, коронена и других углеводородов и с результатами анализов углистого вещества. [c.302]

    Метан Нафталин, бифенил, аценафтилен, флуорен, фенамрен, ангррцен, 4,1,1-цик-лопентафенантрен, флуорантен, пирен, бензол, толуол, стирол, этилбензол, ксилол, олефины jg — jo с четным числом атомов С Силикагель, проток, 1000 С, 2 мл/сек, 5 или 10 ч. Выход ароматических продуктов—7,2% [349] [c.500]


Смотреть страницы где упоминается термин Нафталин на силикагеле: [c.37]    [c.213]    [c.106]    [c.39]    [c.581]    [c.187]    [c.664]    [c.19]    [c.23]    [c.212]    [c.487]    [c.767]    [c.768]   
Инфракрасные спектры адсорбированных молекул (1969) -- [ c.481 ]




ПОИСК





Смотрите так же термины и статьи:

Силикагель



© 2025 chem21.info Реклама на сайте