Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волокна строение

    Новейшие химические и рентгеноскопические исследования показали, что крахмал и целлюлоза состоят из остатков глюкозы, связанных глюкозидными связями, но, несмотря на большое химическое сходство, крахмал и целлюлоза отличаются друг от друга и по строению и по свойствам. Крахмал представляет собой зерна и сферокристаллы, которые можно растереть в мелкий порошок, а целлюлоза—нити и волокна, прочные на разрыв. Роль крахмала и клетчатки в растениях различна крахмал является питательным веществом, тогда как клетчатка—опорной тканью. [c.536]


    УВ изготовляются в основном из полиакрилонитрильных (ПАН) волокон, вискозных гидратцеллюлозных волокон (ГЦВ), нефтяных и каменноугольных пеков. ПАН-волокно служит для получения высокомодульных и высокопрочных УВ. Одним из преимуществ ПАН-волокна является большой выход углеродного остатка (примерно 40%) от массы полимера (из ГЦВ - немногим более 20%). Благодаря особенностям строения исходного полимера высокопрочные УВН удается получить сравнительно простым способом. [c.59]

    Известен целый ряд полиамидов, отличающихся по строению исходных мономеров. Первым полиамидом, из которого стали делать синтетические волокна, был нейлон-6,6 называемый также анид. Этот полиамид был получен при исследованиях Карозерса в 1935 г. из гексаметилендиамина и адипиновой кислоты. Известны и другие виды нейлона, получаемые на основе иных диаминов и двух основных кислот — нейлон-6,10, нейлон-11 и др. [c.348]

    В процессе крашения шерсти хромсодержащими (или содержащими другой трехвалентный металл) красителями или при хромировании красителей на волокне происходит образование сложного комплекса следующего состава краситель — трехвалентный металл — волокно. Некоторые исследователи считают, что образование такого рода комплексов обусловлено появлением координационной связи между атомами трехвалентного металла, содержащегося в красителе, и атомами азота или кислорода главных протеиновых цепей волокна. Строение таких комплексов гипотетически выражают, например, следующей общей формулой 15  [c.203]

    Волокнообразование. Полимеры линейного строения способны образовывать прочные анизотропные высокоориентированные в одном (волокна) или в двух (пленки) направлениях материалы. Свойства этих материалов зависят от размеров, формы, гибкости и взаимного расположения макромолекул полимера. [c.377]

    Наполнители, обладающие необычной формой частиц, — типа асбестового волокна или слюды, значительно эффективнее по сравнению с обычным щебнем, чем это можно было бы предсказать по их свободному объему. Такое преимущество в эксплуатации наполнителей с волокнистым и пластинчатым строением до настоящего времени не объяснено. [c.197]

    Асбестовое волокно является ценным наполнителем в композициях кровельных материалов и покрытий для дощатой обшивки. Галечно-битумная смесь класса А по огнестойкости (в соответствии с классификацией автора) содержит значительное количество асбеста как наполнителя (22, 23]. Введение в покрытие для боковой обшивки деревянных строений асбестового волокна придает покрытию жесткость и сопротивление сползанию, что не может быть достигнуто с помощью обычных наполнителей для кровельных материалов. [c.209]


    Далеко не все мыла могут быть использованы для приготовления смазок. Определяющую роль в формировании структуры и свойств смазок играют валентность и свойства катиона, состав и строение аниона используемого мыла. При прочих равных условиях наиболее крупные волокна характерны для натриевых смазок (до 80 мкм), короткие —для литиевых (2—5 мкм) и для кальциевых (1—3 мкм) смазок. Дисперсная фаза алюминиевых смазок образована мелкими аморфными сферическими частицами (не более 0,1 мкм). [c.358]

    Эластичность модифицированного таким способом полиэфирного волокна возрастает вследствие нарушения регулярности строения полимерной цепи и уменьшения доли ароматических циклов в ней, что способствует повышению гибкости макромолекул. [c.82]

    Степень кристалличности волокон, обладающих одинаковой молекулярной структурой, колеблется в довольно значительных пределах, что находит соответствующее отражение на их способности к адсорбции воды. Так, например, хлопок и вискоза принадлежат к целлюлозным волокнам. Однако волокно хлопка обладает большей кристалличностью и соответствующей способностью адсорбировать воду. Разница в способности к адсорбции воды названными волокнами существует несмотря на то, что волокно хлопка обладает пористым мелким строением, в которое свободно проникает вода, в то время, как волокно вискозы отличается плотной структурой, похожей ца гель. [c.215]

    Вторая из указанных в начале настоящего раздела разновидностей усадки текстиля вызывается ослаблением механических напряжений. Этот процесс отличается от свойлачивания своей обратимостью. Усадка вследствие ослабления обратима, если к текстилю приложить натягивающие усилия при наличии, конечно, соответствующих благоприятных условий. Искусство окончательной обработки предметов одежды заключается в осуществлении необходимых для этого технических приемов. Степень требуемой искусности зависит от характера волокна, структуры ткани, строения предмета одежды и имеющегося в наличии оборудования для отделки. Это искусство, как и любое другое, может быть освоено лишь практическим путем под руководством опытного инструктора. [c.242]

    Механизм роста кроме катализатора определяется подложкой. По данным [7-5], из смеси ацетилена с водородом (10 1) с никелевым катализатором на углеродной подложке образуются волокна аморфного, по-видимому, ленточного строения. [c.462]

    Слои фибрилл в поперечном сечении волокна в зависимости от структуры исходного ПАН-волокна могут располагаться в виде лучей, исходящих от центра, или иметь концентрическое строение, или сочетать в различных пропорциях радиальное и концентрическое строение (рис. 9-49). [c.591]

    Периферия УВ после обработки при 2500 С имеет концентрическое строение слоев (толщина около 150 нм), которые располагаются предпочтительно параллельно оси вытяжки волокна и имеют значительно более высокую степень ориентации по сравнению. с сердцевиной волокна. Одна из характерных структур сечения УВ после глубокого плазменного травления показана на рис. 9-50. [c.591]

Рис. 9-53. Схема строения углеродного волокна Рис. 9-53. <a href="/info/325342">Схема строения</a> углеродного волокна
    Из натуральных волокон наиболее широкое применение получили хлопковые и древесные целлюлозные волокна. По химической природе хлопковую и древесную целлюлозу относят к высокомолекулярным углеводам. В составе целлюлозы различного происхождения содержатся такие функциональные группы, как альдегидные, карбоксильные, гидроксильные. Лигнин тоже содержит значительное количество функциональных групп, в первую очередь, мета-ксильных и гидроксильных, некоторое количество карбонильных групп и двойных связей. Благодаря особенностям строения и состава волокна целлюлозы обладают высокими модулями растяжения и значительной прочностью наряду с достаточной гибкостью, обусловленной лентообразной формой волокон. Волокна древесины мягких пород (хвойных) и твердых (лиственных) проявляют различную гибкость вследствие равной толщины. [c.173]

    Волокна шерсти имеют чешуйчатое строение, по химическому составу они представляют собой белки амфотерной природы. Основная составная их часть — кератины. Поперечные связи между молекулярными цепями — дисульфидные. Прочность волокон обусловлена сильным межмолекулярным взаимодействием и наличием поперечных дисульфидных связей. Обычно в качестве наполнителей при- [c.173]

    В электротехнике широко используют некоторые полимерные материалы, диэлектрические свойства которых невысокие, но они сочетаются с рядом ценных физических, химических и технологических свойств. Таким материалом является, например, поливинилхлорид. Вследствие несимметричного строения макромолекул и сильной их полярности поливинилхлорид худший диэлектрик, чем полиэтилен и полистирол. Однако такие его ценные свойства, как инертность по отношению к кислотам и щелочам, водостойкость, газонепроницаемость, невоспламеняемость и т. п., способствуют исключительно широкому применению поливинилхлорида для изоляции защитных оболочек кабельных изделий, проводов, для изготовления трубок, листов, лент и т. п. При дополнительном хлорировании поливинилхлорида получают перхлорвиниловый полимер, содержащий 64—65% хлора. Из него производят волокно хлорин, ткани, ленты, лаки, эмали, предохраняющие электроаппаратуру от коррозии. [c.339]


    Этими особенностями строения природной целлюлозы, а также ее высокой молекулярной массой (500—600 тыс.) обусловлена необходимость подвергать ее химической обработке перед дальнейшей переработкой в волокна, пленки и другие материалы. Перевести целлюлозу в вязкотекучее состояние путем нагревания невозможно, так как еще до этого перехода начинается процесс ее химического разложения. Переработка целлюлозы так называемым вискозным методом основана на последовательных полимераналогичных реакциях  [c.222]

    В производстве автомобильных шин применяется несколько типов коцда, различающихся по типу волокна, строению и толщине нитей, прочности. На заводе, выпускающем шины различных размеров, используется несколько марок корда одного и того же или разных типов. Обычно применяются различные корды в зависимости от размера и назначения покрышек (для легковых и грузовых автомобилей, автобусов, сельскохозяйственных и строительнодорожных машин), от конструктивного назначения в покрышке (нижние и верхние слои каркаса, брекерные слои, слои в жестком поясе радиальных шин). В производстве применяется уточный или безуточный корд. Чаще применяется уточный корд. При его применении не требуется предварительная обработка непосредственно со склада корд поступает на пропитку и обкладку резиной. При этом упрощается процесс обкладки корда резиной и снижается брак при каландровании. [c.198]

    Хлопок (линт) пре1дставляет собой одноклеточйое волокно, строение которого изображено на рис. И. Оболочка волокаа (кутикула) 1 состоит из воскообразного вещества и имеет складчатую структуру. Первичный слой 2 толщиной 0,5 л образован скрещенными фибриллами и имеет состав (в %)  [c.100]

    Получение исходного материала (полупродукта). Для синтетических волокон это синтез полимеров — получение смолы. При всем разнообразии исходных полимерных материалов к ним предъявляются следующие общие требования, обеспечивающие возможность формования волокна и достаточную прочность его а) линейное строение молекул,позволяющее растворять или плавить-исходный материал для формования волокна и ориентировать молекулы в волокне б) ограниченная молекулярная масса (обычно от 15000 до 100 000), так как при малой величине молекулы не достигается прочность волокна, а при слишком большой возникают трудности при формовании волокна из-за малой подвижности молекул в) полимер должен бЕлть чистым, так как примеси, как правило, сильно понижают прочность волокна. [c.208]

    В качестве примера приведем результаты численного расчета яв ЭВи критического давления для оболочки симметричного строения. Несущие слои изготовлены прямой намоткой ткави ТС-8/3-250, промежуточный слой изготовлен из стеклопластик на основе волокна ВМ-1. Они имей слёд йе арактёриоммГ [c.27]

    Адипиновая кислота применяется для получения синтетического волокна — найлона. Найлон — чрезвычайно прочное и эластичное волокно, изготовляется из полиамида, который получают синтетически — сплавлснием гексаметилендиамина и адипиновой кислоти этот полиамид состоит из цепочек следующего строения  [c.345]

    Целлюлозные волокна имеют мицеллярное строение. 1< ак устано влено в результате изучения двойного лучепреломления нитроцеллюлозы и рентгенограмм целлюлозы (Амбронн, Шеррер), они состоят из множества маленьких палочкообразных кристаллитов, которые все ориентированы своими продольными осями параллельно оси волокна. Подобное строение, называемое обычно волокнистым, свойственно также некоторым другим природным веществам. [c.461]

    Шелк Шардонне, медно-аммиачный шелк и вискозный шелк в химическом отношении представляют собой регенерированную, пере-осажденную целлюлозу, и для них не могут совершенно бесследно пройти те различные химические воздействия, которым целлюлоза подвергается в процессе переработки. Они обладают признаками некоторого неглубокого расщепления слегка повышенной восстановительной способностью, большей гигроскопичностью и увеличенной восприимчивостью к красителям. Некоторые из этих особенностей отчасти объясняются тем, что физическое строение искусственного шелка отличается от строения волокна природной целлюлозы. Мельчайшие частицы целлюлозы, ее мицеллы, или кристаллиты, расположены в нитях искусственного шелка в большей пли меньшей степени беспорядочно, а не ориентированы вдоль оси волокна, как в природной целлю.тозе. На физические свойства волокна оказывает влияние ослабление связей между мицеллами и увеличение активной поверхности. Это приводит к повышению адсорбционной способности искусственного шелка по отношению к воде и красителям, а также к уменьшению химической и механической прочности. Устойчивость искусственных и природных волокон целлюлозы по отношению к действию ферментов тоже не одинакова волокна искусственного шелка при действии целлюлазы , содержащейся в улитках и других беспозвоночных, сравнительно легко и полно превращаются в сахара, тогда как расщепление природной клетчатки (хлопка) происходит значительно медленнее. [c.465]

    Различные виды надмолекулярной организации зависят от строения молекул, их состава, условий полимеризации, переработки, внешних условий обработки, т. е. почти от всех параметров, учитываемых при изготовлении полимеров. Размеры и формы некоторых видов надмолекулярной организации, образующихся на начальной стадии полимеризации гомополимера, показаны на примере волокнистых и глобулярных структур Уристера [21] для полиолефииов. Эти структуры получены в процессе полимеризации из газовой и жидкой фаз при низкой и высокой эффективности титановых, ванадиевых, хромовых и алюминиевых катализаторов. На рис. 2.6—2.8 воспроизводятся электронные микрофотографии образующихся таким образом полимерных структур [21]. При низкой эффективности катализатора в полипропилене формируются глобулы диаметром 0,5 мкм (рис. 2.6), а при высокой — волокна длиной в несколько микрометров (рис. 2.7). Диаметр волокна согласуется с размером боковой стороны основного каталитического кристалла и изменяется в пределах 0,37—2 мкм при изменении ширины кристалла Т1С1з в пределах 5—50 нм. Образцы полиэтилена, изготовленные с помощью катализатора ИСЦ— [c.31]

    КОН, следу ет уменьшить размер кристаллитов, имеюших более совершенное строение. В качестве технологических приемов, придающих углеродным волокнам дополнительную жесткость и прочность, используют легирование их бором с помощью диффузии из газовой фазы, облучение волокон нейтронами в атомном реакторе, введение в них перед пиролизом буры, а также вытягивание в процессах окисления и графитации. [c.71]

    До настоящего времени полиметилметакрилат не использовали в производстве синтетического волокна, так как нити из полиметил-метакрилата обладают ничтожной прочностью и малой гибкостью. Присоединением к основной цепи нолиметилметакрилата некоторого количества боковых ответвлений, состоящих из цепей поликапролактама, удалось придать полимеру новые ценные свойства. Привитой сополимер нолиметилметакрилата легко образует волокна, по качеству превосходящие волокно капрон. Очевидно, цепи полиметилмет-акрилата, к которыл-i присоединены ответвления поликапролактама, приобретают следующее строение  [c.542]

    О влиянии длины цепей и их распределения на механические свойства изотропных и подвергшихся ориентационной вытяжке полимеров в литературе имеются весьма противоречивые сведения. Имеются данные о линейной зависимости между прочностью капронового волокна и величиной обратной молекулярной массы , но это — кристаллизующийся полимер и поэтому к подобным корреляциям следует отнестись осторожно. Наиболее существенные изменения прочности связываются с областью молекулярных масс З-Ю —15 10 т. е. там, где резко меняется прочность изотропного полимера. Обнаруживается также линейная зависимость между логарифмом прочности волокна и обратной величиной молекулярной массы полимеров, однако, в случае волокон, которые всегда кристалличны, тип зависимости любого параметра от М связан не с готовой структурой, а с технологической предысторией, где доминируют реологические факторы. Для ориентированных пленок поливинилацетата наблюдается линейное увеличение прочности с молекулярной массой. Однако эта зависимость четко проявляется лишь по достижении молекулярных масс, при которых прочность изотропного поливинилацетата становится неизменной. При изучении аморфных полиметилметакрилата, полистирола и поливинилацетат, получаются близкие результаты, хотя соответствующие зависимости не являются строго линейными. На механические свойства ориентированных полимерных материалов гораздо больше влияют условия формован 1я и вытяжки волокон и пленок [22].-Влияние молекулярной массы на механические свойства линейных аморфных полимеров следует оценивать с учетом изложенных представлений об их квазисетчатом строении. Прочность и другие механические свойства полимеров определяются их строением, однако при формовании и вытяжке волокон молекулярная масса полимера регулирует протекание процессов ориентации макромолекул, определяя структурные особенности и свойства получаемых полимерных материалов. [c.197]

    Мередит (см. ссылку 228) опубликовал свою ра боту, в которой он рассматривает вопросы жесткости волокон, прочности тканей и сопротивления деформации. Результаты произведенных им исследований показывают, что для определения сопротивления деформации важнее знать свойства волокна, чем строение пряжи и ткани. Он обращает особое внимание, во-первых, на значительность деформации волокон в местах образования складки и, во- вторых, на преобладание поверхностной деформации волокна над внутренней. Из этого следует, что такие волокна, как вискозные, у которых поверхность более ориентирована, чем их ядро, легко подвергаются деформации. Чтобы избежать деформацию от изгибания, требуется диаметрально противоположная относительная ориентировка оболочки и ядра. Такая ориентировка наблюдается в волокнах шерсти, чем отчасти объясняется хорошая сопротив- [c.236]

    Химики — специалисты по шерсти уже издавна пытались найти теорию, удовлетворительно объясняющую явление свойлачивания. Весьма примечательно, что самая давняя из всех этих теорий до сих пор имеет преобладающее число приверженцев. Речь идет о теории действия направленного трения , созданной Монжом еще в 1790 году (см. ссылку 231). Монж обнаружил, что шерсть обладает разными коэффициентами трения, находящимися в зависимости от направления последнего. Кроме того, Монж заметил, что чешуя волокна шерсти напоминает по своему строению черепичную кровлю, причем пластинки чешуи направлены открытой своей стороной к тонкому концу волокна. Действие направленного трения Монж приписывает чешуе. С тех пор, как эта теория появилась, ею продолжают пользоваться для объяснения явления свойлачивания, и надо сказать, что она вполне правдоподобна, так как наблюдениями за процессом свойлачивания установлен факт перемещения волокон в одном направлении до тех пор, пока oн окончательно не спутаются. При разработке способов предупреж дения свойлачивания выяснилось, что эта цель достижима при условии разрушения чешуи волокон. Это обстоятельство расцени валось как дополнительное подтверждение теории Монжа. Не смотря на все сказанное, рассматриваемая теория не удовлетво ряла полностью более критически настроенных ученых, а дальней шие исследования привели к выводам, которые вызывают сомне ния в исчерпывающей ее обоснованности. Так, например, в некоторых случаях выявилось, что шерсти может быть придана способность противостоять свойлачиванию без разрушения чешуи. Далее Гаррис (см. ссылку 232) установил, что волокна шерсти некоторых животных, обладающие такой же чешуей как волокна шерстяного материала, свойлачиваются лишь с большим трудом. Для того чтобы добиться увеличения склонности таких волокон к свойлачиванию, приходится прибегать к способам каротинг , Гаррис высказал мысль, что основным фактором свойлачивания является [c.240]

    Показано (У5М-35), что в условиях контакта углеродных волокнистых материалов с кислородосодержашими средами при повышенных температурах наблюдается удаление с поверхности углеродного волокнистого материала участков поверхности, неупорядоченного строения углеродного волокна. [c.115]

    Рассмотраю два типа несовершенств строения поверхности углеродных волокнистых матфиалов и показано, что энергия активации окисления участков поверхности волокон, отнесенных ко второму типу несовершенств строения поверхности волокна близка к энергии активации окисления чистого графита. [c.115]

    Соединения этого типа построены из длинных цепочек молекул, связанных между собой вандерваальсовыми силами. Эти соединения по своим свойствам в значительной степени приближаются к молекулярным веществам. К этой группе соединений относятся, например, изополикислоты цепочечного строения и их анионы, образующиеся при конденсации мономерных кислот. Сходное строение имеют также асбестовидная модификация триоксида серы и шелковистые волокна сульфида кремния (неорганическое волокно). В 5152 цепи состоят из тетраэдров [c.358]

    Электронная структура полимеров определяется характером существующей химической связи между атомами элементарного звена и между отдельными участками макромолекулы. Например, в молекуле белка кератине, являющегося основой строения натурального волокна — шерсти, существуют ковалентные полярные связи с высокой долей делокализации электронной плотности между атомами пептидной группировки -НЯС-СО-КН-, составляющей скелет макромолекулы. Кроме этого, внутри макромолекулы и между макромолекулами существуют другие виды химической связи, также определяющие пространственную конфигурацию (конформацию) макромолекулы водородные связи, вандерваальсовы и другие виды взаимодействий. Но электронн-ная структрура полимеров не всегда может быть представлена как сумма электронных структур отдельных его участков. Вследствие большого числа атомов, участвующих во взаимодействии, для полимеров, так же, как и для твердых тел, но при гораздо большем числе влияющих факторов, могут быть рассчитаны валентная зона и зона проводимости. По величине расщепления — разности энергий между ближайшими границами этих зон, могут быть выделены полимеры — изоляторы, полимеры — полупроводники и полимеры — проводники электрического тока. Для полимеров с бесконечными цепями атомов, обеспечивающих делокализацию электронов по всей макромолекуле, предсказывают и сверхпроводящие свойства. [c.613]

    АСБЕСТ — группа природных минералов, имеющих волокнистое строение, благодаря чему они могут расщепляться на отдельные крепкие волокна. По своему химическому составу асбестовые минералы являются водными силикатами магния, железа, кальция и натрия например, крокидолит-А. имеет такой состав ЖзгО 6 (Ре, Mg) О 2РезОз X X 173102 ЗН2О. Крупные месторождения Л. в СССР есть на Урале. Из волокон Л. длиной более 8 мм изготовляют фильтры, брезенты, защитные костюмы (для пожарников) и др. Из волокон меньших размеров изготовляют шифер, асбоцементные изделия, спецкартон, бумагу, тепло- и электроизоляционные материалы и др. [c.31]

    ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ — химические соединения, молекулярная масса которых может быть равна от нескольких тысяч до нескольких миллионов. Атомы В. с. соединены друг с другом валентными связями. Атомы нли атомные группировки в молекулах В. с. располагаются в виде длинной цепи (линейные В. с., напр,, целлюлоза), либо в виде разветвленной цени (разветвленные В, с,, напр., амнлопектин), либо в виде трехмерной сетки, состоящей из отрезков цепного строения (сшитые В. с., напр., феполформальдегидные смолы). В. с., состоящие из большого числа повторяющихся групп одинакового строения, называют полимерами. В. с., молекулы которых содержат несколько типов повторяющихся групп, называют сополимерами. В зависимости от химического состава, В. с. делятся на гете-роцепиые (в основной цепи содержатся атомы различных элементов) и гомоцеп-ные (в цепи — одинаковые атомы). В. с. применяются во всех отраслях народного хозяйства. На основе В. с. изготовляют резины, волокна, пластмассы, пленки, покрытия, различные изделия, посуду, мебель, клен, лаки и др. Все ткани живых организмов состоят из В. с. [c.61]

    Для тренировочных упражнений выбраны объекты, представлящие интерес для студентов биологических специальностей. Это сложные по строению органические соединения, как правило, игращие значительную роль в жизнедеятельности растительных и животных организмов или представляющие интерес с точки зрения медицины (лекарственные препараты), сельского хозяйства (химические средства защиты растений и животных), народного хозяйства (пластмассы, волокна, красители, душистые и вкусовые вещества) и т.д. Ряд веществ [c.3]

    Высокомолекулярными соединениями (полимерами) иазы- ваются органические вещества, молекулы которых состоят из множества повторяющихся звеньев. Эти звенья, как правило, имеют одинаковое строение и называются элементарными. Молекулярная масса полимеров достигает сотен тысяч и миллионов единиц, в то время как у обычных соединений она не превыщает нескольких сотен. Важнейшими представителями полимеров являются волокна, пластмассы и каучуки. [c.372]


Смотреть страницы где упоминается термин Волокна строение: [c.223]    [c.379]    [c.379]    [c.603]    [c.241]    [c.115]    [c.39]    [c.137]    [c.217]   
Основы технологии органических веществ (1959) -- [ c.411 , c.412 ]

Основы технологии органических веществ (1959) -- [ c.411 , c.412 ]




ПОИСК







© 2024 chem21.info Реклама на сайте