Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия электродной реакции

    Этот тип поляризации обусловлен замедленностью электродной реакции или, говоря другими словами, потребностью в энергии активации для начала электродной реакции. Наиболее ярким примером может служить восстановление ионов водорода на катоде Н" -> /гН — е. Активационная поляризация для этого процесса называется водородным перенапряжением (или перенапряжением выделения водорода). Считают, что на платиновом катоде реакции протекают в такой последовательности. Сначала идет относительно быстрая реакция [c.53]


    Известные предположения о наиболее вероятном механизме выделения водорода на разных металлах можно высказать на основании общих положений электрохимической кинетики в применении к данной электродной реакции. Так, было предположено, что при увеличении теплоты адсорбции водородных атомов на катодном металле вероятность замедленного разряда падает, а замедленной рекомбинации растет. Это связано с различным влиянием изменения теплоты адсорбции водородных атомов на скорость разряда и на скорость рекомбинации. Как следует из потенциальных кривых (рис. 19.5), энергия активации разряда уменьшается с ростом теплоты адсорбции. Энергия активации процесса рекомбинации, напротив, увеличивается с упрочнением связи между металлом и поверхностными атомами водорода, количественной характеристикой которой является теплота адсорбции. В то же время увеличение [c.411]

    Концентрационные цепи. Концентрационными цепями называются цепи, в которых оба электрода одинаковы по своей природе, но различаются активностью одного или нескольких участников электродной реакции. При этом электрическая энергия получается за счет выравнивания концентраций веществ в элементе. Концентрационные цепи (элементы) могут быть без переноса и с переносом. [c.282]

    В электрохимических системах происходит взаимное превращение энергии химических реакций в электрическую энергию и обратно. Применение законов термодинамики к электрохимическим системам позволяет рассчитать значения равновесных электродных потенциалов и э. д. с. электрохимических цепей. Для обратимой реакции [c.476]

    Одна из основных особенностей электрохимической системы заключается в пространственном разделении участников протекающей в ней реакции. Поэтому общая токообразующая реакция распадается здесь па две частные реакции, каждая из которых совершается на отдельном электроде. В соответствии с этим э.д.с. электрохимической системы, как отра.жение изменения ее химической энергии в ходе суммарной реакции, также должна представлять собой сумму двух электродных потенциалов. Каждый из иих отвечает изменению химической энергии при протекании частной электродной реакции. Таким образом, [c.156]

    РИС. 14-3. Изменение потенциальной энергии электродной реакции с промежуточной стадией образования активированных комплексов  [c.291]


Рис. 16. Вид кривой потенциальной энергии электродной реакции осаждения меди (Бокрис и Кита [39]). Рис. 16. Вид <a href="/info/4400">кривой потенциальной энергии</a> <a href="/info/71293">электродной реакции</a> <a href="/info/287203">осаждения меди</a> (Бокрис и Кита [39]).
    Аддитивность э.д.с. схематически иллюстрируется рис. 19-10. В гл. 16 было объяснено, что нет необходимости табулировать изменение свободной энергии для каждой возможной реакции. Если имеются табулированные изменения свободной энергии для реакций определенного вида, а именно для реакций образования всех соединений из элементов в их стандартных состояниях, можно вычислить изменение свободной энергии для любой реакции, включающей эти соединения, основываясь на свойстве аддитивности свободных энергий. Точно так же нет необходимости табулировать напряжение любого мыслимого элемента или каждой мыслимой комбинации анодной и катодной реакций. Вместо этого достаточно иметь таблицы напряжений электрохимических элементов, в которых все электродные реакции скомбинированы с одним стандартным электродом. Это равнозначно выбору произвольного начала отсчета на рис. 19-10. Любую реакцию в электрохимическом элементе можно представить в виде двух полуреакций, одна из которых протекает на аноде, а другая на катоде. [c.174]

    Переход энергии химической реакции в энергию электрического тока и обратно происходит в электрохимических системах, состоящих из электролитов и электродов. Электрод — система, состоящая из двух фаз, одна из которых является электролитом, а др5 гая — металлом или полупроводником. Между, компонентами фаз происходит реакция (электродный процесс), сопровождающаяся переходом электрических зарядов из одной фазы в другую и возникновением скачка потенциала на границе их раздела. [c.454]

    Из уравнения (186.1) видно, что между 1пг,, и 1/Г существует линейная зависимость и что по тангенсу угла наклона прямой можно рассчитать энергию активации. По величине энергии активации т) и зависимости ее от перенапряжения можно сделать вывод о природе электродной поляризации. Если энергия активации практически не зависит от перенапряжения (рис. 179, прямые а) н совпадает с величиной, специфической для процессов диффузии в водных растворах (10—12 кДж/моль), то электродная реакция сопровождается диффузионным перенапряжением. Более высокое значение энергии активации Е (40  [c.510]

    Скорость электрохимического процесса определяется самой медленной стадией, которая в разных электродных реакциях может быть различной по своей природе. Это служит основанием для классификации электрохимических процессов. В любых электрохимических процессах тип поляризации может быть определен ио абсолютной величине эффективной энергии активации, т. е. той энергии, которая необходима, чтобы молекула или ион вступили в электрохимическое взаимодействие, по ее зависимости от потенциала поляризации и скорости перемешивания. Эффективная энергия активации электрохимической реакции может быть определена при постоянном потенциале поляризации по линейной зависимости логарифма плотности тока от обратного значения абсолютной температуры. [c.403]

    Для обеспечения второго процесса (т.е. превращения электрической энергии в химическую) электродные реакции в ячейке форсируют наложением извне напряжения I/) из какого-нибудь источника постоянного тока. При этом необходимо, чтобы налагаемое извне напряжение было больше э.д.с. ячейки. Так, если ячейка состоит из двух одинаковых электродов, опущенных, в один и тот же раствор электролита, то иа-за отсутствия разности потенциалов между ними ячейка не обладает собственной э.д.с. Однако при наложении на электроды некоторого напряжения за счет протекания на них соответствующих электрохимических реакций электроды приобретают потенциалы, отвечающие этим реакциям, поэтому возникающая в связи с этим э.д.с. такой ячейки обратно направлена налагаемому напряжению. [c.125]

    В 1905 г. И. Тафель провел определение скорости электрохимической реакции ввделения водорода на различных металлах и установил линейное соотношение между потенциалом электрода и логарифмом скорости процесса. Формула Тафеля явилась первым законом электрохимической кинетики. Н. И. Кобозев и Н. И. Некрасов (1930) указали на роль энергии адсорбции атома водорода в кинетике разряда ионов водорода на электродах. Эти работы, однако, не привели к выделению электрохимической кинетики в самостоятельный раздел науки, так как в кинетике электродных реакций авторы не увидели ничего специфически электрохимического. Предполагалось, что скорость выделения водорода определяется не электрохимической стадией перехода электрона от металла к иону гидроксония, а некоторой химической стадией, которая входит как звено в суммарный процесс. В качестве такой стадии И. Тафель рассматривал рекомбинацию атомов водорода в молекулу водорода, а Н. И. Кобозев и Н. И. Некрасов — сочетание различных стадий удаления адсорбированных атомов водорода. [c.10]


    Превращение химической энергии в электрическую сопровождается в элементе протеканием электродных реакций восстановления одних веществ и окисления других. Для получения во внешней цепи направленного движения электронов от окисляемого вещества к восстанавливаемому необходимо, чтобы процессы окисления и восстановления веществ были пространственно разделены друг от друга и электроды контактировали между собой через электролит. Поэтому все химические источники тока построены по одной схеме они состоят из электролита, т. е. проводника второго рода, [c.14]

    Таким образом, рассматривая превращение химической энергии токообразующих реакций в электрохимических си-ст( мах в электрическую энергию на основе термодинамики, можно не только установить существующую между ними количественную связь, но и рассчитать величины э. д. с. и электродного потенциала. Вместе с тем термодинамический подход не отражает механизма этого превращения, не объясняет природы и причин возникновения э. д. с. и электродного потенциала. [c.65]

    Зная электродные потенциалы, можно определить электродвижущую силу (э.д.с.) гальванического элемента. Гальваническим элементом называют устройство, в котором энергия химической реакции непосредственно превращается в электрическую (гальванические элементы называют также химическими источниками тока). [c.56]

    Если предположить, что подвод и отвод реагирующих веществ осуществляется значительно быстрее их разряда, то энергию активации реакции (I) можно определить при помощи диаграммы, приведенной на рис. 125. На рис. 125 представлена зависимость электрохимической стандартной свободной энергии системы 0° от пути реакции . Под координатой путь реакции следует понимать тот параметр (или параметры), изменение которого происходит в ходе электродного процесса и сопровождается преодолением некоторого потенциального барьера. Исходное состояние системы (/) соответствует расположению вещества О в объеме раствора и электронов в металле. Поскольку одному молю вещества О соответствует п молей электронов, то [c.230]

    Гальванический элемент -- это устройство, сосгоящее из двух электродов, в которых энергия химической реакции преобразуется в электрическую. Гальванические элементы являются источником постоянного тока. В простейшем случае он состоит из двух металлических электродов (например, цинкового и медног о), погруженных в растворы электролитов (солей этих металлов). Между этими растворами осуществляется контакт с помощью пористой перегородки или электролитического мостика (сифонной трубки с гелем, насыщенными раствором КС1 или NH NOj), которые обеспечивают электрическую проводимость между электродными растворами, но препятствуют их взаим--1 ной диффузии. [c.114]

    При изучении термодинамики гальванических элементов (электрохимических цепей) рассматривают суммарный процесс, протекающий в системе. При этом зависимость э. д. с. от температуры выражается соотношением Гиббса— Гельмгольца. Термодинамика отдельного электродного процесса обладает рядом характерных особенностей. При протекании отдельной электродной реакции 0+пе Н соответствующее изменение свободной электрохимической энергии может быть выражено через электрохимические потенциалы участвующих в реакции компонентов  [c.246]

    Для простых электродных реакций, не связанных с разрывом химических связей, например Ре(СЫ)5 +е Ре(СЫ)в , электронный терм включает потенциальную энергию системы (растворитель + + заряженная частица) и полную энергию электрона при д=да. Таким образом, электронные термы по-прежнему имеют форму парабол в координатах 11—д [см. уравнение (55.23)]. [c.285]

    Если предположить, что подвод и отвод реагирующих веществ осуществляется значительно быстрее их разряда, то энергию активации реакции (I) можно определить при помощи диаграммы, приведенной на рис. 125. На рис. 125 представлена зависимость электрохимической стандартной свободной энергии системы С от пути реакции . Под координатой путь реакции следует понимать тот параметр (или параметры), изменение которого происходит в ходе электродного процесса и сопровождается преодолением некоторого потенциального барьера. [c.244]

    При протекании отдельной электродной реакции О + пё К соответствующее изменение свободной электрохимической энергии может быть выражено через электрохимические потенциалы участвующих в реакции компонентов  [c.261]

    В данной книге не рассматриваются общие свойства растворов и методы определения коэффициентов активности, а излагаются только те особенности растворов электролитов, которые обусловлены присутствием заряженных частиц. Далее, условия электрохимического равновесия выводятся обобщением соотношений химической термодинамики на системы, в которых помимо прочих интенсивных факторов нужно дополнительно учитывать электрическое поле. Наконец, в качестве основы кинетических закономерностей процесса переноса заряженных частиц через границу раздела фаз используются известные уравнения теории активированного комплекса, в которых анализируется физический смысл энергии активации и концентрации реагирующих веществ в специфических условиях электродной реакции. [c.6]

    Как и для обычных химических процессов, скорость электродных реакций зависит от температуры, и эта зависимость может быть использована для определения энергии активации. Чтобы найти энергию (точнее теплоту) активации W, аналогичную энергии активации обычных химических реакций, в случае электродного процесса необходимо было бы поддерживать постоянными не только обычные независимые переменные — давление, концентрацию реагирующего вещества, но и величину отдельного [c.225]

    Результаты сопоставления скоростей электровосстановления анионов на отрицательно заряженной поверхности разных металлов, а также электровосстановления органических веществ в условиях сильной поверхностной активности растворителя подтверждают выводы о роли работы выхода электрона в кинетике электродных процессов, которые впервые были сделаны Фрумкиным в 1935 г. Здравый смысл подсказывает, что реакция 0- -пе-- должна протекать тем легче, чем меньше работа выхода электрона из металла. Такое заключение, действительно, было бы справедливым, если бы можно было сопоставлять скорости реакций на разных металлах при одинаковых гальвани-потенциалах. На самом деле сопоставление возможно либо при одинаковом перенапряжении, либо при одинаковом электродном потенциале, измеренном относительно стандартного электрода сравнения. При одинаковом электродном потенциале электрохимические потенциалы электронов в разных металлах равны, т. е. электроны в разных металлах полностью энергетически эквивалентны. Таким образом, реальная энергия активации реакции не зависит от работы выхода электрона, что и подтверждают данные рис. У1П.23. [c.240]

    Стехиометрическое число V, по Гориучи (1948), предложившему это понятие, показывает, сколько раз должен совершиться элементарный акт, определяющий скорость суммарной электродной реакции для того, чтобы образовался ее конечный продукт. Таким образом, если общий заряд, переносимый в ходе электродной реакции, равен п, то за один элементарный акт, отвечающий данной замедленной стадии, будет перенесен заряд, равный величине n/v. При малых отклонениях от равновесия для любой стадии, прямое н обратное течение которой связано с экспоненциальным множителем, содержащим энергию активации, справедливо уравнение типа (17.24)  [c.370]

Рис. 170. Соотношение между энергией выхода катионов /м и энергией сольватации /зо1у1 начальное направление электродной реакции и знак заряда металла и раствора Рис. 170. <a href="/info/1178430">Соотношение между энергией</a> выхода катионов /м и <a href="/info/10861">энергией сольватации</a> /зо1у1 начальное <a href="/info/1682342">направление электродной реакции</a> и <a href="/info/171727">знак заряда</a> металла и раствора
    Ингибиторы экранирующего действия являются слабо- или неполярными соединениями (синтетические жирные кислоты и их соли с дицикло-гексила -ммном или карбамидом, другие кислородные соединения). На поверхности металла может происходить поляризация молекулы ингибитора, раздельная сорбция катионной и анионной частей соединения с уменьшением или увеличением энергии выхода электронов из металла и проявлением электронодонорно-акцепторных свойств. Образуются комплексные соединения с металлами, которые не только тормозят электродные реакции электрохимической коррозии, но и образуют адсорбционные и хемосорбционные пленки на металлах. [c.59]

    Стандартные восстановительные потенциалы называют просто стандар1ными электродными потенциалами их значения табулированы для большого числа восстановительных полуреакций. Окислительный потенциал какой-либо окислительной полуреакции должен быть равен по величине, но противоположен по знаку электродному потенциалу обратного восстановительного процесса. Чем положительнее потенциал некоторой полуреакции, тем больше тенденция этой реакции протекать в записанном направлении. С помощью электродных потенциалов можно определить максимальное напряжение, создаваемое гальваническим элементом, или минимальное напряжение, необходимое для работы электролитической ванны. С их помощью можно также определить, является ли самопроизвольной конкретная окислительно-восстановительная реакция (э.д.с. реакции должна быть положительной). Э.д.с. окислительно-восстановительной реакции связана с изменением свободной энергии этой реакции уравнением ДС = — и , где -постоянная, называемая числом Фарадея и равная 96 500 Дж/(В моль). [c.234]

    Из уравнения (186.1) видно, что между 1пгт и ]/Т существует линейная зависимость и что по тангенсу угла наклона прямой можно рассчитать энергию активации. По величине энергии активации E-q и зависимости ее от перенапряжения можно сделать вывод о природе электродной поляризации. Если энергия активации практически не зависит от перенапряжения (рис. 179, прямые о) и совпадает с величиной, специфической для процессов диффузии в водных растворах (10—12 кДж/моль), то электродная реакция сопровождается диффузионным перенапряжением. Белее высокое значение энергии активации Е (40— 80 кДж/моль), характерное для химических реакций в растворах, и зависимость Е от перенапряжения (рис. 179, прямые б) свидетельствуют об активационной поляризации. [c.510]

    Скорость электродной реакции пропорциональна вероятности попадания исходной системы в точку пересечения термов, т. е. величине ехр [— У,-( 7д)/йТ 1=ехр (—и кТ), где (Уд—энергия активации отдельного элементарного акта (рис. 157). Энергия активации /д определяется разностью энергий начального и конечного состояний А Уо= = 7/—б г и энергией реорганизации растворителя С/,, которая определяется природой растворителя, радиусом реагирующей частицы и изменением ее заряда. Учитывая параболическую форму электронных термов начального и конечного состояний и вводя обозначения а= А<7д=<7а—ди из рис. 157 легко получаем соотношения [c.286]

    В 1905 г. Ю. Тафель провел определение скорости электрохимической реакции выделения водорода на различных металлах и установил линейное соотношение между потенциалом электрода и логарифмом скорости процесса. Формула Тафеля явилась первым законом электрохимической кинетики. Н. И. Кобозев и Н. И. Некрасов (1930 г.) указали на роль энергии адсорбции атома водорода в кинетике разряда ионов вбдорода на электродах. Эти работы, однако, не привели к выделению электрохимической кинетики в самостоятельный раздел науки, так как в кинетике электродных реакций авторы не увидели ничего специфически электрохимического. Предполагалось, что скорость выделения водорода определяется не электрохимической стадией перехода электрона от металла к иону гидроксония, [c.11]

    Скорость электродной реакции определяется вероятностью перехода системы из начального состояния в конечное Wf. Ъ свою очередь величина будет определяться произведением вероятности попадания исходной системы в точку пересечения термов на вероятность электронного перехода в этом состоянии. Из уравнения (56.18) следует, что вероятность попадания системы в точку А на рис. 157 пропорциональна величине ехр [— У др) кТ] = ехр (—Ел/кТ), где Еа — энергия активации отдельного элементарного акта. [c.304]


Смотреть страницы где упоминается термин Энергия электродной реакции: [c.193]    [c.203]    [c.373]    [c.403]    [c.505]    [c.109]    [c.505]    [c.302]   
Теоретическая электрохимия (1959) -- [ c.390 ]




ПОИСК





Смотрите так же термины и статьи:

Активации свободная энергия электродной реакции

Реакции энергия реакций

Температурная зависимость скорости электродной реакции и энергии активации

Феноменологическая теория элементарного акта электродных реакций Соотношение Бренстеда и энергия активации электродной реакции

Электродные реакции



© 2025 chem21.info Реклама на сайте