Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стали атмосфере

    Согласно Правилам, на каждый источник загрязнения атмосферы должны быть заведены специальные паспорта (Приложение 1), а также назначены ответственные лица за эксплуатацию газоочистных и пылеулавливающих установок. Установки санитарной очистки газов для источников загрязнения первой группы, имеющих выбросы 13,89 м с (50 тыс. м /ч), для второй 2,778 м с (10 тыс. м /ч), для третьей группы 1,389 м /с (5 тыс м /ч) и четвертой группы— независимо от объема выбросов, должны быть зарегистрированы в Госсанинспекции. Согласно Правилам, Госсанинспекция контролирует газоочистные и пылеулавливающие установки, источники загрязнения атмосферы, отнесенные в статье УГ-1-3 к первой группе не реже одного раза в три года, источники, отнесенные ко второй и третьей группам — не реже одного раза в два года, а источники, отнесенные к четвертой группе —не реже одного раза в год. [c.120]


    Всякий выброс химических веществ в атмосферу является, по существу, невозвратимой потерей. Справедливо утверждают, что в химической промышленности принципиально не может быть отходов любые отходы — это тоже химические. вещества, которые могут и должны рано или поздно стать сырьем для получения других продуктов, а не выбрасываться в воздух или водоемы. [c.254]

    Обычно при полимеризации с трихлоридом титана навеску катализатора помещают в стеклянную ампулу в боксе с контролируемой атмосферой. Величина навески зависит от ожидаемого выхода полимера. Слишком большая концентрация катализатора в реакторе может снизить его эффективность при низком давлении, так как лимитирующей процесс стадией может стать перенос мономера к активному центру. Наоборот, при очень низкой концентрации катализатора возрастает вероятность его дезактивации ядами. При испытании нового катализатора нужна серия опытов для оценки его оптимальной навески. Как правило, содержание твердого вещества в образовавшейся суспензии полимера не должно превышать 40%. При более высоких концентрациях катализатора на стадии полимеризации могут возникнуть затруднения со съемом тепла, приводящие к появлению горячих пятен и влияющие на результаты полимеризации. [c.196]

    При эксплуатации всех видов электрооборудования необходимо следить, чтобы оно не находилось в атмосфере сильной влажности, пыли и газов. Влага и пыль могут проникнуть в оболочку электрооборудования и стать причиной короткого замыкания. [c.575]

    В раздел включена также статья, посвященная изучению возможности гидроочистки сернистого бензола на отработанном катализаторе никель на кизельгуре. Развитие процессов получения циклогексана с использование / катализаторов чистый металл или металл на носителе требует больших ресурсов малосернистого бензола. Из известных методов очистки бензола наибольшее распространение получили сернокислотная очистка и очистка в атмосфере водорода на специальных катализаторах. При получении циклогексана образуется большое количество отработанного катализатора. Использование отработанного катализатора никель на кизельгуре в ступени предварительной гидроочистки бензола представляет определенный интерес с точки зрения как экономичности, так и гибкости процесса. Возможность использования такого варианта и была доказана нашими исследованиями. [c.81]


    Это одновременно ограничивает и достижимые градиенты температуры и скорости плавления. Наконец, высокая вязкость расплава препятствует развитию обычной и турбулентной конвекции, существенно ограничивая эффективность перемешивания расплава и препятствуя удалению пузырьков газа. Между тем ясно, что для того чтобы плавление с перемешиванием могло стать практическим способом плавления полимеров, необходимо обеспечить интенсивное перемешивание, большое значение отношения поверхности к объему и периодический контакт поверхности массообмена с атмосферой или вакуумом. [c.253]

    Продукты горения топлива содержат большое число соединений, оказывающих вредное воздействие на природу и человека. К ним относятся оксиды серы и азота, монооксид углерода, некоторые углеводороды, в том числе канцерогенные, например бензпирен. Если не принимать специальных мер по обезвреживанию продуктов горения, то крупными источниками загрязнений могут стать тепловые электростанции. Например, станция мощностью 2400 МВт, работающая на мазуте с содержанием серы 4 %, выбрасывает в атмосферу в сутки П 00 т оксидов серы, 350 т оксидов азота и до 100 т сажи. Заметный вклад в загрязнение атмосферы вносят автомобили. В среднем автомобиль выбрасывает в атмосферу (кг/год) монооксида углерода 135, оксидов азота 25, углеводородов 20, оксидов серы 4, твердых частиц 1,2. Число автомашин и соответственно количество вредных выбросов непрерывно возрастает. [c.355]

    Это явление легко объяснить с точки зрения теории Дебая. Действительно, скорости, приобретаемые ионами под влиянием больших электрических полей, могут стать столь значительными, что фактическое время взаимодействия ионов станет меньше времени, необходимого для образования ионной атмосферы. В связи с этим ионное облако не сможет образоваться, и ионы начнут двигаться так быстро, как если бы они испытывали только сопротивление, вызванное вязкостью растворителя. [c.120]

    Это тем более удивительно, что мир неживых систем и царство жизни связаны с постоянным обменом и один и тот же атом имеет шансы много раз стать составной частью и организма, и минерала, и земной атмосферы (В. И. Вернадский). Несомненно, однако, что устойчивость динамических организаций увеличивалась по мере их усложнения. Способность выдерживать физические и химические атаки внешней среды (например, повышение давления, колебания температуры, кислотности среды и т. п.) у живых существ выражена более отчетливо, чем у относительно просто построенных систем неживой природы. Такие процессы, как растворение, выветривание, эрозия, существенно изменяющие неживые системы, не оказывают разрушительного действия на живую материю во всем разнообразии ее форм. Химический состав и важнейшие последовательности реакций в живых системах мало изменялись на всем протяжении колоссального пути биологической эволюции. Это значит, что химическая эволюция в одних определенных условиях может завершиться примитивной стадией кристаллизации, а в других дать начало синтезу усложняющихся организаций, в которых механизмы, обеспечивающие устойчивость, строятся из одних и тех же химических фрагментов (белков, ферментов, липидов и др.), но выполняют все более тонкие и специфические функции. [c.7]

    Конечным продуктом приведенных выше реакций является поли-кристаллический кремний. Для получения монокристаллов кремния и дальнейшей очистки применяют бесконтейнерную зонную плавку. В вакууме или в инертной атмосфере с помощью высокочастотного индуктора в вертикально установленном стержне кремния создается расплавленная зона, которая не растекается благодаря силам поверхностного натяжения жидкого кремния. Расплавленная зона с определенной скоростью многократно перемещается в одном и том же направлении. В результате получаются совершенные монокристаллы кремния с суммарным содержанием примесей не более 10 —10 мае. доли, %. Только бестигельная зонная очистка (1958) дала возможность кремнию стать ведущим современным полупроводниковым материалом. Дело в том, что из-за высокой температуры плавления (1414 °С) жидкий кремний реагирует с материалом контейнера (тигля, лодочки, трубок и т. д.). Поэтому для финишной очистки и получения монокристаллов кремния в принципе непри- [c.199]

    Таким образом, вторая стадия набухания обусловлена энтропийным эффектом. Его можно моделировать различными способами, например посредством осмотической ячейки — сетки полимера, пропитанной раствором более растворимой фракции полимера (обладающей меньшим М). Вступающий в сетку растворитель (НМС) создает в ней осмотическое давление, равное, по приближенным оценкам, давлению набухания. Это давление, наблюдаемое на опыте, достигает весьма больщих величин (десятков атмосфер) и может стать причиной разрыва емкостей, заполненных набухающими материалами. Известны случаи, когда стальной корпус судна разрывался вследствие набухания ВМС, заполняющих трюм (горох, зерно и др.), при контакте с водой. Предлагались и другие модели, но наиболее общим объяснением механизма второй стадии является увеличение энтропии системы благодаря росту числа возможных конформаций. [c.314]


    Вступающий в сетку растворитель (НМС) создает в ней осмотическое давление, равное, по приближенным оценкам, давлению набухания. Это давление, наблюдаемое на опыте, достигает весьма больших величии (десятков атмосфер) и может стать причиной разрыва емкостей, заполненных набухающими материалами. Известны случаи, когда стальной корпус судна разрывался вследствие набухания ВМС, заполняющих трюм (горох, зерно и др.) при контакте с водой. [c.301]

    Эффект Вина состоит в том, что при увеличении напряжения на электродах электропроводность электролитов возрастает, стремясь к величине коо. При сильных полях, порядка 100 000 в см, скорости ионов достигают метра в секунду. В таком случае за время релаксации ион проходит расстояние, во много раз, превышающее толщину ионного облака. При этом скорости, приобретаемые ионами под влиянием больших электрических полей, могут стать столь значительными, что фактическое время взаимодействия ионов станет меньше времени, необходимого для образования ионной атмосферы. В связи с этим ионное облако не сможет образоваться и ионы начнут двигаться так быстро, как если бы они испытывали только сопротивление, вызванное вязкостью растворителя. [c.116]

    В заключение можно отметить, что системы газ — твердые частицы являются лишь одним из многих случаев, когда в пограничных слоях имеют место релаксационные явления. Известным примером одновременного действия различных релаксационных эффектов в пограничном слое являются процессы абляции и ионизации в тепловой защите космического корабля во время его возвращения в атмосферу. oy [13] рассмотрел общий случай релаксационных изменений постороннего компонента в ламинарном-пограничном слое на плоской пластине. Исследовалось также [14] поведение потока, в котором присутствовали частицы разных размеров. В обеих этих статьях [13, 14] считалось, что каждый компонент твердой фазы не оказывает влияния на поведение жидкости и остальных компонентов потока. [c.346]

    Эмиссия вредных веществ в атмосферу зависит от состава жидкости, ее температуры и режима эксплуатации резервуаров. Определение масштаба загрязнения окружающей среды и его характера связано с определенными трудностями, особенно на стадии проектирования химических производств. В статье излагается подход для расчета выбросов из резервуаров, основанный на фазовом равновесии жидкости и пара. Известно, что равновесие сосуществующих паровой и жидкой фаз выражается следующим комбинированным уравнением Дальтона—Рауля  [c.42]

    Источником загрязнения атмосферы нарами углеводородов может стать и заводская площадка при розливах нефтепродуктов, либо при повышении уровня грунтовых вод, которые, как правило, после нескольких лет эксплуатации завода загрязняются нефтепродуктами. [c.163]

    Открытый огонь является наиболее сильным поражающим фактором как для материальных ценностей, так и для людей. Гибель людей может наступить даже при кратковременном воздействии открытого огня в результате сгорания, ожогов или сильного перегрева. Характер и последствия воздействия открытого огня на материальные ценности зависят от их горючести. Нефти выгорают полностью или частично. Несгораемые конструкции могут быть уничтожены огнем в результате расплавления, деформации или обрушения при перегреве и потере расчетной механической прочности. В отличие от устойчивого длительного горения над зеркалом жидкости, быстрое сгорание паровоздушной смеси, образовавшейся на территории резервуарного парка при выбросе нефтяных паров из дышащих резервуаров в атмосферу, не может привести к уничтожению технологического оборудования и других сооружений, но кратковременное воздействие такого огня может стать причиной гибели человека. [c.38]

    Ученые считают, что все возрастающее выделение СОг в атмосферу может привести к изменению климата на Земле. Углекислый газ атмосферы свободно пропускает на Землю излучение Солнца, но сильно задерживает излучение Земли. Это создает так называемый парниковый эффект — слой углекислого газа играет такую же роль, как стекло в теплице. Поэтому увеличение содержания СОг в атмосфере может стать причиной потепления на Земле, привести к таянию полярных льдов и вызвать катастрофическое повышение уровня Мирового океана на 4—8 м. [c.718]

    Контактные поверхности должны быть подготовлены согласно-ЧСН 73 2601, статьи 127, 128 и 129. Если стальные конструкции подвержены воздействию атмосферы или влаги, контактные поверхности следует окрасить. Если конструкция имеет постоянную защиту, контактные поверхности обычно не окрашивают. [c.114]

    Аэрозоли возникают в результате диспергирования твердых тел и жидкостей (пыль, туман) конденсации частиц при горении топлив коагуляции малых частиц в атмосфере в более крупные гомогенного или гетерогенного образования ядер конденсации в условиях пересыщения реакций, происходящих на поверхности твердых частиц и приводящих к их росту реакций в капле воды (растворение SO2 и последующее окисление) разрушения крупных частиц и образования большого количества мелких частиц (например, испарение капелек в облаке приводит к увеличению общего числа частиц, способных стать ядрами конденсации). Большинство рассмотренных выше химических превращений оксидов серы, азота, галоидсодержащих соединений происходит на поверхности твердых частиц или капелек атмосферной влаги. Так, сульфат аммония, являясь одним из распространенных компонентов атмосферных аэрозолей, возникает при взаимодействии аммиака с ядрами серной кислоты, образующейся по реакциям (1-3). [c.17]

    Успешное применение алюминиевых сплавов в условиях морских атмосфер определяется правильным выбором материала и технологии изготовления конструкции. Причиной ускоренного разрушения может стать и плохое качество выполняемых работ. Очень часто разрушение происходит в сварных соединениях. [c.156]

    Во многих процессах конвекции возникают изменения температуры, скорости и, возможно, концентрации химических компонентов по времени. Подобные изменения часто наблюдаются как в процессах, происходящих в окружающей среде, так и в целом ряде технологических и промышленных приложений. Многие циркуляционные течения, возникающие в атмосфере, естественных бассейнах или океане, представляют собой нестационарные течения различной периодичности, создающиеся в результате суперпозиции многочисленных внутренних процессов. В технологии нестационарные процессы практически всегда возникают при запуске и прекращении работы промышленных установок. В ходе таких процессов могут создаваться опасные режимы работы и с этой важной проблемой следует считаться. Характерным примером может служить рабочий объем ядер-ного реактора, в котором забросы температуры при переходных процессах могут стать критическими для элементов конструкции. Те же соображения важны и для электрического оборудования и электронных приборов, охлаждаемых естественной конвекцией. [c.434]

    В последнее время, отчасти в связи с изучением физико-химических процессов в верхних слоях атмосферы, опубликовано большое число работ, посвященных реакциям электронно-возбужденных частиц. С точки зрения физики и химии атмосферы особый интерес представляют химические реакции атомов, находящихся в метастабильных электронных состояниях. Данные по реакциям метастабильных атомов (С, N, О, S, С1, Ge, As, Se, Вг, Те, J) были опубликованы в обзорной статье Донована и Хусейаа [2541. [c.154]

    К физическим взрывам следует отнести также явление так называемой физической (или термической) детонации. Это явление возникает при смешении горячей и холодной жидкостей, когда температура одной из них значительно превышает температуру кипения другой (например, при выливании расплавленного металла в воду). В образовавшейся парожидкостной смеси испарение может протекать взрывным образом вследствие развивающихся процессов тонкой фрагментации капель расплава, быстрого теплоотвода от них и перегрева холодной жидкости. Физическая детонация сопровождается возникновением ударной волны с избыточным давлением в жидкой фазе, достигающим в некоторых случаях тысяч атмосфер. Указанное явление может стать причиной крупных аварий в ядерных реакторах и на промышленных предприятиях металлургической, химической и бумажной промышленности ( ronenberg, 1980]. - Прим. ред. [c.244]

    Полученный диоксид углерода разлагают на оксид углерода (угарный газ) СО и кислород. Эта реакция требует больших затрат энергии. Поэтому, по всей вероятности, ее будет выгодно производить лишь при наличии дешевых энергетических источников. 1акими источниками мо-гут стать атомные реакторы или термоядерные установки. Здесь при температуре около 5000 °С в присутствии катализаторов и будет получен оксид углерода. Освободившийся кислород опять-таки будет отправлен в атмосферу, а оксид углерода будет соединен с водородом. Полученные углеводороды в дальнейшем могут быть использованы в химическом производстве примерно так же, как сегодня используются производные нефти. [c.140]

    Несмотря на принимаемые в развитых странах меры, экологоопасные компоненты ОСМ распространяются в атмосфере, водах, почве, попадая в пищевые цепи, появляются в продуктах питания. Зафязнение окружающей среды приобретает глобальный характер. Думается, что весьма немногие представляют истинные размеры зафязнения биосферы. Причиной такого незнания является главным образом разобщение, размежевание областей знаний — химии, биологии, экологии, медицины. Специалисты одной отрасли подчас весьма плохо осведомлены о достижениях и накоплении фактов в других отраслях. В технических изданиях преобладают статьи узкоспецифического характера, не рассматривающие и не решающие глобальных проблем. Аналогичная картина наблюдается и в современном образовании. Незнание же дает обманчивую картину относительного экологического равновесия на планете. Все перечисленное весьма характерно как для развивающихся, так и для высокоразвитых стран. И в этом — поистине трагедия нашего времени. [c.395]

    Очевидно, что реакция с озоном является поверхностной реакцией, ведущей к образованию поверхностного слоя озонидов и (или) последующих продуктов реакции. Толщина данного слоя растет пропорционально квадратному корню из времени пребывания полимера в атмосфере озона [199]. Постепенно с увеличением толщины слоя озон перестает воздействовать на недеградированный каучук. Обширный обзор механических особенностей образования трещин в атмосфере озона дан в статьях [196—197, 199, 201, 204—206]. Авторы всех статей приходят к единодушному выводу, что деградированный материал каучука (натурального, бутадиен-стирольного, акрило-нитрил-бутадиенового, г ис-полибутадиенового каучуков) обладает пониженной прочностью и эластичностью. Трещины раскрываются и распространяются при малых деформациях порядка 5—12 %. Было установлено [199], что даже на вершине [c.314]

    При повышении концентрации электролитов или при переходе к ионам более высоких зарядов, с одной стороны, размеры ионной атмосферы могут стать соизмеримыми с собственными размерами ионов, что делает неприменимым понятие ионной атмосферы, с другой стороны, уменьше- [c.13]

    Не подлежит сомнению, что основным источником энергии в абиогенную эру было ультрафиолетовое излучение ( 150—200 нм). Его действие имеет ряд специфических особенностей. Излучение порождает радикалы, т. е. создает весьма активные частицы, способные стать исходными точками в дальнейшей цепи превращений. Однако это происходит главным образом в верхних слоях атмосферы, откуда продукты реакции попадают на поверхность Земли с дождем или просто вследствие медленного оседания. В нижних слоях атмосферы и на поверхности гидросферы и литосферы излучение становится особенно важным фактором с момента появления фотосинтетических механизмов. Кислород, выделяющийся при фотосинтезе, превращаясь в озон, ослабляет действие ультрафиолета и защищает возникшие предбиологнческие структуры от фотохимической деструкции. Это автоматическое регулирование действия излучения способствовало целенаправленному использованию его энергии. Радиоактивность, именно излучение изотопа калия °/С, также играло существенную роль в качестве источника энергии. По мнению М. Кальвина, среднее количество энергии, доставляемое распадом °К, 2,6 млрд. лет тому назад было в четыре раза больше, чем в настоящее время. Этот исследователь считает, что в течение года на всю поверхность Земли приходится примерно 1,2-10 Дж энергии за счет распада К и 18,9-10 Дж за счет ультрафиолетового излучения. Другие возможные источники энергии (вулканизм, разряды молний и даже удары метеоритов ), вместе взятые, доставляют не более 0,58Дж/г. [c.378]

    В самом начале 1895 г. была опубликована итоговая статья Д. Рэлея и В. Рамзая Лргои — новая составная часть атмосферы  [c.281]

    Важнейщие физические методы получения дисперсных систем — конденсация из паров и замена р ас т в о р и т е л я. Наиболее наглядный пример конденсации из паров — образование тумана. При изменении параметров системы, в частности, при понижении температуры, давление пара может стать выше равновесного давления пара над жидкостью (или над твердым телом) и в газовой фазе возникает новая жидкая (твердая) фаза. В результате система становится гетерогенной — начинает образовываться туман (дым). Таким путем получают, например, маскировочные аэрозоли, образующиеся при охлаждении паров Р2О5, 2пО и других веществ. Для конденсации облаков с целью борьбы с ураганами, грозами, градом и другими явлениями, а также для искусственного дождевания используют распыление в атмосфере частиц аэрозолей, становящихся центрами конденсации (гл. XV), приводящей к образованию грубодисперсной системы. [c.24]

    Длительные наши наблюдения показали, что на нефтегазодобывающих промыслах разбуривание разведочных, эксплуатационных и нагнетательных скважин служит потенциальным источником загрязнения подземных вот,, почвы, а также атмосферного воздуха, поверхностных водоемов. Нарушение целостности геологического строения различных территорий, изменение гидрогеологических и гид-родина.мических условий при любых отклонениях в обустройстве скважин на нефтепромыслах приводят к неполной изоляции различных водо- и нефтеносных горизонтов, делают возможными гидравлические связи между ними. В этих условиях различные объекты нефте- и газопромыслов (буровая установка разведочного и эксплуатационного бурения, скважины, установки комплексной подготовки нефти и газа, система поддержания пластового давления, очистные сооружения, нефте- и газопроводы, водоводы и др.) могут стать значительными источниками попадания различных соединений в водные объекты, почву, а также в атмосферу. В этом отношении особенно опасны нефте- и газопромысловые загрязнения для подземных пресных водоносных горизонтов, имеющих важное значение для водоснабжения населения, в силу невозможности существенного разбавления химических реагентов и затрудненности процессов самоочищения. [c.131]

    Таким образом, влияние сершстого газа проявляется не только в увеличении скорости коррозии, но и в снижении относительной влажности, при которой начинается коррозия. В тонких слоях pH = 3-5 в зависимости от содержания сернистого газа в атмосфере. Растворимость сернистого газа во много раз выше растворимости кислорода. Поэтому даже-при незначительном содержании сернистого газа в воздухе концентрация его в электролите может стать соизмеримой с концентрацией кислорода. Так, при содержании в воздушной атмосфере всего лишь 0,015 % сернистого газа концентрация его в электролите становится равной концентрации кислорода. Благодаря большой растворимости сернистого газа снижается влияние концентрационных эффектов, происходящих в присутствии кислорода. [c.8]

    Морская атмосфера обладает повышенной коррозионной активностью вследствие наличия в воздухе морской соли в виде тонкой пьши и высокой относительной влажности. Электрохимический процесс в морской атмбсфере происходит иначе, чем в морской воде. В морской атмосфере доступ кислорода через тонкую пленку влаги облегчен и не лимитирует процесс. В данном случае скорость коррозии зависит от омического сопротивления влажной пленки, так как при малой толщине ее сопротивление внешней цепи между анодом и катодом коррозионного элемента может стать очень большим. Морская соль, содержащаяся в воздухе, растворяется в пленке влаги и быстро насьдцает ее, что значительно уменьшает омическое сопротивление пленки и увеличивает коррозионный ток. Коррозия в морской атмосфере у сталей, содержащих медь, меньше, чем у углеродистых. [c.10]

    Оксиды серы. Основную опасность при атмосферной коррозии представляет диоксид серы (БО ). Адсорбция ЗОд на поверхности металла зависит от относительной влажности и присутствия продуктов коррозии. При 80 % относительной влажности или выше практически все молекулы 80 , соударяющиеся со ржавой поверхностью стали, адсорбцируются. ЗО окисляется до ЗОд в атмосфере или в пленке влаги на поверхности металла, а последний с НдО образует НдЗО . Эта кислота реагирует с ржавчиной и частично нейтрализуется, в результате чего пленка влаги становится лишь слабокислой с pH около 4 на поверхностях, не обладающих нейтрализующими свойствами, например на окрашенных поверхностях или под кровельным толем, pH может стать значительно ниже. [c.57]

    ОХРАНА ПРИРОДЫ, комплекс естественнонауч. техн.-производств, экономич. и административно-правовых мероприятий, осуществляемьге в пределах данного государства или его части, а также в международном масштабе, по охране, рациональному использованию и восстановлению живой (растительность и животный мир) и неживой (почвы, воды, атмосфера, недра, климат и др.) природы. О. п. включает защиту ее и человека от воздействия всех чужеродных хим соед.-ксенобиотиков (пром. загрязнения, удобрения, пестициды, препараты бытовой химии, лек. ср-ва и т. п), к-рые могут нарушать равновесие прир. процессов в биосфере и вызывать гибель живых организмов. Данная статья посвящена в осн. проблемам О. п. от загрязнений предприятиями хим. отраслей пром-сти. О рациональном использовании прир. и вторичньк сырьевых ресурсов и энергин подробно см., напр.. Безотходные производства, Обогащение полезных ископаемых. [c.428]

    Изложенные в настоящей статье данные показывают, что при газооборудовании отопительных и промышленных котлов малой мощности можно подбирать газовые горелки, не только обеспечивающие высокий КПД и отсутствие или ничтожное содержание продуктов химического недожога, но и значительно снижающие образование и сброс в атмосферу окислов азота. Эти данные показывают также, что при разработке новых конструкций горелок и их установке на агрегатах снижение окислов азота может достигаться сокращением размеров туннелей, стабилизирующих горение, внешним охлаждением туннелей, применением взамен керамических туннелей стабилизаторов горения в виде кольцевого пламени, расширенного огневого насадка, тел плохообтекаемой формы и др., применением плоских пламен с увеличенной поверхностью теплоотдачи, переносом горения из высокотемпературных туннелей в топки, рассредоточением пламен за счет увеличения числа горелок или применения блочных горелок, ступенчатым подводом в реакционную зону воздуха, экранированием топок и разделением их на отсеки двухсвет- [c.11]


Смотреть страницы где упоминается термин Стали атмосфере: [c.175]    [c.258]    [c.304]    [c.175]    [c.215]    [c.5]    [c.275]    [c.29]    [c.365]    [c.74]    [c.409]   
Коррозия и защита от коррозии (1966) -- [ c.68 ]




ПОИСК





Смотрите так же термины и статьи:

Атмосфера



© 2025 chem21.info Реклама на сайте