Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакция Майяра

    Вкус хлеба имеет довольно сложную химическую природу однако можно считать, что он представляет собой сочетание вкуса мякиша и корки. Вкус мякиша обусловлен побочными продуктами действия дрожжей на крахмал, тогда как вкус корки является результатом реакции Майяра ( реакции побу-рения ) — взаимодействия различных восстанавливающих сахаров с аминогруппами белков [c.606]

    Нагрев и продукты реакции Майяра [c.196]


    Второй по интенсивности реакцией разложения сахаров в процессе разваривания является образование меланоидинов (сахаро-аминная реакция, реакция Майяра). Эта реакция протекает сложным путем, и механизм ее до конца не выяснен. [c.84]

    При длительном хранении происходит окисление лип( увеличение перекисного числа жиров. При взаимодействии водов (глюкозы, глюкозо-6-фосфатазы) с образовавшимися нокислотами может происходить карбомиламинная pea (реакция Майяра) с образованием меланоидннов — oei ний коричневого цвета, обладающих горьким вкусом и не иваемых организмом. [c.166]

    Из аминокислот наиболее подвержен различным воздействиям лизин, что объясняется повышенной реактивностью его свободных е-ЫНг-групп. Взаимодействие этих групп с карбонильными группами восстанавливающих сахаров широко известно как реакция Майяра — частный случай реакции покоричневения . [c.8]

    Большинство типов солода, используемых в производстве спиртных напитков, производится из ячменя, хотя для выпуска некоторых особых видов пива и спирта в Северной Америке используется солод из других зерновых. Это объясняется составом липидов ячменя, так как при солодоращении других зерновых в ходе окисления липидов продуцируются иные вкусо-ароматические соединения. На формирование вкуса и аромата солода большое влияние оказывают взаимодействие липидов между собой и реакция неферментативного потемнения (реакция Майяра) во время сушки [36,80]. [c.28]

    Перед брожением плодовое сусло необходимо соответствующим образом подготовить. В современном производстве английского сидра эта подготовка состоит в составлении смеси источников сбраживаемых сахаров (сока, концентрированного яблочного сока и глюкозного сиропа) до получения до их нужной концентрации. Чтобы получить в итоге продукт с содержанием спирта 10-12% (в исключительных случаях — 15% с последующим разбавлением перед продажей), эта концентрация (удельная плотность) должна составлять 1,080-1,100. Для обеспечения полного и быстрого сбраживания добавляют также питательные вещества, и в этом технология отличается от описанной выше традиционной процедуры, при которой эти питательные вещества из сока выводили. Яблочные соки по сравнению с виноградным или пивным суслом содержат меньше свободного аминного азота, существенно ограничивающего рост дрожжей в сусле, в связи с чем содержание азота в соке повышают до 100 мг/л (путем добавления 250 ррт сульфата или фосфата аммония). Обычно в соке ограничивают также содержание витаминов, способствующих росту дрожжей, для чего рекомендуется внести 0,2 ррт тиамина (тиамин расщепляется сульфитом, в связи с чем его не следует добавлять в сок одновременно с SO2). Можно также добавлять пантотенат (2,5 ррт), пиридоксин (1 ррт) и биотин (7,5 ррш), которые особенно важны при наличии в сусле ферментируемых добавок без питательных веществ (нутриентов) или концен-трированного яблочного сока. В последнем случае большая часть аминного азота и азотсодержащих витаминов теряется в ходе реакции Майяра с фруктозой при хранении концентрированного сока. Значительные их потери во время хранения (до 50% за 3 мес.) задокументированы во многих работах — см., например, [65]. [c.97]


    При реакции Майяра образуется некоторое количество гетероциклических соединений кислорода и азота, ингибирующих рост дрожжей, включая и 5-гидроксиметилфур-фурол (ГМФ) [72]. Свойства большинства таких ингибиторов описаны еще недостаточно, и ГМФ, скорее всего, представляет собой наиболее удобный их пример. Чтобы [c.97]

    Доставленную на предприятие мелассу взвешивают, а не оценивают по объему (в последнем случае наблюдаются существенные колебания в объеме и плотности в зависимости от температуры, особенно при 45-65 °С). При высоких температурах, выше 60 °С, качество мелассы ухудшается (под действием реакций Майяра) с потерей сахара. Известно, что меласса в условиях высоких температур может самопроизвольно воспламеняться в результате быстродействующих экзотермических реакций, и от нее остаются только обугленные остатки. Идеальная температура для хранения мелассы составляет около 45 °С [4]. [c.339]

    При недостатке цинка в питании, проявление которого детально изучено в Египте и Иране, отмечено половое недоразвитие и замедление роста подростков обоего пола. Основным продуктом питания в этих странах является бездрожже-вой хлеб из пшеничной муки тонкого помола, и одним из факторов, понижающим усвоение цинка, может быть связывание его фктино.м. Снижают усвояе.мость цинка также продукты реакции Майяра. Замедление роста из-за недостатка цинка наблюдалось и у детей среднеобеспеченных семей США, в рационе которых было мало мяса. Отставание в росте, потеря аппетита и нарушение вкуса исчезали после лечения цинком. Основным источником цинка в питании являются продукты животного происхождения. [c.19]

    Очевидно, оптимальными моделями для изучения реакции Майяра являются продукты конденсации восстанавливающих сахаров с аминокислотами. Первое соединение такого типа было получено при кипячении смеси п-глюкозы с вь-фенилаланином в метаноле. Продукт реакции имел не ожидаемую для него структуру К-в-глюкозида, а структуру продукта перегруппировки Амадори — 1-(М-вь-фенилаланин)-1-дезокси-в-фруктозы (фрук-тозофенилаланин [20]). Источником протона, необходимого для реакции, в данном случае служила карбоксильная группа аминокислоты. Таким же путем были синтезированы еще девять производных тина К-(1-дезокси-в-фруктоз-1-ил)-аминокислот [25], причем ни одно из них не было кристаллическим. Позднее реакцией аминокислот с в-глюкозой и в-ксилозой были получены кристаллические К-(1-дезокси-в-фруктоз-1-ил)-глицин, К-(1-дез-окси-в-фруктоз-1-ил)-р-аланин и К-(1-дезокси-в-треопентулоз-1-ил)-глицин [261. В той же работе было описано получение кристаллической 2-глицин-2-дезокси-сс-в-глюкозы, т. е. К-замещенного в-глюкозамина (Л -карбоксиметил-в-глюкозамина). Метод синтеза, используемый в этой работе, состоял в нагревании смеси восстанавливающего сахара с аминокислотой в виде концентрированного сиропообразного водного раствора с последующим выделением продукта перегруппировки Амадори из темной реакционной смеси с помощью катионообменных смол. Позднее в кристаллическом виде был получен ряд производных в-фруктозы и в-глюкозы указанного типа [9]. Предполагаемые промежуточные продукты — К-гликозиды аминокислот — не были выделены их удается получить только нри реакции натриевых солей аминокислот с восстанавливающими сахарами в метаноле [27]. При введении в реакционную смесь растворимых в метаноле металлических солей аминокислот были получены кристаллические металлические комплексы (Mg, Са, Ге, Со, Си и Хп) К-гликозидов аминокислот. [c.109]

    Содержание растворимых белков во многих фруктовых соках очень невелико (в яблочных соках — 10-250 ppm (частей на миллион), не превышая, как правило, 100 ррш). В яблочных соках 89% растворимых азотсодержащих соединений составляют свободные аминокислоты, 79% из которых — это аспарагин [16]. В свежеотжатых яблочных соках следующими по степени значимости азотсодержащими соединениями являются глютаминовая и аспарагиновая кислоты, причем тирозин, триптофан и цистеин не обнаружены. Считается, что в яблочных соках из десертных сортов яблок содержится больше аминокислот, чем в соках, полученных из яблок для производства сидра [32], а в соках из яблок, снятых с молодых яблонь, аминокислот больше, чем в соках из яблок со старых деревьев. В ходе хранения содержание аминокислот в соках снижается из-за реакции Майяра (реакции неферментативного потемнения), дополняющей реакции ферментативного потемнения, в ходе которых окислительное действие фенолоксидазы катализирует соединение содержащихся в плодах фенолов с полифенолами. [c.38]

    Вышесказанное не совсем применимо к концентрированному яблочному соку. В этом случае цвет сидра определяется в основном реакцией неферментативного потемнения (реакцией Майяра) в ходе хранения, а не окислением фенольных соединений. Образовавшиеся карбонильно-аминные охромофоры устойчивы к восстановительному действию дрожжей, в связи с чем в ходе брожения сидр обесцвечивается лишь на 10%. Из концентрированных соков плохого качества, следовательно, можно получить сидр вполне натурального цвета. [c.106]

    В результате добавления сахарного сиропа при дегоржировании готовое игристое вино содержит глюкозу и фруктозу. Реакции с участием сахара, происходящие в вине при нагревании, изучались в связи с термической обработкой хереса. Одним из побочных продуктов фруктозы при нагревании является гидроксиметилфурфурал, обладающий запахом ромащки и слегка горьким вкусом. Высокая концентрация в игристых винах аминокислот и присутствие сахаров и альдегидов делают весьма вероятным возникновение в них реакций Майяра, причем их началу способствуют относительное длительное хранение таких вин и наличие спирта, снижающего активность воды [17]. Тем не менее в настоящее время публикаций по этому вопросу очень мало. [c.196]


    В мелассе содержится огромное количество гетероциклических соединений азота (продуктов реакции Майяра), и в роме превалируют именно эти соединения с необычными стереохимическими формами и названиями. В роме также содержится большое число фенольных соединений, некоторые из которых образуются в ходе брожения, а другие — в процессе этанолиза лигнина. [c.353]

    Начальная стадия реакции Майяра состоит в образовании К-зайещен-ных гликозиламинов путем конденсации непротонированной аминогруппы аминокислот, пептидов или белков с гликозидным гидроксилом моносахарида по механизму нуклеофильного замещения  [c.106]

    Химия меланоидинов, образующихся на последних стадиях реакции Майяра, недостаточно изучена. Продукты взаимодействия а-дикарбонильных соединений и а,р-непредельных карбонильных соединений с аминокислотами могут подвергаться вторичным реакциям, например конденсации, циклизации и полимеризации. Наиболее характерна для карбонильных соединений конденсация, что хорошо известно для а,р-непредельных альдегидов, например фурфурола, и а-дикарбонильных соединений, таких, как пировиноградный альдегид, диацетил и редуктоны в дегидро-форме. Далее может протекать реакция продуктов конденсации с аминокислотами, приводящая к темноокрашенным гуминовым веществам (см. также [54, 55]). Что бы ни представляли собой образующиеся соединения, ни сахара, ни аминокислоты уже не могут быть из них регенерированы. [c.114]

    Были проведены исследования стадии тепловой обработки в целях контроля типа и количества продуцируемых соединений. Образцы экссудата сока агавы анализировались с помощью газовой хроматографии и масс-спектрометрии, и были выявлены среди прочих 5-гидроксиметилфурфурал (5-ГМФ), метил-2-фуроат, фурфуриловый спирт, 2(5Н)-фуранон, 5-ацетоксиметил-2-фурфурал,3,5-дигидрокси-2-метил-4(Н)-пиран-4-он и 2,3-дигидро-3,5-дигидрокси-6-метил-4(Н)-пиран-4-он. Большая их часть образуется в процессе реакции Майяра [55]. К другим соединениям, образующимся в этом экссудате не в результате реакции Майяра, относятся жирные кислоты ( j- is), альдегиды, спирты, отдельные терпены и ванилин. Кинетика некоторых соединений, образующихся при [c.452]

    Содержание свободных аминокислот ферментативно возрастает в ходе солодоращения, а затем они расщепляются с образованием соответствующих альдегидов, которые сами по себе могут иметь солодовый аромат или вступать в реакцию с редуцирующими сахарами при сушке солода [135] или кипячении сусла [69], в результате чего появляются продукты реакции Майяра с карамельным, зерновым, ореховым или хлебным ароматом. К продуктам реакции Майяра относят пиридины, пиразины и пирро-лины (способствующие формированию ароматов хлебной корочки, растительного и пряного (орехового) ароматов), а также циклические соединения типа фуранеола, изо-мальтола и мальтола (формирующие в пиве ароматы ириса, карамели или жженки) [69]. К продуктам реакции Майяра из пролина относят пирролы, существенно влияющие на формирование зернового и хлебного ароматов [69,135]. [c.499]

    Степень формирования продуктов реакции Майяра зависит от температуры и содержания влаги в солоде при сушке, влияя на вкусо-ароматические различия разных типов пива. В эле продуктов реакции Майяра больше, чем в пиве низового брожения, так как сушка солода в первом случае проводится при более высоких температурах. Янтарный, коричневый и черный солода сушатся соответственно при более высоких температурах, в зависимости от которых возрастает содержание продуктов реакции Майяра, переходящих из них в пиво [69]. Большинство продуктов реакции Майяра не претерпевает изменений под действием дрожжей и обнаруживаются в пиве [51]. [c.499]

    Основным процессом, влияющим на изменение вкусо-ароматических свойств пива для приготовления солодового виски, является сушка солода [88]. Ароматические соединения в солоде образуются в результате реакций Майяра (выше, в разделе о пиве, мы их уже упоминали) [143], тогда как при сжигании торфа образуются пиридины и тиазолы [88], атакже соединения, придающие продукту копченый аромат — фенолы, крезолы и гваяколи [52]. Компоненты пиридина способствуют формированию пряного, травянистого, землистого, карамельного, жареного и резиноподобного ароматов [63]. Поскольку пиридины и тиазолы характеризуются более низким порогом восприятия, чем фенолы, и они больше восстанавливаются в ходе дистилляции, то их вклад в формирование аромата виски больше [88]. [c.501]

    Изменение вкусо-ароматических свойств в процессе дистилляции происходит не только из-за изменения состава соединений, но и вследствие действия химических реакций в условиях повышенных температур дистилляции. В ходе реакций Майяра при перегонке могут образовываться гетероциклические соединения [24], особенно в перегонных кубах с прямым нагревом, где высока вероятность образования фурфурала [118]. Важную роль в формировании вкусо-ароматических свойств виски играют серосодержащие продукты пиролиза типа тиофенов и полисульфидов, образующиеся в процессе дистилляции, придавая ему интенсивный аромат обжарки [63]. [c.507]

    При гидролизе возможна кислотная реверсия , т. е. ресинтез олигосахар идов, а также взаимодействие углеводов с аминокислотами (реакция Майяра). Установлено, что в реакцию с амииокислотами вступают только восстаиавливающие сахара, причем пентозы более реакционноспособны, чем гексозы. Среди гексоз иаибольщая реакцио -1ная способность отмечается у О-фруктозы, затем следуют О-галактоза, )- ман оза и О-глюкоза. Ацилированные аминосахара ие вступают в реакцию с аминокислотами до температуры 53 °С. [c.77]

    Вероятно, что начальной стадией реакции Майяра является образование Ы-замещвнных гликозиламинов путем взаимодействия пепро-тонированной аминогруппы аминокислот, пептидов или белков с гликозидным гидроксилом моносахарида, затем образуется шиффово основание. Однако нельзя исключить и возможность реакции аль-фор мы гексозы (К СНО) с аминокислотой  [c.77]

    Учитывая все приведенные выше биологические и биохимические данные, мы считаем, что углеводы могут принимать лишь косвенное участие в образовании гуминовых кислот. Прям ое же участие, например по реакции Майяра, с образованием фракции гуминовых кислот строения [c.322]

    В честь открывшего ее исследователя реакцию восстанавливаюш их сахаров с аминокислотами и белками обычно называют реакцией Майяра другие наименования реакция образования коричневой окраски, реакция неферментативного образования коричневой окраски. Реакция Майяра лежит в основе исследований ниш,и, так как именно этой реакцией обусловлено нежелательное появление коричневого окрашивания при высушивании для консервации и хранения таких натуральных продуктов, как молоко, яйца, фруктовые соки и др. Реакция Майяра — весьма сложный процесс, состоя-ш,ий из целого ряда химических реакций, часть из которых протекает последовательно, а часть — параллельно. Конечный результат этих превращений — образование коричневых продуктов, называемых меланоидипами или гуминоподобными веществами. Направление реакции зависит от температуры, рИ и присутствия влаги. Со времени первых исследований Майяра изучению различных аспектов этой реакции было посвящено огромное число работ. Тем не менее лишь в последние 15 лет был выяснен химизм ключевых стадий комплекса реакций, приводящих к коричневой окраске, в то время 1 ак заключительные стадии до сих нор остаются невыясненными. Обсуждение в этой главе ограничено только теми вопросами, которые существенны для понимания материала гл. 5, 6 и 8 этой книги. Поскольку сравнительно недавно было опубликовано несколько исчерпывающих обзоров по реакции Майяра [6, 8, 9], список литературы в этой главе ограничивается главным образом работами, выполненными по химии этой реакции за последние десять лет. [c.106]

    Учитывая устойчивость продуктов перегруппировки Амадори при значениях pH, близких к 7, с одной стороны, и тот факт, что возникновение темных окрашенных продуктов происходит параллельно с перегруппировкой К-замеш енных гликозиламинов или с образованием продуктов перегруппировки непосредственно при взаимодействии п-глюкозы с аминокислотами, с другой стороны, Готтшалк развил представление, согласно которому промежуточный аминоенол [схема (3)] является неустойчивым веш еством, способным или образовывать стабильный продукт перегруппировки Амадори, или претерпевать деградацию с отш еплением молекулы воды и образованием производных фурана [20]. Позднее были найдены некоторые доказательства существования аминоенола как промежуточного продукта реакции [28] его образование в ходе перегруппировки Амадори и параллельная деградация постулировались в недавно предложенных схемах реакции Майяра [9, 18]. Таким образом, кажется вероятным (хотя строгих доказательств этого нет), что реакция Лобри де Брюина — Альберда ван Экенштейна (см. гл. 7) и перегруппировка Амадори протекают через аналогичные промежуточные продукты первая включает образование ендиола-1,2 с последующим образованием (в случае с-глюкозы) в-маннозы и в-фруктозы (более стабильных) и продуктов деградации с отщеплением воды, а вторая идет через аналогичный 1-аминоенол-2 по указанному выше пути. Однако есть и существенное различие между этими реакциями перегруппировка Лобри де Брюина — Альберда ван Экенштейна обратима и количество продуктов разложения при этом незначительно [29], в то время как перегруппировка Амадори практически необратима, а количество окрашенных продуктов деградации может быть сопоставимо с количеством основного продукта. [c.110]

    Имеются некоторые данные, подтверждающие образование редуктонов в ходе реакции Майяра. Из продуктов разложения 1-ииперидин-1-дезокси- [c.112]

    Согласно этому механизму, образуется альдегид, имеющий на один атом углерода меньше, чем исходная аминокислота, и молекула СО2 ири этом дикарбонильное соединение через трансаминирование превращается в аминокетон. Аминокетоны способны к поликонденсации с образованием темно-коричневых веществ [48]. Такой механизм деградации аминокислот по Стрекеру продуктами распада сахаров типа насыщенных и ненасыщенных а-дикарбонильных производных, выделенных Эйнетом (см. выше), хорошо согласуется с фактом, что в реакции Майяра образуется 90—100% СО2, выделяющегося из аминокислот, и не освобождается аммиак [49, 50]. [c.113]

    Озоны и ОМФ, образующиеся из альдогексоз при действии минеральной кислоты, способны реагировать с аминокислотами по схеме реакции Майяра, как это было показано выше, причем такие реакции могут протекать в мягких кислых средах. 4-Кето-5-оксивалериановый альдегид [см. схему (9)], будучи а-оксикетоном, также обладает способностью реагировать с аминами. По данным Хейнса и Штумме [48], соединения, содержащие концевую кетольную группировку, реагируют с алифатическими аминами в таутомер- [c.115]

    Если при хроматографии на бумаге аминокислот для удаления растворителя с хроматограммы применяют нагревание, аминокислоты образуют пятна, флуоресцирующие в ультрафиолетовом свете [88]. По-видимому, сущность этого явления состоит во взаимодействии аминокислот с альдегидными группами модифицированных или низкомолекулярных цепей целлюлозы бумаги, сходном с реакцией Майяра, при которой на первых стадиях появляются вещества, флуоресцирующие в ультрафиолетовом свете [40, 89]. Очевидно, реакции такого типа будут оказывать влияние на количественную хроматографию аминокислот на бумаге. [c.119]

    Прежде чем анализировать гидролизованный гликопротеин, обычно необходимо удалить избыток кислоты. Соляная кислота легко удаляется при упаривании, но надо избегать условий, в которых происходят потери аминокислот за счет реакции с продуктами расщепления углеводов. Упаривание нужно проводить быстрее и при возможно более низкой температуре. Необходимо также поддерживать в процессе упаривания достаточно кислую реакцию раствора во избежание реакции Майяра (см. стр. 105 и сл.), которая происходит в нейтральных или очень слабокислых средах. По-видимому, при упаривании соляной кислоты в вакууме pH гидролизатов не превышает 3, если не было добавлено щелочи. [c.135]


Смотреть страницы где упоминается термин Реакция Майяра: [c.55]    [c.302]    [c.554]    [c.12]    [c.554]    [c.29]    [c.67]    [c.98]    [c.453]    [c.182]    [c.61]    [c.105]    [c.111]    [c.113]   
Смотреть главы в:

Гликопротеины Том 1 -> Реакция Майяра


Технология спирта (1981) -- [ c.84 ]




ПОИСК





Смотрите так же термины и статьи:

Майяра реакция продукты



© 2025 chem21.info Реклама на сайте