Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая дипольный момент

    Дипольные моменты молекул. Многие физико-химические свойства вещества зависят от так называемых дипольных моментов [c.64]

    Заместители, имеющие —I- и —М-э ф ф е к т ы. Ординарная ковалентная связь между атомами различной химической природы в большей или меньшей степени полярна, причем отрицательный конец диполя находится на атоме более электроотрицательного элемента, стоящего в Периодической системе правее углерода. Если же в органическом соединении атом углерода связан с атомами этих же элементов не ординарной, а кратной связью, то вследствие большей поляризуемости кратной связи дипольные моменты значительно выше, например  [c.341]


    Удельные сопротивления полимеров и их электрическая прочность (сопротивление пробою) еще недостаточно изучены связь их с другими физическими и химическими свойствами полимеров, а также с особенностями их внутреннего строения еще недостаточно выяснена. Наоборот, по диэлектрической проницаемости и диэлектрическим потерям полимеров имеется теоретический и экспериментальный материал, который дает возможность уже в настоящее время изучать связь этих свойств с другими свойствами полимеров. Измерение диэлектрической проницаемости является основным методом определения дипольного момента молекул и изучения их полярной структуры (см. 23). В связи с этим из пяти названных выше технических характеристик диэлектрических свойств остановимся на первых двух. [c.594]

    Линд предложил видоизмененную ионную теорию механизма химического действия разряда, известную под названием теории ионных групп, или комплексных ионов. Согласно этой теории , вокруг иона группируются молекулы, имеющие или постоянный дипольный момент или момент, индуцированный полем иона, т. е. система представляет собой комплексный ион, сохраняющийся как единое целое в электростатических полях. При столкновении с частицей, имеющей заряд противоположного знака, центральный ион нейтрализуется и выделяющаяся при этом энергия используется на химическую активацию окружающих его молекул. Например, разложение водяного пара может, по Линду, протекать по следующей схеме  [c.252]

    Индукционное взаимодействие. Установлено, что раствори — тели, обладающие значительным дипольным моментом, способны индуцировать дипольный момент у молекул асимметричной и сла— боасимметричной структуры. Следовательно, индуцированию подвержены как полярные, так и некоторые неполярные углеводороды масляного сырья. Поляризации подвержены в большей степени полициклические ароматические углеводороды, у которых ароматические кольца слабо экранированы нафтеновыми циклами и короткими алкильными цепями (то есть голоядерные). Под влиянием элв стростатического поля растворителя в таких молекулах масляной фракции возникает дeфopмai ия внешнего электронного слоя, что приводит к неравномерному распределению зарядов на отдельных участках молекул. В результате неполярная молекула временно превращается в индуцированный диполь. Молекулы с индуцированным дипольным моментом подвергаются далее ориентационному взаимодействию и переходят и раствор полярного растворителя. Индукционные силы взаимодействия зависят от силы электростатического поля полярной молекулы, то есть от значения дипольного момента и химической природы неполярных молекул, а именно от способности их поляризоваться. Индуцированный дипольный момент пропорционален напряженности поля Е, то есть =аЕ, где а характеризует степень поляризуемости индуцированной молеку — лы. [c.215]


    Идеальная растворимость встречается редко. В большинстве систем природа растворителя значительно влияет на растворимость. Причину отклонений растворимости веществ А и В следует искать прежде всего в различной прочности связей А—А, В—В и А—В. Если силы притяжения почти одинаковы, то растворимость веществ будет велика, что приближает раствор к идеальному. Такое поведение присуще веществам, молекулы которых лишены дипольного момента (неполярны), при растворении в растворителях такого же характера. Если сред.чяя величина сил притяжения А—А и В—В больше, чем сил А—В, то растворимость будет невелика (положительные отклонения от закона Рауля). В этом случае по крайней мере одно из веществ обладает большим дипольным моментом и склонностью к ассоциации. Наконец, если притяжение А—В сильное и оба вещества стремятся к образованию друг с другом сольватов и химических соединений, то растворимость становится особенно большой (отрицательные отклонения от закона Рауля). [c.12]

    Характер активных центров на поверхности металла зависит от его химической природы, способа обработки и чистоты. Необходимо подчеркнуть, что химический состав поверхности играет существенную роль в протекании поверхностных процессов, и при рассмотрении конкретных вопросов химмотологии в области поверхностных явлений следует вносить поправки на особенности химического строения адсорбента. Химическое строение металла подробно рассматривается металловедением [203]. Поверхность металлических деталей представляет собой комбинацию полярных активных участков и олеофильных участков, природа которых определяется в основном дисперсионными силами. Адсорбция молекул некоторых углеводородов, индуцирующих на металле большие дипольные моменты, может способствовать превращению поверхности из неполярной в полярную [204]. [c.181]

    Таким образом, существует целый ряд видов связи от неполярной до полностью ионной. Направление и величина полярности двухэлектронной связи имеют очень большое значение. При химических реакциях связи часто разрываются таким образом, что электронная пара остается у того атома, к которому она была ближе, т. е. первоначальная полярность усиливается в промежуточном реакционном комплексе до ионного состояния. С помощью шкалы электроотрицательности атомов (Полинг, Мулликен) можно определить направление и приблизительно оценить величину полярности (дипольный момент) связи. Чем больше разность электроотрицательности двух связанных атомов, тем больше дипольный момент связи, но зависимость между этими величинами не является линейной. Атом с меньшей электроотрицательностью образует положительный конец диполя. Ниже приводятся электроотрицательности некоторых атомов, наиболее важных для органической химии  [c.52]

    Включает описание различных физических свойств химических соединений (термические величины, вязкость, электропроводность, плотность, дипольный момент и др.). [c.128]

    Химическое строение. Различие в химических свойствах используемых для получения мембран полимерных материалов может быть сведено к разнице в полярности молекул и их размеров. Полярность, которая с физической точки зрения характеризует неравномерность распределения электронных облаков, на химическом уровне количественно описывается такими показателями, как плотность заряда, дипольный момент и способность к образованию водородной связи. Хотя ионы и можно классифицировать как крайний случай полярных частиц, наиболее часто на практике их рассматривают отдельно. [c.65]

    В ММВ на расстояниях, характерных для жидкого состояния, когда соседние молекулы находятся в непосредственном контакте друг с другом, основную роль играют слабые химические связи с энергией 1...10 кДж/моль. а вклад дипольного, лондоновского и поляризационного взаимодействий незначителен и им можно пренебречь [17... 19]. Влияние же дипольного момента на свойства жидкости объясняется возникновением реактивного поля, которое уменьшает энергию образования ассоциатов и комплексов при одновременном снижении их устойчивости [18]. [c.64]

    Приведенное значение энергии связи Ое заметно отличается от экспериментального значения )е(эксп) = 9,906 эВ. Учет энергии корреляции (см. гл. 4, 6) позволяет существенно улучшить теоретическую оценку Ве. При обсуждении качества базиса следует обращать внимание не только на энергию, но и на такие физико-химические величины, как дипольный и квадрупольный моменты, диамагнитная восприимчивость, электростатический потенциал на ядрах и градиент электростатического потенциала, константа экранирования и тд. Некоторые из перечисленных величин изменяются по мере улучшения энергетических характеристик монотонно, а другие - немонотонно, например дипольный момент. Некоторые расширенные базисы, вполне приемлемые для оценки энергии, воспроизводят дипольный момент с довольно большой погрешностью. Включение в базисный набор поляризующих функций оказьшается весьма существенным. Это обстоятельство следует иметь в виду при решении конкретных задач. Например, при вычислении энергии взаимодействия полярных молекул важно получить достаточно точное значение ДИП0ЛЫ10Г0 момента в заданном базисе, так как дипольный момент определяет существенную компоненту в энергии взаимодействия -индукционное слагаемое. Поляризующие функции важны и при вычислении величины <г >, через которую выражается диамагнитная восприимчивость  [c.242]


    Определение физико-химических параметров комплексов, таких как коэффициенты экстинкции, химические сдвиги, энтальпии образования, дипольные моменты и др., затрудняется тем, что исследуемые растворы представляют собой равно- [c.119]

    В химической литературе традиционно было принято считать направление дипольного момента от положительного к отрицательному полюсу. [c.84]

    Электрофильное замещение в ароматических углеводородах сопровождается переносом электронов от аренов к атакующему электрофилу, что приводит к образованию л-комплексов. Подтверждением их существования является изменение физических и химических свойств системы углубление цвета, рост дипольного момента и т. д. л-Комплексы находятся в равновесии с несколько более прочными о-комплексами, имеющими ковалентную связь. Введение в ядро алкильных заместителей способствует образованию л- и ст-комплексов, так как повышает электронную плотность ядра, увеличивает основность ароматического углеводорода и тем самым способствует скорости его взаимодействия с атакующим электрофильным агентом. Экспериментально установлено, что реакционная способность снижается в ряду [c.8]

    Дипольные моменты и мольные поляризации являются важными величинами, характеризующими свойства химических связей в молекулах. [c.52]

    Например, дипольные моменты таких распространенных в промышленной практике растворителей, как фурфурол и фенол, составляют соответственно 3,57 и 1,70 Д, в то время как по растворяющей способности фурфурол значительно уступает фенолу. Это объясняется тем, что растворяющая способность растворителей зависит также от структуры углеводородного радикала их молекул, которым определяются дисперсионные силы растворителя. Так, с увеличением длины углеводородного радикала в молекулах кетонов растворяющая способность возрастает, хотя дипольный момент даже снижается. Растворители, в молекулах которых при одной и той же функциональной группе содержатся углеводородные радикалы различной химической природы, отличаются друг от друга по растворяющей способности. Углеводородные радикалы по способности повышать растворяющую способность таких растворителей можно расположить в следующий ряд алифатический радикал >бензольное кольцо >тиофеновое кольцо >фурановое кольцо. Растворяющая способность растворителей второй группы снижается с увеличением числа функциональных групп в их молекуле, особенно если эта функциональная группа способна к образованию водородной связи. [c.75]

    Одним из кардинальных вопросов теории экстракции является априорное предсказание экстракционной способности экстрагента на основании его физико-химических свойств. Большинство исследователей считает, что экстракционная способность для неэлектролитов должна быть связана с параметрами растворимости, для электролитов — с фундаментальными свойствами экстрагентов, например спектральными характеристиками (ИК-спектры), электроотрицательностью и реакционной способностью отдельных групп, входящих в состав молекулы экстрагента, дипольными моментами, зарядом и размером ионов, диэлектрической проницаемостью сред и т. д. [59-62]. [c.16]

    Органические соединения класса пиридинов широко используются в качестве ингибиторов коррозии в сероводородсодержащих минерализованных коррозионных средах. В последнее время находят широкое применение их четвертичные соли, такие как хлористые аминопиридины. Однако не все соединения проявляют достаточную эффектив1юсть в одних и тех же условиях. Для установления зависимости степени заш иты стали индивидуальными соединениями от квантово-химических параметров последних были проведены расчеты методом пренебрежения двухатомным перекрыванием с помощью программы АМРАС таких параметров как дипольный момент молекул, энергии на верхних заполненных молекулярных орбиталях (ВЗМО) и на нижних свободных молекулярных орбиталях (НСМО), максимальный и минимальный заряды на атомах. [c.289]

    С другой стороны, химический состав среды и ее полярность определяют, будут ли и в какой степени растворяться в ней конкретные ПАВ, что зависит от ван-дер-ваальсовой составляющей энергии связи этого ПАВ со средой. Чем эта энергия связи выше и чем растворимость ПАВ лучше, тем хуже его поверхностные (в частности, защитные и противокоррозионные) свойства. Молекулы среды способны вступать в межмолекулярное взаимодействие с молекулами ПАВ с образованием Н-ком-плексов, я-комплексов и комплексов с переносом заряда. Тем самым молекулы ПАВ поляризуются, увеличивается их дипольный момент и относительная степень ионности. Все это приводит к возрастанию общего энергетического взаимодействия. [c.207]

    В основу процесса адсорбционной очистки масляного сырья на полярных адсорбентах положена разная адсорбируемость компонентов этой сложной смеси, которая зависит от химического состава этой Смеси и структуры молекул веществ, входящих в ее состав. При адсорбции на полярных адсорбентах полярные силы преобладают над диоперсионными, поэтому адсорбируемость компонентов на адсорбентах такого типа там выше, чем больше дипольный момент их молекул. Адсорбция неполярных веществ, к которым относятся углеводороды, определяется образованием в молекулах углеводородов индуцированного дийоля. В процессе адсорбции в результате сил притяжения на поверхности адсор- [c.258]

    Нужно отметить, что приведенная схема химической связи в молекуле СО является лищь первым приближением. Переход одной электронной пары атома кислорода.в совместное обладание с атомом углерода должен был бы сделать молекулу сильно полярной. Однако дипольный момент СО очень мал, он равен [c.96]

    Высокая полярность молекул воды является одной из важнейших причин ее высокой активности при многих химических взаимодействиях. Она же служит причиной и электролитической диссо-ииации в воде солей, кислот и оснований. С ней связана также и растворимость электролитов в воде. В табл. 6 приведены значения дипольных моментов некоторых веществ. В углеводородах, содержащих двойную нли тем более тройную связь, также может не [c.80]

    Для всех гетеронуклеарных молекул можно отметить характерную особенность электронная плотность в них распределена несимметрично относительно обоих ядер. При таком распределении электронной плотности химическую связь называют полярной или точнее полярной ковалентной связью, а молекулы полярными. Среди молекул гидридов у НР особенно заметно несимметричное распределение заряда (рис. 31). Не только несвязывающие молекулярные орбитали 1а , 2а и 1л,1 практически целиком сосредоточены вокруг ядра фтора, но и на связывающей молекулярной о-орбитали электронная плотность благодаря большому различию в эффективных зарядах ядер водорода (1) и фтора (5.20) смещена в сторону последнего. Вследствие этого электрические центры тяжести положительных зарядов ядер и отрицательных зарядов электронов не совпадают, и в молекуле возникает постоянный электрический диполь — система двух равных по величине и противоположных по знаку зарядов +<7 и —д, разде-. ленных расстоянием I, называемым длиной диполя (рис. 32). Взаимодействие молекулы с электрическим полем будет зависеть от величины вектора а — электрического дипольного момента молекулы [c.84]

    Значительная часть исследований, связанных с теоретической органической химией, посвящена выяснению зависшкости между" химическими свойствами соединений и их электронной структурой. В последние годы большое внимание уделяется квантовохимическим расчетам электронных структур органических соединений [20], что способствует более глубокому пониманию их свойств и, следовательно, более рациональному выбору условий и направлений проведения химических превращений этих продуктов. Кроме того, квантовохимические расчеты позволяют оценить и ряд важных физических свойств молекул, как например, геометрию, дипольные моменты, теплоты образования. [c.29]

    Защитная эффективность ингибиторов на основе органических соединений определяющим образом зависит от адсорбционной и электрохимической активности молекул, проявляющейся на границе раздела металл - коррозионная среда . В свою очередь, эта активность непосредственно связана с величинами квантЬво-химических и физико-химических параметров молекул, к которым относятся энергии верхних заполненных и нижних свободных молекулярных орбиталей (ВЗМО и НСМО), дипольный момент, максимальные и минимальные заряды на атомах, молекулярная масса и количество атомов в молекуле. В сгтучае соблюдения идентичности условий экспериментов можно в определенном приближении считать, что защитная эффективность ингибитора является функцией от квантово- и физико-химическт параметров его молекул. [c.288]

    Перед измерениями химически чистые вещества подвергались перегонке, осушались хлористым кальцием и снова перегонялись. Степень чистоты объектов исследования контролировалась хроматографически. Результат анализа показал, что содержание исследуемых изомеров в обравгхах не ниже 99%, концентрация полярных примесей незначительна. Из всех полярных 1фимесей особого внимания заслуживают следы воды, так как вода обладает сравнительно малым молекулярным объемом и большим электрическим дипольным моментом молекул. Это приводит к тому, что небольшие примеси воды могут заметно влиять на величину " образцов. Анализ на присутствие следов воды в исследованных жидких алканах проводился по методу Фишера, Концентрации воды оказались ниже концентраций, соответствующих насыщенным растворам. Учитывая это, можно полагать, что вода находится в растворенном состоянии, а не в виде эмульсии /6/. Следовательно, [c.126]

    Затем программа входит в цикл, который обеспечивает ввод физико-химических свойств чистых компонентов. Для каждого компонента необходимо ввести три перфокарты. Помимо констант на картах указывается 8-буквенное наименование компонента. Первая карта содержит критические свойства и ацентрический фактор со. Если молекула полярная, то здесь же располага-ются ацентрический фактор гомоморфа, дипольный момент, а для полярных веществ и константа [c.115]

    Занятие 2. Химическая связь. Валентность. Ковалентная связь, ее сво -ства. Неполярная и полярная связь. Ионная связь. Определение дипольных моментов. Геометрическая /Тюрмула молекул. Расчет э г ективныу зарядов. Занятие 3. Донорно-акцепторняя, водородная связь. Межмолекулярное взаимодействие. Метоп МО. [c.181]

    Пом1ИМо химической природы на величину КТР влияет и строение молекул углеводородов. Та , с увеличением числа колец в углеводородах их КТР резко снижается, с увеличением длины алкильных цепей — повышается. Зависимость снижения КТР от числа колец в молекулах ароматических и нафтеновых углеводородов прямолинейна. С увеличением числа колец в молекуле КТР пятичленных нафтеновых углеводородов снижается более интенсивно, чем шестичленных. Следователыно, в полярном растворителе в первую очередь растворяются полицикличеоние ароматические углеводороды, слабо экранированные боковыми алкильными цепями и нафтеновыми кольцами, так как именно в этих углеводородах прежде всего возникает наведенный дипольный момент. Для нафтеновых и парафиновых углеводородов этот показатель невелик вследствие малой поляризуемости таких соединений. Поэтому при определенной температуре эти углеводороды растворяются в полярных растворителях преимущественно под влиянием дишерси-онных сил. [c.74]

    Определетие дипольного момента сульфидов. Дипольные моменты соединений позволяют оценить их полярность. Дипольный момент первых сульфидов определяли в бензоле при 25° С. Дипольные моменты диалкилсульфидов и сульфидов с ароматическими кольцами в молекуле колеблются в пределах 1,55—1,600 (Дебая), дипольные моменты тиофана и 2,5-диметилтиофана составляют 1,86 и 1,850, тиофена — 0,55D. Сравнивая дипольные моменты, можно получить представление о химическом строении нефтяных сульфидов. [c.164]

    Рассмотрим молекулу дициклогексилметана в стандартной конфигурации (см. рис. УП.8.6). Согласно классификации связей, учитывающей первое химическое окружение атомов углерода, в молекуле дициклогексилметана присутствуют С-С-связи двух видов С2-С2 и С2-Сд. Дипольный момент связи С2-С3 отличен от нуля вследствие различного химического окружения вторичных и третичных атомов углерода. Всего в молекуле шесть таких связей 1-2, 1-6, 1-7, 1-2( 1-6 и [c.179]

    В таких молекулах имеется электрический дипольный момент, т е. они полярные. Это происходит из-за разли птой электроотрвдательнос-ти атомов, участвующих в образовании ковалентнс Й химической свячн. [c.184]

    Квантово-химические расчеты показали, что образование координационной связи с участием неподеленной электронной пары атома азота аминогруппы является маловероятным. Кроме того, в случаях, когда в молекуле нитрила имеется несолько нтрильных групп (тетра-(Р-цианэтил)этилендиамин, диэтаноламинопропионитрил), наиболее устойчивыми являются комплексы, в которых все нитрильные атомы азота участвуют в координации. Расчеты позволили установить геометрию молекул, вычислить теплоты образования, дипольные моменты, потенциалы ионизации, рассчитать длины и порядки связей, валентные углы. Некоторые результаты расчетов приведены в табл. 1. [c.60]

    В результате решения уравнений Хартри - Фока находят некоторую систему канонических орбитагтей. Химические процессы мыслятся большей частью в терминах разрьша одних и формирования других химических связей. В связи с этим исходная информация о молекулярных орбиталях может быть преобразована в новую с тем расчетом, чтобы описание электронной структуры было дано в терминах локализованных орбиталей. При этом для определенного класса молекулярных систем теоретически удается установить некоторые характеристики отдельной связи, такие, как дипольный момент, продольная и поперечная поляризуемости и др. В методе МО не вводят априорные понятия о кратности связей. Тем не менее после завершения решения уравнений Хартри — Фока могут быть найдены величины, которые коррелируют со сложившимися представлениями о кратности в рамках представлений о спин-валентности. [c.186]


Смотреть страницы где упоминается термин Химическая дипольный момент: [c.75]    [c.44]    [c.301]    [c.540]    [c.60]    [c.101]    [c.72]    [c.141]    [c.30]    [c.213]    [c.71]    [c.236]    [c.180]    [c.445]    [c.448]   
Курс современной органической химии (1999) -- [ c.54 , c.452 ]




ПОИСК





Смотрите так же термины и статьи:

Дипольный момент

Связь химическая дипольный момент

Физико-химические свойства жидкостей дипольный момент



© 2024 chem21.info Реклама на сайте