Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нейтрон поглощение и анализ

    Методы нейтронного анализа основаны на способности элементов поглощать или рассеивать (замедлять) поток нейтронов. Поглощение нейтронов веществом подчиняется экспоненциальному закону [c.320]

    НЕЙТРОННО-АБСОРБЦИОННЫЙ АНАЛИЗ (НАА), метод количеств, определения элементов, а также отдельных нуклидов по ослаблению потока нейтронов, проходящего через слой анализируемого в-ва. Ослабление потока может происходить вследствие взаимод. нейтронов (их поглощения или рассеяния из коллимированного пучка) с ядрами определяемого элемента. Вероятность взаимод. характеризуется сечением а, причем а = и/ФЛ , где и-число актов взаимод. определенного типа между нейтронами и ядра ми-мишенями атомов в элементарном объеме исследуемого образца, У-число ядер-мишеней, Ф-флюенс нейтронов, т.е. отношение числа нейтронов, проникающих в элементарный объем, к площади его поперечного сечения. Большие средние сечения поглощения медленных нейтронов характерны, напр., для Li (ст = 7,0-10 м ) и Gd (4,6 10 м ). [c.205]


    Схема установки для нейтронно-абсорбционного анализа приведена на рис. 44. Анализируемый образец 4 помещается между источником медленных нейтронов 2 и детектором 6. Если известна интенсивность потоков нейтронов, падающих на образец и прошедших через него, а также сечение поглощения нейтронов веществом, то из уравнения (91) можно найти значение Мх, а следовательно, и содержание определяемого элемента в исследуемом образце. Определение содержания элемента производится сравнением интенсивностей потоков нейтронов до и после прохождения их через анализируемый об- разец и эталонный препарат. Можно также предварительно по-строить калибровочную кривую, выражающую зависимость степени ослабления потока нейтронов [c.153]

    Анализ по нейтронному поглощению является одним из наиболее быстрых методов определения бора в таких органических соединениях, где содержание этого элемента не превышает 0,05% [c.153]

    Желтый цвет придают сульфид железа, образующийся при введении восстановителей, напр, угля (0,5— 1%), или соединения церия и титана (5—7%). Синие, сине-зеленые и зеленые стекла получают, добавляя окислы кобальта (0,08—0,1%), меди (1,3-3,5%) и хрома (0,05-0,5%). В зависимости от типа и назначения контролируется пропускание, отражение и рассеивающая способность стекол. В линзах контролируют силу света и углы рассеяния. В цветных С. с., кроме того, определяют цветовой тон и чистоту цвета. К С. с. относятся и стекла, поглощающие или пропускающие ультрафиолетовые, инфракрасные и рентгеновские лучи, а также стекла, поглощающие излучения высоких энергий (альфа-частицы, тепловые нейтроны). Поглощения излучений в различных участках электромагн. спектра добиваются введением в состав стекла окислов железа, свинца, бария, кадмия, титана, ванадия, церия. Наиболее полно пропускают ультрафиолетовые лучи фосфатные и кварцевые стекла, не содержащие окислов железа. Черные стекла для люминесцентного анализа, пропускающие ультрафиолетовые и задерживающие видимые лучи, получают окрашиванием стекла окислами никеля и кобальта. Основу стекол с границей пропускания в инфракрасной области спектра составляют окислы германия, алюминия и теллура, а также халькогениды мышьяка, селена и [c.351]

    Данные о структуре кристаллических веществ можно получить на основании самых разнообразных исследований. К их числу можно отнести и чисто визуальное измерение внешних граней и углов в монокристаллах, и изучение их объемных характеристик, таких, например, как электропроводность или модули упругости. Однако эти характеристики не позволяют точно установить положение микрочастиц в кристаллах из-за их плотной упаковки. Поэтому при изучении структуры кристаллических веществ используются главным образом оптические методы, базирующиеся на поглощении и рассеянии различных излучений кристаллами. Поскольку длины связей в кристаллах (постоянные их решеток) порядка 0,1—0,3 нм, для анализа обычно используют коротковолновые излучения типа рентгеновского, а также нейтронные и электронные потоки. [c.91]


    При проведении анализа возможно поглощение тепловых нейтронов в исследуемом образце в том случае, если в нем присутствуют элементы с высоким эффективным сечением захвата тепловых нейтронов, такие, как литий, бор, кадмий, редкоземельные элементы. Для учета этой потери нейтронов проводят измерение потока нейтронов, возникающ,его при анализе эталонного препарата. Затем повторяют измерение, поместив эталонный препарат за кадмиевый экран толщиной 1. и.и, который полностью поглощает тепловые нейтроны. Разница двух выполненных измерений, отнесенная к первому измерению, представляет собой максимально возможную ошибку, которая колеблется в пределах 4—16%. [c.359]

    Интересными представляются нейтронно-активационные методы, основанные на выделении мышьяка из облученной пробы в виде арсина и поглощении его бумагой, пропитанной солью рту-ти(П) [668, 669, 864]. Малая продолжительность и небольшая трудоемкость выделения и высокая селективность по отношению к мышьяку делают этот метод выделения мышьяка весьма перспективным для его использования в нейтронно-активационных методах анализа. [c.111]

    В настоящее время используют два метода для того, чтобы разделить ионные и ковалентные соединения. Первый основан на анализе спектральных данных, полученных с помощью дифракции рентгеновских лучей, электронов и нейтронов, спектров поглощения, мессбауэровской спектроскопии, путем измерения физических свойств (электропроводность, диэлектрическая проницаемость) и химических свойств (термодинамические данные по энергиям связей, растворимость в полярных растворителях и др.). В некоторых случаях остаются сомнения, но достоверность результатов, полученных этим методом, высокая. В другом способе, предложенном Полингом, ионными кристаллами называют кристаллы, у которых ионность связей, определенная на основе электроотрицательностей составляющих их элементов, превышает 50%-Если воспользоваться эмпирическим уравнением Хенни и для соединения МтХ взять электроотрицательности Хм и хх, то для ионных кристаллов должно выполняться условие  [c.185]

    Радиационный вид неразрушающего контроля основан на регистрации и анализе проникающего ионизирующего излучения после взаимодействия его с контролируемым объектом. В зависимости от природы ионизирующего излучения вид контроля подразделяют на подвиды рентгеновский, гамма, бета (поток электронов), нейтронный методы контроля. В последнее время находят применение даже потоки позитронов, по степени поглощения которых определяют участки объекта, обедненные или обогащенные электронами. [c.16]

    При взаимодействии радиоактивного излучения с веществом обязательным процессом является взаимодействие излучения с электронами атомных оболочек. При этом возможно частичное поглощение излучения, его рассеяние и отражение. Методы анализа, основанные на измерении абсорбции или изменении направления ядерного излучения в результате взаимодействия с веществом, хотя и не универсальны, но в ряде случаев могут быи. полезны, особенно при определении одного из компонентов бинарной смеси. В зависимости от типа излучения различают у -абсорбционный, Р -абсорбционный и нейтронно-абсорбционный методы. Кроме того, следует упомянуть методы, основанные на отражении уЗ-частиц и на замедлении нейтронов. Существуют и другие методы [c.381]

    Анализ по поглощению нейтронов. Одной из разновидностей анализа по поглощению излучения является анализ по поглощению нейтронов [273, 274]. Этот метод основан на способности некоторых элементов (гадолиния, самария, европия, диспрозия, кадмия, бора, индия и некоторых других) аномально сильно поглощать нейтроны вследствие того, что сечение захвата нейтронов у них на несколько порядков выше, чем у большинства других элементов. Известно, что поглощение нейтронов в слое вещества подчиняется экспоненциальному закону  [c.152]

    Активационный анализ по поглощению нейтронов. За счет взаимодействия с ядрами мишени число нейтронов уменьшается, что обнаруживается по ослаблению интенсивности потока нейтронов нейтронными счетчиками (счетчики, наполненные ВРз) или пластин-детекторов из легко активируемого материала. [c.223]

    Уже упоминалось, что реакторостроение было одной из первых отраслей техники, которая предъявила высокие требования к чистоте материалов, используемых в качестве горючего (и, ТЬ), теплоносителя (Na, вода, некоторые органические соединения и др.), замедлителя (вода, графит), и материалов для создания различных конструкций и устройств (2г, А1, Ве и др.). Эти материалы не должны содержать элементов с высоким сечением поглощения тепловых нейтронов в ряде случаев требуется также отсутствие элементов, дающих при облучении долгоживущие радиоактивные изотопы с жестким -излучением. Для всех этих случаев были разработаны соответствующие методики активационного анализа, позволившие получить требуемую [c.11]


    Среди элементов, дающих при активации тепловыми нейтронами чистые --излучатели (51, Р, Т1, 8, Са), наиболее важным является кремний — один из основных полупроводниковых материалов. Хотя, строго говоря, кремний не является чистым --излучателем, так как распад его изотопа 51 в 0,07% случаев сопровождается испусканием у-квантов с энергией 1,26 Мэе. Однако выход у-квантов мал, и они создают слабые помехи у-спектрометрическому анализу. Основные трудности возникают из-за тормозного излучения, возникающего при поглощении 3--излучения 51 ( з = = 1,47 Мэе). [c.266]

    В любом методе анализа не все 100% атомов, ионов или молекул определяемого вещества используются при количественном определении, так как они не полностью находятся в нужной форме, что связано, например, с растворимостью соединений, полимеризацией многовалентных катионов, диссоциацией комплексных соединений, неполной ионизацией атомов в плазме или их активацией в потоке нейтронов и т. д. Кроме того, измеряемое вещество устойчиво иногда только в течение ограниченного времени ( времени жизни атомов, ионов), например, вследствие радиоактивного распада короткоживущих изотопов, распада малоустойчивых соединений, диспропорционирования, фотохимического действия света, неустойчивости горячих атомов в радиохимии или в катализе. Всем известна малая устойчивость разбавленных растворов ниобия, тантала, протактиния и т. п. вследствие гидролиза. Неполная и непостоянная активная форма вещества при абсолютном измерении каких-либо параметров (поглощение, эмиссия и т. п.) значительно сказывается на чувствительности и особенно на точности анализа. Приведем примеры. [c.10]

    Уран и радиометрический метод анализа. Уран занимает главное место в решении проблемы ядерной энергии. Изотоп уран-235 имеет большое значение, так как он единственный природный изотоп, способный к делению на медленных нейтронах.. Искусственный транс-урановый элемент плутоний также делится на медленных нейтронах. Его получают поглощением нейтронов, изотопом уран-238 с двумя последующими превращениями, в результате которых образуется плутоний-239. [c.53]

    Для уменьшения поглощения нейтронов в таком топливе существенной является замена азота с природным изотопным составом на тяжёлый изотоп азота поскольку его лёгкий изотоп N является сравнительно сильным поглотителем нейронов. Предполагается, что в будущем оптимальное обогащение нитридного топлива топлива по азоту-15 будет определено на основе совместного анализа стоимостных показателей (определяемых в том числе и затратами на разделение изотопов азота) и характеристик расширенного воспроизводства ядерного горючего. [c.206]

    При измерениях необходимо учитывать возможность поглощения замедленных нейтронов изотопами, имеющимися в анализируемом образце, сечение захвата которых велико, например изотопы кадмия, лития, бора, редкоземельных элементов и т. п. Эта ошибка может составлять от 4 до 16%. Следует также учитывать возможную ошибку, возникающую в толстых образцах вследствие различия поглощения у-лучей в анализируемом и эталонных образцах при их неодинаковой плотности. При анализе экспериментально определяют указанные выше ошибки и в результаты измерения вносят соответствующую поправку. [c.538]

    Активация нейтронами. Принципы нейтронного активационного анализа теперь уже хорошо установлены и больше но нуждаются в подробном разборе. Так как сечение захвата быстрых нейтронов обычно много меньше, чем сечение захвата медленных нейтронов [4], ошибки за счет самоэкранирования нри активационном анализе на быстрых нейтронах будут меньше. Так, нанример, в то время как для мышьяка сечение захвата медленных, или тепловых, нейтронов (эффективная энергия около 0,02 эв) равно 4,3 барн, его сечение поглощения для быстрых нейтронов, или нейтронов деления (эффективная энергия около 1 Мэв), составляет всего несколько миллибарн. Для хрома сечепие захвата медленных нейтронов равно 3,1 барн, а для быстрых нейтронов сечение захвата не определено. Но оно, вероятно, должно быть меньше, чем у мышьяка, так как, в общем, сечение захвата быстрых не11тронов уменьшается с уменьшением атомного номера [5]. Однако активация быстрыми нейтронами дает преимущества лишь в том случае, когда получается отвечающая предъявляемым требованиям чувствительность онределенпя следов примесей. При определении серы с помощью реакций 3 (га, на медленных нейтронах и 8 (р,п)Р на быстрых нейтронах сечение захвата быстрых нейтронов 8 несколько меньше, чем сечение захвата медленных нейтронов 8 (60 [6] и 260 мбарн [7] соответственно), но за счет большего относительного содержания и легкости регистрации наведенной активности в данном случае метод активации быстрыми нейтронами оказывается более чувствительным [8]. [c.169]

    В последнее время широкое распространение получил новый ядерно-физический метод определения бора по нейтронному поглощению [31—33]. Эффективность использования методов нейтронного поглощения для количественного определения содержания бора обусловлена тем, что сечение захвата медленных нейтронов атомами бора составляет 755 барн1атом, в то время как у других элементов оно меньше, а иногда не превышает долей или единиц барна [34]. Принцип метода заключается в том, что при просвечивании потоком медленных нейтронов образца, содержащего бор, наблюдается ослабление потока, по величине пропорциональное содержанию бора. Поскольку коэффициент ослабления потока нейтронов данным элементом обусловливается особенностями строения его ядра, а не электронных оболочек, результаты анализа не зависят от химической связи атома в молекуле поэтому возможен анализ как твердых, так и жидких проб любого соединения бора, в том числе и борной кислоты [35]. [c.8]

    Основываясь на изучении кинетики привитой сополимеризации [1683] и данных по ИК-спектроскопии полимерных фракций, полученных экстракционным методом [1684], было высказано предположение, что прививка в основном происходит по цистеиновым остаткам кератина шерсти. В связи с этим, снимая спектры поглощения динитрофенилметионина, можно построить градуировочную кривую для определения содержания концевых аминокислотных групп в выделенном полиметилметакрилате. Наблюдается линейная зависимость между оптической плотностью и молярной концентрацией динитрофенилиро-ванных аминокислот. Молярный коэффициент экстинкции равен 1,0-10 . Определение следовых элементов в полиметилметакрилате с помощью нейтронного активационного анализа описано в работе [1685]. [c.340]

    Из этого можно сделать вывод, что в устойчивом состоянии общее число нейтронов, производимых при делении, не зависит от распределения запаздывающих нейтронов тем пе менее энергетический спектр нейтронов деления, вообще говоря, зависпт от свойств запаздывающих нейтронов. Так что если средняя анергия нейтронов, даваемых предшественниками, отличается от средней энергии мгновенных нейтронов, то этот эффект при точном расчете должен приниматься во внимание. В действительности некоторое различие между средними энергиями мгновенных и запаздывающих нейтронов имеется (см. табл. 9.1), но эта разница пе существенна с точки зрения вычисления утечки в надтепловой области и поглощения для теплового реактора. В анализе, проводимом ниже, эффект пе учитывается.  [c.417]

    Наиболее щироко в настоящее время применяется нейтронно-акгива-ционный анализ, в основе которого лежит поглощение ядрами элементов тепловых нейтронов В результате этой реакции образуются изотопы, больщей частью радиоактивные. Подавляющее большинство из них являются у-излучателями, по площадям пиков у-спектров которых можно рассчитать их содержание в пробе Для этого активность элемента в образце сравнивают с активностью стандартного образца определяемого элемента, содержание которого известно. Таким образом, для выполнения анализа необходимо лишь обеспечить точное соответствие условий облучения стандартного образца и анализируемой пробы В частности, оно может нарушаться из-за эффектов экранирования тепловых нейтронов. Поэтому в качестве стандартных образцов использутот вещесгва с близкими к анализируемым объектам физическими и химическими свойствами. Содержание элементов в стандартных образцах определяют с помощью независимых методов анализа, в крайнем случае их концентрацию рассчитывают на основе исходных данных [c.311]

    Требование к исследуемому образцу. Для получения дифракционного эффекта требуется кристалл определенного размера. Последний зависит от коэффициента рассеяния и быстроты поглощения лучей в веществе поток электронов полностью поглощается при про.хождении через слой в несколько микронов ренггеновские лучи дают достаточную интенсивность рассеяния при пересечении слоя в 1 мм для ощутимого рассеяния потока нейтронов нужны уже не миллиметры, а сантиметры. Поэтому для рентгеноструктурных исследований необходим монокристалл с размерами в пределах 0,1 —1,0 мм. В частности, можно использовать игольчатые (нитевидные) кристаллы очень небольшого поперечного сечения. Для нейтронографического исследования обычно требуется более массивный монокристалл — размером в 0,5—1 см (что, впрочем, существенно зависит от интенсивности первичного пучка нейтронов). Получение таких монокристаллов часто составляет самостоятельную техническую проблему. Наоборот, в электронографии можно пользоваться лишь кристаллическими пленками. Обычно они создаются путем кристаллизации вещества на аморфной, прозрачной для электронов подложке. При этом, как правило, возникает не монокристальная, а поликристалличе-ская пленка. Для структурного анализа, однако, важно, чтобы кристаллики пленки имели в ней некоторую преимущественную ориентацию. Добиться кристаллизации такой текстурированной пленки удается не всегда. [c.128]

    Анализ, как и в описанной выше методике, целесообразно проводить, сравнивая поглощение нейтронного потока в исследуемом объекте с поглощением в эталонном образце. При реакциях п, а) и (л, р) суждение о содержании элемента выводит на основании интенсивности потока а-частиц либо протонов. Нетрудно заметить, что особенности последнего метода весьма приближают его к радиоак-тивационному анализу. [c.171]

    В процессе конвертирования энергии ускоренных электронов в пучок гамма-квантов в тормозной мишени, а также в самой исследуемой пробе, уже под действием квантов тормозного излучения по реакции (у,и) образуются нейтроны (фотонейтроны) с энергетическим распределением от тепловых до максимальной энергии кванта за вычетом энергии связи нейтрона в нуклиде, на котором идет реакция. Эти нейтроны взаимодействуют с ядрами пробы и по реакции (и,у) образуют радионуклиды, как и в НАА. Канал накопления радионуклидов при поглощении фотонейтронов необходимо учитывать при планировании исследований, он часто используется при элементнолм анализе проб и рассматривается как фотоядерный метод [36]. Недостатком, усложняющим ФАА, является одновременное образование нескольких чистых позитрон-ных раснадчиков в реакциях (у,и) и (у,2и) на нуклидах некоторых элементов. При замедлении позитроны, испущенные разными радионуклидами, аннигилируют, образуя гамма-кванты, не отличающиеся по энергии. В таких случаях для повышения избирательности и надежности анализа элементного состава вещества применяют анализ с частичным радиохимическим разделением элементов облученной пробы. [c.60]

    Наиболее важным источником получения заряженных частиц (а, р) для активационного анализа является циклотрон. Чтобы дать представление о потоках быстрых ядерных частиц, которые удается получить с помощью циклотрона, укажем, что пучок протонов или дейтонов силой в 1 мка соответствует потоку в 6,3 X ионов в секунду, а между тем в современных циклотронах с постоянной частотой сила тока порой достигает нескольких сот микроампер. Циклотрон является незаменимым источником для активации лeгкиx элементов (г<Ю) вследствие малых сечений реакций этих элементов по отношению к нейтронной активации. Кроме того, следует учитывать, что при поглощении нейтронов легкими ядрами в большинстве случаев образуются короткожй вущие изотопы, что в значительной степени ограничивает возможности проведения химических операций. [c.138]

    Присутствие потока резонансных нейтронов в реакторе несколько осложняет активационный анализ материалов, имеющих сильные резонансы поглощения нейтронов, так как вследствие сильного поглощения резонансных нейтронов происходит изменение энергетического спектра нейтронов внутри образца, что в конечном счете может исказить результаты анализа. С другой стороны, поток резонансных нейтронов увеличивает уровень наведенной активности изотопов, имеющих большой резонансный интеграл, по сравнению с активацией чисто тепловым потоком нейтронов. В этом случае для расчета наведенной активности по уравнению (2.14) следует применять эффективное сечение активации сгэфф> которое учитывает активацию под действием тепловых и резонансных нейтронов  [c.59]

    Наибольшее применение фотонейтронный метод получил для определения бериллия. В этом случае в качестве источника у-излучения обычно используется а для регистрации потока нейтронов — пропорциональные борные или сциитилляциопные счетчики. Фотонейтронный метод определения бериллия имеет высокую чувствительность при источнике активностью 100 мкюри и весе пробы 100 г чувствительность составляет (1- 2) 10 % Ве. В целом метод очень прост, быстр и дает хорошую точность. Мешают анализам элементы с большими сечениями поглощения нейтронов (С(1, В и др.). Применение кадмиевого фильтра позволяет полностью устранить влияние этих элементов на результаты определений, но за счет некоторой потери чувствительности (на 25—30%). Подробное описание фотонейтронного метода определения бериллия можно найти в работах [29, 124—126.  [c.89]

    Разработке методов у-спектрометрического анализа облученных образцов полупроводникового кремния и некоторых его соединений было посвящено большое число работ [367—374]. Моррисон и Косгроув [367] облучали образцы поликристаллического кремния (0,05—1 г) вместе с соответствующими стандартами 3 суток в потоке 3 10 нейтрон (см сек). После облучения образец подвергали поверхностному выщелачиванию раствором КОН + + 30%-ная Н2О2. Затем образец переносили на алюминиевую мишень. Для поглощения р—-излучения 51 - использовали фильтр толщиной 0,738 г см . Метод позволял определять примеси 2п, Аз, Ре, К, Ма, Та. Осложнений, возникающих из-за тормозного излучения, отмечено не было, так как образцы облучали в реакторе с относительно невысоким потоком нейтронов, а активность измеряли через 266 [c.266]

    Как выяснилось при анализе, теория этого явления по существу уже была разработана Лэмбом [6], но она относилась к захвату нейтронов ядрами атомов, находящихся в кристаллической решётке. Мёссбауэр объяснил наблюдаемые им результаты, применив выводы этой теории к резонансному рассеянию и поглощению гамма-квантов. Из теории следовало, что ядра, находясь в кристаллической решётке кристалла, могут взаимодействовать с гамма-квантами, не испытывая отдачи. В 1961 году за открытие описанного явления Р. Мёссбауэру была присуждена Нобелевская премия по физике, а сам эффект получил название эффекта Мёссбауэра. [c.97]


Смотреть страницы где упоминается термин Нейтрон поглощение и анализ: [c.370]    [c.370]    [c.240]    [c.461]    [c.65]    [c.93]    [c.358]    [c.601]    [c.370]    [c.31]    [c.607]    [c.220]    [c.71]    [c.716]    [c.716]   
Руководство к практическим занятиям по радиохимии (1968) -- [ c.571 ]




ПОИСК





Смотрите так же термины и статьи:

Нейтрон



© 2025 chem21.info Реклама на сайте