Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этан, гидрирование

    Методом низкотемпературного фракционирования смесь разделяют на этан, этилен, пропан, пропилен и топливный газ. Этан и пропан подвергают дальнейшему крекингу в трубчатых печах в присутствии водяного пара для получения этилена и пропилена. После компрессии и охлаждения газы снова направляют на установку для разделения газов. Ацетилен удаляется путем каталитического гидрирования либо из общего количества нефтезаводского газа, либо только из этиленовой фракции. Разделение пропана и пропилена осуществляется дистилляцией или, если это целесообразно, проведением со смесью ряда реакций. Стоимость установки для производства 90 ООО т этилена и 43 ООО т пропилена из нефтезаводских газов составляет 9,9 млн. долларов, цена 1 фунта этилена и пропилена 0,0241 доллара. [c.9]


    По некоторым данным, реакция гидрирования ацетилена (как в этилен, так и в этан) — первого порядка по водороду и нулевого (или отрицательного) — по ацетилену. Аналогичными кинетически- [c.240]

    Газообразные парафиновые углеводороды, как метан, этан, пронан и бутаны, имеются в большом количестве в природных газах, а также в отходящих газах нефтепереработки и установок гидрирования угля азотная кислота может быть просто и в любом количестве получена путем каталитического окисления аммиака. [c.278]

    Во фракции бензина пиролиза, выкипающей в пределах 70 — 150 С, содержатся значительные количества бензола и других ароматических углеводородов, которые извлекают методом экстракции. Процессу экстракции предшествует гидрирование непредельных углеводородов, содержащихся в бензине, прошедшем холодную гидроочистку от диеновых углеводородов. Гидрирование ведут на алюмокобальтмолибденовом катализаторе при 5 МПа, 360 °С и объемной скорости подачи сырья до 2 ч до остаточного содержания серы 0,001—0,005% (масс.). При этом гидрируются и олефиновые углеводороды. Гидрирование применяют и для получения низших олефинов, а также для удаления ацетилена и его производных из газа пиролиза или из его этан-этиленовой фракции [16]. [c.18]

    Из таких углеводородов, как метап, этан и пропан, содержащихся в отходяш их газах гидрирования угля или в природном газе пиролизом при очень высоких температурах можно получить ацетилен. Проблема подвода большого количества тепла, необходимого для эндотермического процесса пиролиза, может решаться различными способами. Превращение метапа согласно уравнению [c.94]

    Как показали результаты расследования, после прекращения поступления в систему этан-этиленовой фракции подача метан-во-дородной фракции продолжалась, так как отсутствовали соответствующие технические средства. Установлено также, что ухудшение проходимости этан-этиленовой фракции не исключалось и при нормальной работе системы, поскольку после водяного холодильника этан-этиленовая фракция содержала определенное количество сконденсированной влаги и до поступления в холодильник, охлаждаемый хладоагентом, сепарации не подвергалась. Не было предусмотрено сигнализации, оповещающей о завышении температуры в реакторе гидрирования, о прекращении подачи этан-этиленовой фракции, об изменениях перепада давления при прохождении газа через холодильник, о завышении верхнего уровня сжиженных газов в аппаратах. [c.335]

    Эта реакция принадлежит к уникальному классу реакций. Ее проводят в режиме окислительного дегидрирования, но она не является каталитической. Ранее говорилось, что дегидрирование этана в этилен — относительно высокотемпературный процесс. Дегидрирование метана в ацетилен представляет собой чрезвычайно высокотемпературную реакцию и идет при 1300— 1600°С, когда равновесие наиболее сильно сдвинуто в сторону образования этилена. Очевидно, металлические реакторы не могут быть использованы для реакции парциального окисления природного газа (метана) в силу того, что реакция происходит при температуре, превышающей температуру плавления нержавеющей стали или любых других распространенных металлов. Поэтому реакторы футеруют огнеупорным кирпичом, а теплообмен и теплоотвод осуществляют до контакта горячих газов с неметаллическими поверхностями. При более низких температурах контакт газов с металлическими поверхностями допустим, и окончательный отвод тепла производится в металлическом теплообменнике. Сильно нагретые продукты реакции охлаждаются путем впрыскивания воды непосредственно в газовый поток (рис. 4). При этом вода превращается в пар, который вместе с продуктами должен быть охлажден экономично и с пользой. При получении ацетилена его быстрое охлаждение является одной из решающих операций, препятствующей гидрированию ацетилена в этилен или этан. [c.148]


    Одновременно происходит гидрирование, дающее в качестве продуктов этилен и этан. [c.249]

    Пиролизу подвергали либо смесь метана с этаном, получаемую с установок гидрирования угля, либо метан из ближайшего источника природного газа. Реакцию проводили в охлаждаемой водой стальной трубе длиной 100 см и внутренним диаметром 9,5 см. Электроды были медными. Электрод, к которому подводилось высокое напряжение, находился в головной расширенной части реактора. Второй электрод, который был заземлен. Представлял собой медную прокладку в верхней части стальной трубы. Подвергавшиеся пиролизу газы входили в расширенную часть реактора, где они приобретали очень быстрое вихревое движение. После этого газы проходили через электрическую дугу и далее вдоль стальной трубы. Максимальная скорость газов в трубе составляла свыше 665 м. сек. Дуга постоянного тока работала под напряжением 7000 в при силе тока 1000 а мощность дуги при подаче газа 2800 л( /час равнялась 7000 кет. Наивысшая температура реаги  [c.275]

    Глазер проводил опыты с гидрированием этилена в этан в лабораторном аппарате и получил зависимости, представленные на рис. П1-5. [c.235]

    Очистку от ацетилена проводят в потоке этан-этиленовой фракции на стадии газоразделения путем гидрирования до этилена и этана. Селективность процесса и снижение возможных потерь этилена зависят от применяемого типа катализатора гидрирования. [c.104]

    Например, из этилена можно получить за счет перераспределения водорода этан и ацетилен. Хотя такую реакцию можно рассматривать как сложную, состоящую из двух простых гидрирования и дегидрирования, она может протекать и в отсутствие водорода в реакционной среде, т. е. как простая. Из олефинов Сз и выше за счет перераспределения водорода можно получить не только ацетиленовые, но и диеновые углеводороды. [c.222]

    ППП для расчета реакторных процессов позволяет вести расчет реакторов гидрирования ацетилена во фракцию этан—этилен, пропадиена во фракцию пропан—пропилен реакторов гидрирования поликонденсата реакторов мета-нирования окиси углерода в водороде материального и теплового балансов процессов каталитического крекинга, пиролиза бензинов, этана, газового конденсата, рафинированного бензина, вакуумного газойля, смесей различных видов сырья. [c.570]

    Простейшей из реакций гидрирования считают насыщение двойной связи, и среди них таковой является превращение этилена в этан  [c.117]

    В процессе предварительного захолаживания с использованием холода дросселированной метановой фракции производится отбор основного водородного потока, который затем проходит тонкую очистку. Пирогаз после выделения водорода направляется в деметанизатор, где оставшийся водород и метан отделяются от этана, этилена и более тяжелых углеводородов. Кубовой продукт деметанизатора поступает в деэтанизатор, с верха которого отбирается фракция Сз. К ней добавляется водород, и смесь подается в реактор гидрирования ацетилена. После этого фракция Сз проходит осушку и направляется в этиленовую колонну, с верха которой отбирается этилен, а снизу этан, возвращаемый на пиролиз. [c.104]

    Гидрирование этилена на никелевом катализаторе является гомофазным процессом, т. е. оба исходных вещества — этилен и водород и продукт реакции этан находятся в одной фазе. Но, поскольку процесс идет на границе этой фазы с металлическим никелем, он является гетерогенным. [c.38]

    Способность водорода присоединяться по месту кратных углеродных связей известна уже давно. Еще в середине XIX в. М. Фарадей, проведя реакцию взаимодействия водорода с этиленом над платиной, осуществил превращение этилена в этан. Однако долгое время разрозненные наблюдения отдельных авторов казались лишенными интереса. Лишь после того, как было открыто замечательное свойство некоторых восстановленных металлов, например никеля, кобальта, меди [1], способствовать гидрированию, т. е. насыщению водородом алифатических и ароматических кратных связей, каталитическое гидрирование начало быстро развиваться. В настоящее время им широко пользуются в исследовательской работе для изучения числа и характера насыщенных связей, определения строения неизвестных соединений, например природных веществ. Внедрение гидрирования в технику явилось стимулом для грандиозного развития процессов деструктивного гидрирования, синтезов из окислов углерода, облагораживания топлива и многочисленных реакций восстановления. [c.338]

    Общую скорость реакции гидрирования этилена в этан, по [c.435]

    Заводы Сасол П и Сасол П1 в г. Секунда. Эти два завода фактически идентичны друг другу. Поэтому нет необходимости описывать их раздельно. На рис. 12 представлена схема одного из них. Для осуществления процесса Фишера — Тропша используются только новые крупные высокопроизводительные реакторы Синтол (подразд. IV. А. 3). По сравнению со старым заводом Сасол I на заводах Сасол II п Сасол III имеются существенные различия в разделении и переработке продуктов. Как и раньше, на этих заводах из катализа-та выделяют конденсацией воду и жидкие нефтепродукты. Если на Сасол I отходящий газ пропускают через абсорбционную колонну для выделения жидких углеводородов, тона Сасол II его сначала пропускают через скруббер для отмывки СО2, а затем через криогенную установку, в которой происходит разделение газа на фракции обогащенную водородом, метановую, этан-этиленовую и иропан-бутановую. Такая технология разделения дороже, но она позволяет выделять дорогостоящие этан и этилен. Углеводороды С2 направляют в проточную установку крекинга с водяным паром этана до этилена. (На Сасол I этилен вместе с СН4 продают как отопительный газ.) Метановую фракцию из криогенной установки направляют на риформинг с целью получения синтез-газа, как и на Сасол I , и возвращают в реактор Синтол . Поскольку сырье для риформип-га на Сасол И содержит намного больше метана, чем на Сасол I , процесс на Сасол II более эффективен. Фракцию, обогащенную водородом, из криогенной установки возвращают в реакторы Синтол . Чистый водород, необходимый для процессов гидрирования, выделяют пз обогащенной водородом фракции в детандерах. [c.194]


    Этан без двух атомов водорода представляет молеку.г1у этилена. Из этилена при гидрировании получается этан  [c.41]

    Продукты различных термических процессов характеризуются рядом специфических особенностей, определяемых общностью механизма протекающих реакций. Так, в составе углеводородного газа преобладают метан и этан при умеренном содержании (25-30%) непредельных углеводородов. С повышением давления в реакционной зоне уменьшаются как выход газа, так и содержание в нем непредельных углеводородов, что обусловлено интенсификацией реакций полимеризации и гидрирования. [c.182]

    Гидрирование этилеиа в этан было впервые осуществлено в середине XIX в. Фарадеем, применившим в качестве катализатора платиновую чернь. Впоследствии для гидрирования олефинов использовали платину, скелетный никелевый катализатор (никель Ренея), никель на носителях, медь, смешанные оксидные катализаторы (медь-хромитный и цинк-хромитный) и многие другие гетерогенные контакты.. Наиболее типичны для промышленной практики металлический никель и никель, осажденный ыа оксиде алюминия, оксиде хрома или других носителях. В их присутствии высокая скорость реакции достигается при 100—200 °С и давлении водорода 1—2 МПа. Если исходное сырье содержит сернистые соеди-Г ения, рекомендуется применять катализаторы, стойкие к сере (сульфиды никеля, вольфрама и молибдена) при 300—320°С и 5-30 МПа. [c.496]

    Впоследствии на линии подачи воды в реактор был установлен регулирующий клапан с дистанционным включеиием из операторного помещения, а средства автоматического регулирования расходов метан-водородной и этан-этиленовой фракций были усовершенствованы. Перед холодильником были установлены сепараторы была смонтирована система блокировок, отключающая подачу метан-водородной фракции при прекращении поступления этан-этиленовой фракции и завышениях температуры в реакторе установлена звуковая и световая сигнализации на все возможные отклонения от нормального режима для определения концентрации водорода в газовой смеси, поступающей на гидрирование, был дополнительно установлен поточный хроматограф были смонтированы приборы регистрации перепада давлений в холодильнике и регулирования режима в реакторе при минимальных нагрузках. [c.335]

    Бон и Коуард [6] произвели крекинг этана при 800° С в присутствии водорода и получили выход метана 41%. В тех же самых условиях при использовании в качестве разбавителя азота выход метана снизился до 18%. Это дало повод Бону и Коуарду заключить, что метан образуется в результате гидрирования радикалов метила. Аналогично этану ведет себя этилен. Гарднер [27] установил, что разложение этана Ьодобно крекингу других углеводородов, так как в результате расщепления получаются олефин и парафин  [c.84]

    Под каталитиЧ1ским действием никеля ацетилен дает продукты этиленового и ароматического ряда, частью собирающиеся в виде жидкого конденсата, и углеводород, аналогичный кунрену. Железо разлагает ацетилен еще более энергично, чем никель. При температурах выше 180° происходит гидрирование в этилен и этан. Кобальт менее активен, чем никель. [c.249]

    Это явлеппе осложняет последовательное гидрирование ацетилена, в резульс тате которого получаются этилен и этан. При разложении фракции этан-пропан из природного газа Лесли п Занетти (см. выше) показали, что железо дает те же результаты, что и нпкель то же самое в отношении каталитического превращения этилена отметили Сабатье и Сандеран. [c.335]

    Хочется еще раз подчеркнуть, что так называемые простые реакции гидрирования чрезвычайно сложны. Это доказывает класспческий эксперимент, много раз воспроизведенный и описанный в советской литературе в 1980 г. Над дейтерирован-ным никелевым катализатором пропускали недейтерированный этилен. После того как он адсорбировался на катализаторе, реагировал и десорбировался, в продуктах находили вое формы этана этан с шестью атомами обычного водорода и этан с шестью атомами дейтерия, а также все возможные промежуточные комбинации. Это говорит о том, что при адсорбции молекулы этилена на дейтерированном центре атомы водорода переходят от этилена к поверхности катализатора, а атомы дейтерия — в молекулу этилена. Следовательно, процесс адсорбции является намного более сложным, чем предполагалось до этих, ставших классическими, экспериментов. Их результаты приведены с единственной целью показать сложность реакции гидрирования, которую мы считаем очень простой. [c.117]

    Ацетилен является иримесью, загрязняющей пропан, этан и бутан, которые подвергают крекингу с целью получения этилена для производства полиэтилена или этиленгликоля. Ацетилен мешает протеканию двух последних процессов, п его удаляют каталитически или промывкой. Каталитическое удаление ацетилена гидрированием в этилен представляет собой одни из лучших примеров селективного катализа. Эту реакцию осуществляют в промышленности нри температуре 200—250°С на никелевом катализаторе, сульфидироваппом в строго определенной степени. В силу того что в ходе процесса происходит частичное гидрирование серы и она удаляется с катализатора, в реактор следует постоянно вводить некоторое количество серы для компенсации ее потерь и поддержания определенного уровня селективности катализатора. Гидрирование можно вести при давлениях 200—1000 фупт/дюпм . В качестве катализатора обычно используют никель на оксиде алюминия, содержащий иногда небольшие добавки кобальта и в некоторых случаях хром. Ценность добавок хрома проблематична, так как он повышает устойчивость катализатора к сульфидированию, увеличивает подвижность серы, что ведет к быстрой потере селективности. [c.126]

    V. более высоких фракциях. Фракция 220—280"" была подвергнута мягкому деструктивному гидрированию (с М0О3 при 300 — 325° ц 100 атм. начального давления водорода). В газах гидрирования найден в значительных количествах этан. Данные анализа жидких фракций гндрогенизата представлены в табл. 36. [c.124]

    Удаление ацетилена и его произвэдных, что достигается селективным гидрированием в присутствии палладиевого или никель-кобальтхромового катализатора. Эта стадия часто проводится после предварительного выделения этан этиленовой и пропан-про-пиленовой фракций. Возможно также выделение ацетилена и метилацетилена абсорбцией селективнь[ми растворителями. [c.171]

    Разработан метод установления углеродного скелета серу-, кислород- и азотсодержащих соединений, основанный на гидрировании в присутствии палладиевого или платинового катализатора [143]. При гидрогенолизе образуется соответственно сероводород, вода, аммиак и углеводороды, газохроматографическим анализом которых определяют строение углеродного скелета гетероатомных соединений. Так, при гидрировании этилбензилсульфида кроме сероводорода образуются только этан и толуол, из метнлпропил-сульфида — метан и пропан и т. д. [144]. [c.127]

    Этан, выделенный из какого-либо источника, например, пз газообразных продуктов гидрирования угля, состоящих из 94% этапа, 4% метана и 2% пропана, вводят сначала в подогреватель, где паром высокого давления нагревают его до 110—120°, а затем в отапливаемый топочными газами труб гатый подогреватель, где температуру этана доводят до 600° (рис. 9). [c.68]

    Очистку проводят частичным гидрированием в присутствии никель-хромового катализатора, причем содержащийся в очищаемых газах водород может быть применен в качестве гидрирующего агента. Р1асколько селективно протекает этот процесс гидрирования, можно судить по тому, что уже небольшие количества ацетилена (примерно до 2% в расчете на этилен) гидрируются в присутствии большого избытка этилена, причем почти не наблюдается превращения этилена в этан. Объясняют это тем, что теплота гидрирования ацетилена до этилена составляет около 41 ккал моль, в то время как теплота гидрирования этилена до этана равна примерно 32 ккал моль. [c.125]

    Метай и этан в электрическо дуге расщепляются до ацетилена, водорода и этилена. Эти продукты кре)1 инга в электрической дуге разделяют дистилляцией или абсо1)бцней па метан, ацетилен, этап, этилен и водород. Полученный таким образом водород вместе с водородом, выделенным из коксового газ 1, используют при гидрировании угл.ч, а углеводороды, за исключением ацетилена и этилена, снова возвращают в процесс электрокрекипга. [c.126]

    Для 11епосредственно1 о получения низших спиртов (например к-про-пилового спирта) нз олефинов гидроформилированием особенно подходит нроцесс, использующий неподвижный слой катализатора. В последнем случае смесь окиси углерода, водорода и этилепа пропускают при 210" и давлении 150—200 ат над катализатором Фишера-Тронша. В этих условиях пе образуется заметного количества карбонила кобальт 1, и катализатор сохраняет свою активность свыше тысячи часов. Продуктами реакции являются в первую очередь н-пропиловый спирт, а также некоторое количество сложного эфира н других ВЫС0К01СППЯЩИХ примесей. Попутно протекает в известной степени гидрирование этилепа в этан. Для олефипоп с более высоким л[олекулярным весом этот сиособ неприменим. [c.558]

    Наконец, нужно указать на селективное гидрирование ацетилена в этилен, которое проводили в Германии во время второй мировой войны (в Хюльсе и Гендорфе) [29]. Ацетилен предварительно очищали от следов сероводорода и фосфористого водорода обработкой хлорной водой. Очищенный ацетилен гидрировали при 270° и атмосферном давлении водородом, взятым в 50%-ном избытке, в присутствии специального палладиевого катализатора (0,01 % металлического палладия на силикагеле). Входящие в реактор газы разбавляли водяным паром, а температуру процесса регулировали тем, что в реактор впрыскивали воду в точках, расположенных вдоль оси слоя катализатора. Выходящие газы содержали 65% этилена их конденсировали и разделяли ректификацией по системе Линде—Бронна. Выход этилена равнялся 85%, считая на ацетилен побочными продуктами являлись этан и ненасыщенные С4- и Св-углеводороды. [c.125]

    Их трудами были впервые разработаны многие реакции каталитического гидрирования, восстановления, гидролиза, окисления и т. д. Так, например, в 1844 г. М. Фарадей осуществил первую реакцию гидрирования этилена в этан над платиной, а в 1863 г. Г. Дебус получил в этих же условиях из синильной кислоты метиламин. [c.14]

    Ненасыщенные углеводороды, присоединяя водород, гидрируются до предельных. В отсутствие активатора водорода для этой реакции требуются высокие температуры. Гидрирование протекает гораздо более гладко, если пропускать при повышенной температуре смесь ненасыщенного углеводорода с водородом над тонкораздробленными металлами группы платины или порошкообразным никелем (Вильде, Сабатье и Сандеран). Из этилена и ацетилена при этом образуется этан  [c.31]


Смотреть страницы где упоминается термин Этан, гидрирование: [c.48]    [c.244]    [c.249]    [c.104]    [c.163]    [c.164]    [c.70]    [c.72]    [c.351]   
Теория резонанса (1948) -- [ c.277 ]

Очистка технических газов (1969) -- [ c.59 ]




ПОИСК







© 2025 chem21.info Реклама на сайте