Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олово электроотрицательность

    Элементы IVА-группы. Эту группу Периодической системы составляют элементы углерод С, кремний Si, германий Ge, олово Sn и свинец РЬ. Электронная конфигурация внешнего уровня их атомов ns np . В соединениях эти элементы проявляют характерные степени окисления (+11) и (+IV). По электроотрицательности и химическим свойствам элементы С и Si относятся к неметаллам, элементы Ge, Sn и РЬ-к амфотерным элементам, металлические свойства которых возрастают при увеличении порядкового номера и уменьшении степени окисления. [c.146]


    Электроотрицательность элементов (в порядке ее убывания) устанавливается следующим условным рядом фтор — кислород — хлор— бром — азот — сера — селен — йод — астатин — водород — углерод — фосфор — мышьяк — теллур — полонии — бор — кремний — германий — сурьма — висмут — бериллий — алюминий — галлий — олово — свинец. [c.26]

    Электролиз водных растворов — важная отрасль металлургии тяжелых цветных металлов меди,висмута, сурьмы,олова, свинца, никеля, кобальта, кадмия, цинка. Он применяется также для получения благородных и рассеянных металлов, марганца и хрома. Электролиз используют непосредственно для катодного выделения металла после того, как он был переведен из руды в раствор, а раствор подвергнут очистке. Такой процесс называют электроэкстракцией. Электролиз применяется также для очистки металла — электролитического рафинирования. Этот процесс состоит в анодном растворении загрязненного металла и в последующем его катодном осаждении. Рафинирование и электроэкстракцию проводят с жидкими электродами из ртути и амальгам (амальгамная металлургия) и с электродами из твердых металлов. К электролитическим способам получения металлов относят также цементацию — восстановление ионов металла другим более электроотрицательным металлом. Цементация основана на тех же принципах, что и электрохимическая коррозия при наличии локальных элементов. Выделение металлов осуществляют иногда восстановлением их водородом, которое также может включать электрохимические стадии ионизации водорода и осаждение ионов металла за счет освобождающихся при этом электронов. [c.227]

    Элементы углерод С, кремний Si, германий Ge, олово Sn и свинец РЬ составляют IVA группу Периодической системы Д. И, Менделеева. Общая электронная формула валентного уровня атомов этих элементов ns np . Преобладающие степени окисления элементов в соединениях ( + 11) и ( + 1V), По электроотрицательности элементы С и Si относят к неметаллам. Ge, Sn и РЬ — к амфотерным элементам с возрастающим металлическим характером по мере увеличения порядкового номера. Поэтому в соединениях элементов со степенью окисления (IV) связи ковалентны для свинца (И) и в меньшей степени для олова (И) известны ионные кристаллы. В целом устойчивость степени окисления ( + IV) уменьшается, а устойчивость степени окисления ( + 11) увеличивается от С к РЬ. Соединения свинца (IV) —сильные окислители, соединения остальных элементов в степени окисления (И) — сильные восстановители. [c.202]


    Кадмий — более дефицитный металл, он дороже цинка, поэтому реже применяется для защиты железа от коррозии. В качестве электроотрицательного электрода его используют в кадмий-нике-левых щелочных аккумуляторах. Определенные количества его потребляются в атомных реакторах в качестве замедлителя реакции. В технике применяются также сплавы кадмия с медью, оловом и свинцом. [c.266]

    В щелочных растворах олово электроотрицательнее железа и поэтому растворяется, а железо остается пассивным. В фруктовых соках и других кислых органических растворах олово ведет себя как анодное покрытие по отношению к железу, т. е. луженое железо электрохимически защищено. Некоторые консервированные продукты выделяют водород, который проникает в поры оловянного покрытия. Коррозия оловянного покрытия ускоряется из-за наличия окислителей (нитраты, нитриты, оксикислоты). В свежем молоке покрытия корродируют со скоростью 0,15—0,38 г/м -24 ч при температуре 6—62°С, а в сметане и масле со скоростью 0,67—1,1 г/м2-24 ч при 62°С. В фруктовых соках скорость коррозии составляет 0,1—2,5 г/м -24 ч при обычной температуре и 12,8—35 г/м2-24 ч при температуре кипения. Бензин и масла практически слабо влияют на оловянные покрытия Галогены вызывают сильную коррозию — хлор, бром и иод даже при низких температурах, а фтор выше 100°С. Кислород агрессивен по отношению к олову при температурах выше 100°С и при наличии влаги. [c.145]

    Определение состояний окисления соединений олова из МБ-спектров не столь строго, как в случае соединений железа. Величины 6 ниже 2,65 мм/с часто обусловлены оловом(1У), а большие величины — оло-вом(П). Известны и исключения. Изомерные сдвиги некоторых четырех-и шестикоординационных соединений олова (IV) значительно меняются в зависимости от средней электроотрицательности по Полингу Хр-групп, присоединенных к атому металла. Известно [17] о существовании следующих корреляций  [c.301]

    Нормальный потенциал никеля примерно на 0,1 В электроотрицательнее потенциала олова, причем катодная поляризация при электроосаждении никеля выражена значительно резче, чем прп электролизе сернокислой или хлористой солей олова. Если к хлористому электролиту добавить фториды натрия и аммония, то стационарный и катодный (до некоторой ) потенциалы олова приобретают более электроотрицательные значения, чем потен- [c.437]

    Кадмий, будучи электроотрицательнее индия, при анодном растворении индия, содержащего кадмий, переходит в раствор, и его ионы могут частично восстанавливаться совместно с индием-При электролитическом рафинировании индия, содержащего примеси, рекомендуется вести электролиз при строгом соблюдении постоянства заданного потенциала (см. гл. I, 9). При этом можно получать индий, содержащий десятитысячные доли процента олова, кадмия и железа. Нередко в практике пользуются амальгамой индия в качестве анода. [c.556]

    На катоде преимущественно идут процессы, требующие наименьшего отрицательного потенциала. Поэтому если с основным металлом с анода перейдут в раствор ионы более электроотрицательных металлов, то на катоде будет осаждаться только основной металл. Метод электролитического рафинирования широко используется для получения чистой меди из черновой меди, содержащей примеси серебра, золота, для получения чистого никеля из чернового никеля с целью очистки от меди, железа и платиновых металлов. Электрорафинированием получают серебро и золото, а также используют этот метод Для. получения чистого свинца, висмута, олова и сурьмы. Как правило, процессы электрорафинирования осуществляют в бездиафрагменных электролизерах. [c.299]

    В отличие от олова, свинец образует соединения с низкой валентностью более устойчивые, чем с высокой. Переход к низким валентностям сопровождается дальнейшим уменьшением электроотрицательности и усилением основных свойств элемента. Вследствие амфотерности гидроксида свинца можно предположить получение двух типов свинецсодержащих связок кислых, содержащих полимерные катионные группировки, и щелочных — на основе плюмбитов. [c.70]

    Сурьма, висмут и олово, будучи более электроотрицательными, чем серебро, также растворяются анодно, однако, попав в раствор, образуют нерастворимые соединения сурьма и висмут — гидроокиси, олово — метаоловянную кислоту. Эти соединения являются результатом гидролиза образующихся в первый момент нитратов этих металлов (см. главу I). Они выпадают в шлам вместе с золотом, селеном, теллуром и платиноидами. Основная электрохимическая реакция на катоде — реакция разряда ионов серебра  [c.41]

    Радиусы атомов элементов IVA-подгруппы закономерно растут с увеличением порядкового номера (табл. 25), энергия ионизации и относительная электроотрицательность уменьшаются. Тем не менее углерод и кремний существенно отличаются по свойствам от остальных элементов подгруппы. Это типичные неметаллы. У германия имеются металлические признаки, а у олова и свинца они преобладают над неметаллическими. Кроме того, углерод и кремний отличаются от других элементов IVA-подгруппы многочисленностью и многообразием химических соединений. Углерод в большинстве кислородных соединений (за редкими исключениями) проявляет степень окисления Ч-4, соединения кремния со степенью окисления +4 также достаточно устойчивы. Но от германия к свинцу прочность соединений, в которых они проявляют степень окисления +4, уменьшается. [c.317]


    При использовании дополнительного электроотрицательного электрода вместе с деталями в корзины или барабаны помещают гранулы (пластинки) цинка Алюминий и его сплавы, обладающие более электроотрицательным потенциалом, чем олово, во всех случаях покрываются без дополнительного контакта [c.89]

    Олово, нанесенное на сталь, проявляет катодный характер защиты, так как потенциал его имеет более положительное значение по отношению к железу. Однако в среде органических кислот, содержащихся, например, во многих пищевых средах, олово образует комплексные соединения с ними, и потенциал его становится более электроотрицательным. В этих условиях олово является анодным покрытием и защищает сталь электрохимически. Даже тонкие покрытия олова толщиной 0,5—1,5 мкм достаточно надежно защищают жесть от коррозии в пищевых средах. [c.291]

    Каталитическая активность катализатора в ходе процесса может уменьшаться. Йода [5] объяснил это тем, что образующиеся в результате термодеструктивных процессов карбоксильные группы, реагируя с катализаторами — ионами металлов щелочного характера (например, ацетатом кальция), связывают последние. Соединения металлов с высокой степенью электроотрицательных свойств, как, например, титана, олова, свинца, не должны терять активности в ходе процесса. [c.61]

    Объясните, почему олово, будучи более электроотрицательным металлом по сравнению с железом, защищает его от ржавления и используется поэтому при изготовлении луженой жести. Объясните, почему цинк, являющийся более электроположительным металлом по сравнению с железом, также защищает его от ржавления и применяется с этой целью для изготовления оцинкованного железа. [c.300]

    При переходе сверху вниз в группе периодической системы усиливаются металлические свойства, что должно было бы приводить к уменьшению полимеризации в растворе и ослаблению вяжущих свойств. В IV группе при переходе от 51 к Ое и 5п уменьшается электроотрицательность, усиливаются основные свойства элементов. Ослабление кислотных свойств проявляется в устойчивости полимерных анионов в растворе, высокий у кремния и невысокий у олова (связь 5п—О склонна к гидролитическому расщеплению). В связи с понижением устойчивости полианионов в растворе в этом же направлении следует ожидать уменьшения вяжущей активности растворов. Это подтверждено экспериментально [104]. [c.70]

    Термохимически энергии связей были оценены и сопоставлены с результатами исследования методом ЯКР на ядрах С1 соединений Ge lg , Sn li и Pb I . Авторы работ [22] высказываются в пользу сделанного ранее вывода [23], что полученные результаты не согласуются с более высокой электроотрицательностью свинца по сравнению с германием и оловом. [c.275]

    Превалирующими катодной и анодной реакциями при рафинировании серебра являются Ag е Ag+. Из-за малого перенапряжения при не слишком высоких плотностях тока эти реакции протекают при потенциалах, близких к равновесному. В соответствии с этим возможные примеси — золото, платиноиды, медь, сурьма, висмут, олово, селен, теллур, а также незначительные количества цинка, кадмия, никеля, железа — ведут себя в растворах рафинирования серебра в соответствии с их потенциалами и химическими свойствами. В шламе концентрируются золото и платиноиды, сурьма, висмут и олово в виде гидроокисей и метаоловян-ной кислоты, сера, селен и теллур в виде сульфидов, селенидов и теллуридов металлов. В растворе накапливается медь, которой в рафинируемом металле может быть довольно много (в сплаве д оре до 2—3%), а также все более электроотрицательные металлы. Контролирующей примесью является медь, допустимое содержание которой 30—40 г/л. При превышении этого количества часть электролита отбирают и заменяют свежим серебро из отработанного раствора извлекают методом цементации медьЕо. [c.316]

    Соединения с другими неметаллами. Халькогениды элементов подгруппы германия, как и оксиды, образуют 2 ряда монохалькогениды ЭХ и дихалькогениды ЭХ . Низшие халькогениды известны для всех элементов и халькогенов. Все монохалькогениды элементов можно получить как непосредственным взаимодействием компонентов при нагревании, так и пропусканием сероводорода через водные растворы, содержаш,ие ионы +. Дисульфиды германия и олова получают непосредственным взаимодействием компонентов при повышенном давлении пара серы. Все монохалькогениды являются типичными полупроводниками, что свидетельствует о преобладающем вкладе ковалентной составляющей в химическую связь. Кроме того, надо учитывать определенный ионный вклад, обусловленный различием в электроотрицательности, а также нарастание металличности с увеличением порядкового номера компонентов. Сульфиды и селениды германия и олова кристаллизуются в орто-ромбической структуре, а при переходе к соответствующим теллури-дам происходит уплотнение структуры с повышением координационного числа до 6 (структура типа Na l). [c.225]

    Защита катодного осадка выделяющимся водородом от перехода в него электроотрицательных металлов может быть рвкомендавана для меди, олова, свинца и других металлов. В это м случае необходимо использовать распзо-ры с высокой концентрацией кислоты. [c.74]

    На рис. 74 показано из- менение потенциалов сплавов 8п — В1 в зависимости от их состава (потенциал 8п принят за исходную точку). Из приведенных данных видно, что оплав до содержания висмута 95% (ат.) сохраняет потенциал олова до тех пор, пока свободная фаза электроотрицательного компонента не заэк-ранируется кристаллами более электроположительного компонента. Аналогичная картина наблюдается и с другими эвтектическими системами, например со сплавом 2п — d. [c.120]

    Разряд ионов свинца из растворов двухвалентных его солей совершается с высокой скоростью значительные плотности тока достигаются при незначительных величинах поляризации (см. рис. 16, а). Столь малая поляризация при электролизе, наблюдаемая на аноде и атоде, облегчает электролитическое отделение свинца как от электроположительных, так и от электроотрицательных примесей (см. табл. 4). Электродный потенциал олова очень близок к потенциалу свинца, поэтому олово практически целиком переходит в раствор и попадает в катодный свинец. [c.262]

    Анодная сурьма содержит наравне с небольшими количествами Си, Ре, Аз, В1, А значительные количества РЬ и 8п. В некоторых случаях содержание Аз становится заметным. Благодаря присутствию серной кислоты в растворе свинец связывается в сульфат и переходит в шлам, и его концентрация в электролите будет определяться произведением растворимости РЬ504. Олово как более электроотрицательный металл накапливается в растворе. [c.273]

    Ввиду электроотрицательного потенциала, электроположительные металлы— медь, сурьма, висмут, мышьяк при анодном растворении таллия должны остаться на аноде, в сульфатных растворах свинец также перейдет в осадок. Цинк, железо, кадмий и частично олово перейдут в раствор. Наиболее опасными примесями являются олово и кадмий, поэтому их следует удалять при предварительной очистке раствора, что вполне возможно, если использовать плохую растворимость Т1С1 и хорошую растворимость ТЬСОз. [c.563]

    Совместное осаждение 5п и N1 на катоде достигается ири добавлении фторидов к. члоридам олова и никеля, которые образуют с оловом прочные комплексные анионы 5пр4 и ЗпРгС . При этом равновесный и катодные потенциалы олова приобретают более электроотрицательные значения. Благодаря этому при определенных плотностях тока достигается сближение потенциалов выделения эти.к. металлов на катоде. Совместному осаждению 5п и N1 способствует также неодинаковая деполяризация при разряде ионов обои.х металлов вследствие образования химического соединения Ы18п. [c.53]

    Названия соединений двух элементов, образованных ионной или полярной ковалентной связью, составляются, как правило, из двух слов. Первое из них — корень латинского названия элемента, являющегося электроотрицательной частью соединения, с добавлением суффикса ид, а второе — русское название элемента, являющегося электроположительной частью соединения, в родительном падеже. Например, SnS — соединение с частично ионной, частично ковалентной связью. В нем олово является электроположительной, а сера — электроотрицательной частью соединения. Латинское название серы — sulfur, корень этого слова suif. Следовательно, название SnS — сульфид олова. [c.30]

    По электроотрицательности кремний приблизительно равен олову и занимает последнее место в ряду >Ge>Si ( Sn). Значения электроотрицательностей (ЭО) по Полингу у кремния и германия одинаковы и равны 1,8, в то время как у углерода ЭО = 2,5. Соответствующие значения по Оллреду и Рохову составляют С — 2,5 Ge — 2,02 Si—1,74 Sn—1,72. Если, следуя Полингу, найти разность ЭО кислорода и кремния, то окажется, что эта разность (3,6—1,8= 1,8) отвечает связи, имеющей приблизительно 50% ионности. Это, конечно, весьма грубая оценка тем не менее в неорганической химии принято приписывать атому кремния в группах SIO4 заряд +4, а кислородным атомам — заряд —2. При точных расчетах распределения электронной плотности в силикатах (Фам-Куанг-Зы, 1978) заряды на атомах кислорода получаются значительно меньшими. [c.170]

    При образовании гомоатомных соединений (простых веществ) все эффекты, связанные с разностью электроотрицательностей взаимодействующих атомов, исключаются. Поэтому в простых веществах не реализуются полярные, а тем более преимущественно ионные связи. Следовательно, в простых веществах осуществляется лишь металлическая и ковалентная связь. Следует при этом учесть и возможность возникновения дополнительного ван-дер-ваальсов-ского взаимодействия. Преобладание вклада металлической связи приводит к металлическим свойствам простого вещества, а неметаллические свойства обусловлены преимущественно ковалентным взаимодействием. Для образования ковалентной связи взаимодействующие атомы должны обладать достаточным количеством валентных электронов. При дефиците валентных электронов осуществляется коллективное электронно-атомное взаимодействие, приводящее к возникновению металлической связи. На этой основе в периодической системе можно провести вертикальную границу между элементами П1А- и 1УА-групп, слева от которой располагаются элементы с дефицитом валентных электронов, а справа — с избытком. Эта вертикаль называется границей Цинтля Ее положение в периодической системе обусловлено тем, что в соответствии с современными представлениями о механизме образования ковалентной связи особой устойчивостью обладает полностью завершенная октетная электронная 5 /гр -конфигурация, свойственная благородным газам. Поэтому для реализации ковалентного взаимодействия при образовании простых веществ необходимо, чтобы каждый атом пмел не менее четырех электронов. В этом случае возможно возникгювение четырех ковалентных связей (5/) -гибридизация ), что и реализуется у элементов 1УА-группы (решетка типа алмаза у углерода, кремния, германия и а-олова с координационным числом 4). Если атом имеет 5 валентных электронов (УА-группа), то до завершения октета ему необходимо 3 электрона. Поэтому он может иметь лишь три ковалентные связи с партнерами (к. ч. 3). В этом случае кристалл образован гофрированными сетками, которые связаны между собой более слабыми силами. Получается слоистая структура, в которой расстояние между атомами, принадлежащими одному слою, намного меньше, чем между атомами различных слоев (черный фосфор, мышьяк, сурьма)  [c.29]

    Наряду с разрядом олова на катоде происходит разряд ионов водорода, однако значительное перенапряжение водорода на олове способствует преимущественному выделению олова. Щелочь в станнатных электролитах играет роль комплексообразователя увеличение щелочи заметно смещает равноаесие в сторону уменьшения концентрации и соответственно сдвигает потенциал в сторону электроотрицательных значений. По этим соображениям в электролите поддерживается умеренная концентрация свободной щелочи. Процесс осаждения -олова ведут при повышенных температурах (65—70°С) при более низких температурах получаются темные и рыхлые осадки. [c.204]

    Химический способ оловянирования осуществляется за счет ионного обмена или контактного вытеснения олова более электроотрицательным металлом, образующим с покрываемым соответствующую гальваническую пару В первом случае процесс осуществляется погружением изделий в такой раствор солн олова в котором потен циал покрываемого металла имеет более отрицательное значение по сравнению с потенциалом олова При оловянироваиии меди и ее сплавов это достигается путем ваедения в раствор хлористого олова карбамида нли цианидов щелочных металлов Во втором случае в качестве отрицательного дополнительного электрода используется [c.88]

    Из сравнения металлохимических характеристик компонентов указанных выше систем (см. таблицу) видно, что разница электроотрицательностей компонентов для сплавов золота больше, а размерное несоответствие — меньше, чем для сплавов олова. Поэтому существенно меньшую энергию взаимодействия компонентов в сплавах N1—Аи и Со—Аи по сравнению с соответствующими сплавами олова можно объяснить отсутствием дополнительного энергетического вклада, связанного с заполнением 3 -элeктpoннoй полосы. [c.158]

    Покрытия из цинка и олова (так же как и других металлов) защищают железо от коррозии при сохранении сплошности. При нарушении покрывающего слоя (трещины, царапины) коррозия изделия протекает даже более интенсивно, чем без покрытия. Это объясняется работой гальванического элемента железо — цинк и железо — олово. Трещины и царапины заполняются влагой и образуются растворы. Поскольку цинк более электроотрицателен, чем железо, то его ионы будут преимущественно переходить в раствор, а остающиеся электроны будут перетекать на более электроположительное железо, делая его катодом (рис. 2). К железу-катоду будут подходить ионы водорода (вода) и разряжаться, принимая электроны. Образующиеся атомы водорода объединяются в молекулу Нг- Таким образом, потоки ионов будут разделены и это облегчает протекание электрохимического процесса. Растворению (коррозии) будет подвергаться цинковое покрытие, а железо до поры до времени будет защищено. Цинк электрохимически защищает железо от коррозии. На этом принципе основан протекторный метод защиты от коррозии металлических конструкций и аппаратов. Английское слово претект — означает защищать, предохранять. При протекторной защите к конструкции, к аппарату через проводник электрического тока присоединяется кусок более электроотрицательного металла. Его можно поместить прямо в паровой котел. При наличии влаги, [c.145]

    ФС Все монохалькогениды являются типичными полупроводниками, что свидетельствует о преобладающем вкладе ковалентной составляющей в химическую связь. Кроме того надо учитывать определенный ионный вклад, обусловленный различием в электроотрицательности, а также нарастание металличности с увеличением порядкового номера компонентов. Сульфиды и селениды олова кристаллизуются в орторомбической структуре, а при переходе к теллуриду олова происходит уплотнение структуры с повышением координационного числа до 6 (структура типа МаС1). [c.78]

    Элементы углерод С, кремний 81, германий Се, олово 8п и свинец РЬ составляют 1УА-группу Периодической системы Д.И. Менделеева. Общая электронная формула валентного уровня атомов этих элементов пз пр , преобладающие степени окисления элементов в соединениях - -П и +1У. По электроотрицательности элементы С и 81 относят к неметаллам, а Се, 8п и РЬ — к амфотерным элементам, металлические свойства которых возрастают по мере увеличения порядкового номера. Поэтому в соединениях олова(ТУ) и свинца(1У) химические связи коваленты, для свинца(П) и в меньшей степени для олова(П) известны ионные кристаллы. В ряду элементов от С к РЬ устойчивость степени окисления -ь1У уменьшается, а степени окисления -нП — растет. Соединения свинца(1У) — сильные окислители, соединения остальных элементов в степени окисления -ьП — сильные восстановители. [c.168]

    Нормальный потенциал индия [228, 232] приближается к нормальному потенциалу кадмия. В ряду напрян ений индий расположен очень близко к кадмию [406]. По данным Винклера [471] индий электроотрицательнее цинка и кадмия. По Тиле [450] индий находится между железом и свинцом. Даунс и Каленберг [168] заключили на основании результатов, полученных лри опытах по взаимному выделению металлов и из данных измерений потенциалов, что индий несколько более электроотрицателен, чем олово. Олово не осаждает металлический индий из растворов его солей [61, 362]. Металлический цинк полностью выделяет индий из растворов его солей [469, 470], и потому часто применяется для обогащения индием при анализе разнообразных материалов и его отделения от цинка, алюминия, железа, галлия и других элементов [3, 27, 72, 249, 377]. Соответствующие методы описаны в предыдущих разделах монографии. [c.170]


Смотреть страницы где упоминается термин Олово электроотрицательность: [c.257]    [c.66]    [c.72]    [c.231]    [c.118]    [c.354]    [c.272]    [c.275]    [c.292]    [c.326]    [c.171]   
Неорганическая химия (1987) -- [ c.568 ]

Справочник по общей и неорганической химии (1997) -- [ c.40 ]




ПОИСК





Смотрите так же термины и статьи:

Электроотрицательность



© 2024 chem21.info Реклама на сайте