Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция молекулярных веществ

    Сорбционные методы концентрирования основаны иа использовании процесса сорбции готовым сорбентом. По механизму сорбции различают физическую адсорбцию (молекулярную), основанную на действии межмолекулярных сил между сорбентом и сорбируемым веществом, и хемосорбцию (ионный обмен, комплексообразование, окисление-восстановление и др.), основанную на протекании химических реакций между сорбентом и сорбируемым веществом. Сорбцию можно осуществлять в статическом, динамическом и хроматографическом вариантах. В этом разделе рассмотрен статический вариант сорбции, т. е. сорбция навеской сорбента в замкнутом объеме раствора или газа. Статический метод обычно используют при большой избирательности сорбента к извлекаемым компонентам. Извлекать можно микрокомпоненты и матрицу. Если сорбируют микрокомпоненты, то для конечного определения их либо десорбируют, либо озоляют сорбент. [c.316]


    Строение двойного электрического слоя в условиях специфической адсорбции. Адсорбция — концентрирование вещества из объема фаз на поверхности раздела между ними — может быть вызвана как электростатическими силами, так и силами межмолекулярного взаимодействия и химическими. Адсорбцию, вызванную силами неэлектростатического происхождения, принято называть специфической. Вещества, способные адсорбироваться на границе раздела фаз, называются поверхностно-активными (ПАВ). К ним относятся большинство анионов, некоторые катионы и многие молекулярные соединения. Специфическая адсорбция ПАВ, содержащегося в электролите, влияет на структуру двойного слоя и величину ф1 потенциала (рис. 172). Кривая 1 на рис. 172 соответствует распределению потенциала в двойном электрическом слое в отсутствие ПАВ в растворе. Если раствор содержит вещества, дающие при диссоциации поверхностно-активные катионы, то за счет специфической адсорбции поверхностью металла катионы будут входить в плотную часть двойного слоя, увеличивая ее положительный заряд (кривая 2). В условиях, способствующих усилению адсорбции (например, увеличение концентрации адсорбата), в плотной части может оказаться избыточное количество положительных зарядов по сравнению с отрицательным зарядом металла (кривая 3). По кривым распределения по- [c.474]

    Адсорбция сильных электролитов из водных растворов на твердых адсорбентах (ионная адсорбция)—еще более сложное явление, чем молекулярная адсорбция растворенных веществ. Это проявляется, прежде всего, в том, что в большин- стве случаев ионная адсорбция необратима разбавление раствора не вызывает десорбции. С повышением температуры адсорбция ионов часто возрастает. Эти явления указывают на то, что при адсорбции ионов на твердых адсорбентах между ионами и твердым телом действуют не только силы молеку- лярного сцепления, но и химические силы. Следовательно, ионная адсорбция часто представляет собой не адсорбцию в полном смысле слова, а химическую реакцию между ионами растворенного вещества и твердой поверхностью. Однако образующееся соединение остается обычно только в поверхнос- [c.68]

    Молекулярная адсорбция. Адсорбция неэлектролитов и слабых электролитов на границе раздела т—ж носит молекулярный характер и подчиняется уравнению Гиббса. Если растворенное вещество (адсорбтив) адсорбируется в большем количестве, чем растворитель, то адсорбция его положительна. При большей адсорбции растворителя адсорбция отрицательна. Поэтому изотерма адсорбции из растворов кажущаяся. Для адсорбции из растворов установлен ряд закономерностей. Адсорбция органических веществ одного и того же гомологического ряда подчиняется правилу Траубе. На пористых адсорбентах наблюдается обращение правила Траубе адсорбция падает с ростом длины цепи, так как с возрастанием размера молекул уменьшается доступная для адсорбции пло- [c.250]


    Помимо указанных случаев, мыслимы, конечно, и такие пары, где стационарные потенциалы близки к потенциалам нулевых зарядов и где следует ожидать преимущественной адсорбции молекулярных веществ. [c.382]

    При отсутствии заряда на поверхности металла многие поверхностные свойства металла проходят через экстремальные (max или min) точки максимальных значений достигают, например, поверхностное натяжение, адсорбция молекулярных органических веществ, твердость, а минимальных — смачиваемость, емкость двойного слоя и др. [c.161]

    Адсорбция поверхностно активных веществ изменяет характер и расположение электрокапиллярных кривых (рис. 123) молекулярные вещества только снижают максимум а, делая его более плоским (рис. 123, б) поверхностно активные анионы также снижают максимум с и сдвигают его в область более отрицательных [c.169]

    При данных условиях интенсивность процесса адсорбции 1а-висит 01 молекулярной массы и давления насыщенного пара адсорбата. Чем больше молекулярная масса адсорбата, тем он, прн прочих равных условиях, лучше адсорбируется. Из газовой фазы лучше адсорбируются вещества с меньшим давлением насыщенного пара, т. е. легче конденсирующиеся. Из растворов лучше адсорбируются вещества с меньшей растворимостью в данном растворителе. Следует отметить, что адсорбция растворенных веществ примерно на порядок меньше адсорбции газов и паров. [c.106]

    Н. И. Черножуков [35] провел качественные исследования адсорбции смолистых веществ парафинами. Впервые им было установлено, что смолы адсорбируются парафинами и что адсорбция увеличивается с повышением молекулярного веса парафинов (церезинов). Кроме того, было показано, что при кристаллизации [c.98]

    Явления адсорбции особо характерны для твердых веществ, так как они сопротивляются растяжениям и сжатиям при воздействии других молекул. В твердых веществах частицы закреплены в определенных положениях. Это значительно усложняет изучение адсорбции на твердых поверхностях в силу неоднородности их структуры. Если мениск жидкости представляет совокупность выступов и впадин глубиной в среднем 1—2 молекулярных диаметра, то поверхность твердых вешеств представляет очень сложный горный ландшафт и она не эквипотенциальна (подробнее см. стр. 107). При приближении молекулы газа к твердой поверхности проявляются силы притяжения, растущие с уменьшением расстояния до известного предела. Пространство, в котором эти силы проявляются, называется полем сил. В случае адсорбции молекулярные силы поверхности называют адсорбционными силами, а поле действия их—полем адсорбционных сил. [c.101]

    Вид изотерм расклинивающего давления смачивающих пленок определяется природой действующих поверхностных сил. В зависимости от свойств и состава жидкости, лиофильности и строения твердой подложки решающий вклад могут вносить различные составляющие расклинивающего давления. Только одна из них, а именно молекулярная составляющая Пт, проявляется во всех случаях, поскольку дисперсионные силы действуют между всеми молекулами. Другие составляющие могут оказывать влияние в большей или меньшей степени в зависимости от заряда поверхностей пленки, полярности жидкости и адсорбции растворенных веществ. [c.286]

    При адсорбции растворенных веществ нз растворов на твердых адсорбентах всегда, в той или иной степени, происходит также адсорбция растворителей. Поэтому адсорбция из растворов носит конкурентный характер между поглощением растворен 1ых веществ и растворителя.. Адсорбироваться могут как растворенные неэлектролиты, так и электролиты. В связи с этим различают молекулярную и ионную адсорбцию из растворов. [c.302]

    Величина удельной поверхности пористого тела, определенная по методу адсорбции, зависит от минимальных размеров его пор, в которые может еще проникать адсорбируемое вещество. Вследствие того, что размеры молекул газа изменяются в небольших пределах, этот метод для различных газов дает близкие величины. При определении удельной поверхности по методу адсорбции из растворов получают данные, различающие- ся иногда даже по порядку величин. Это можно объяснить тем, что размеры частиц растворенных веществ, используемых в адсорбционных опытах, изменяются от молекулярных и ионных до коллоидных. С увеличением размеров частиц растворенного вещества возрастает радиус пор, доступных для адсорбции, и поверхность пор с меньшим радиусом окажется неучтенной. Таким образом, различие в измеренных величинах удельной поверхности по адсорбции растворенных веществ наиболее заметно для тонкопористых объектов. [c.72]

    Так, следует отметить, что современные теории двойного электрического слоя носят феноменологический и полуэмпирический характер. Вместе с тем уже накопился значительный экспериментальный материал, объяснение которого требует рассмотрения структуры поверхности на молекулярном уровне. Такой подход необходим для более детального описания адсорбции органических веществ на электродах, а также для объяснения ряда особенностей структуры поверхностного слоя и в отсутствие органических веществ. Попытки создания молекулярных теорий двойного слоя уже предпринимались. Однако эти теории еще далеки от совершенства. Другой важной проблемой является построение количественной теории поверхностного слоя при хемосорбции ионов, сопровождающейся переносом заряда. Явления переноса заряда при адсорбции широко распространены и играют существенную роль в кинетике электродных процессов. Часто на поверхности электрода находится хемосорбированный кислород (или кислород в другой форме), который сильно влияет на строение поверхностного слоя и скорость электрохимических процессов. Поэтому количественное исследование строения двойного электрического слоя и электрохимической кинетики на окисленных поверхностях представляет собой одну из важнейших проблем кинетики электродных процессов. [c.389]


    Так, следует отметить, что современные теории двойного электрического слоя носят феноменологический и полуэмпирический характер. Вместе с тем уже накопился значительный экспериментальный материал, объяснение которого требует рассмотрения структуры поверхности на молекулярном уровне. Такой подход необходим для более детального описания адсорбции органических веществ на электродах, а также для объяснения ряда особенностей структуры поверхностного слоя и в отсутствие органических веществ. Попытки создания молекулярных теорий двойного слоя уже предпринимались. Однако эти теории еще далеки от совершенства. [c.403]

    Молекулярная адсорбция различных веществ из растворов на твердых адсорбентах зависит от природы растворенного вещества, от структуры твердой поверхности, а также от при- [c.66]

    Адсорбция молекулярно растворенного вещества в зависимости от его равновесной концентрации характеризуется обычной (как и для газов) изотермой адсорбции. Изотерма адсорбции из разбавленных растворов достаточно хорошо описывается уравнением Фрейндлиха (УИ.4) или уравнением Ленгмюра (УП.5)  [c.168]

    Вопрос о зависимости адсорбции на твердой поверхности от природы растворенного вещества очень сложен, так как одно и то же вещество по-разному адсорбируется на разных твердых поверхностях и из разных растворителей. Например, для адсорбции жирных кислот из водных растворов на угле установлено ее возрастание с повышением молекулярного веса в гомологическом ряду, однако на други адсорбентах и в других растворителях этого не наблюдается. Зависимость адсорбции растворенного вещества от структуры твердой поверхности выражается, например, в том, что на адсорбентах с очень мелкими порами иногда мало адсорбируются крупные молекулы органических соединений (хотя они и должны быть активными для данной поверхности), так как их размеры мешают им проходить в достаточном количестве в эти весьма узкие капилляры (работы Дубинина). [c.68]

    Общими закономерностями для молекулярной адсорбции растворенных веществ на твердой поверхности являются ее обратимость и температурная зависимость. С повышением температуры молекулярная адсорбция всегда уменьшается, так как возрастание интенсивности молекулярно-теплового движе- ия затрудняет фиксацию молекул на поверхности раздела фаз. [c.68]

    Представляет интерес оценка вклада поверхностных оксидов углеродных адсорбентов в общую величину энергии адсорбции, т. е. выявление роли химической природы поверхности в молекулярной адсорбции органических веществ из водных растворов. При исследовании адсорбции на углеродных адсорбентах и при практическом использовании адсорбции органических веществ из водных растворов не меньшее значение имеет оценка и учет пористой структуры углеродных адсорбентов. [c.74]

    Влияние природы поверхности и пористости углеродных адсорбентов на молекулярную адсорбцию органических веществ из водных растворов. Распространенной примесью активных [c.74]

    При отрицательном заряде поверхности электростатическое отталкивание будет препятствовать адсорбции анионов и, наоборот, будет усиливать адсорбцию катионов. При положительном заряде поверхности электрода действие электростатических и специфических адсорбционных сил складывается, благодаря чему возрастает адсорбция анионов. Поэтому для определения условий адсорбции при заданном потенциале необходимо знать положение этого потенциала относительно точки нулевого заряда данного металла. Значение этих данных исключительно велико для правильного выбора добавок в электролит, так как они позволяют разграничить области преимущественной адсорбции катионов, анионов и молекулярных веществ. [c.133]

    РАСЧЕТ ИЗОТЕРМЫ АДСОРБЦИИ МОЛЕКУЛЯРНО-РАСТВОРЕННЫХ ОРГАНИЧЕСКИХ ВЕЩЕСТВ НА АКТИВНЫХ УГЛЯХ БЕЗ ЭКСПЕРИМЕНТАЛЬНЫХ ИЗМЕРЕНИЙ [c.93]

    Адсорбция органических веществ из раствора равномерно возрастает по мере увеличения длины углеводородной цепи. Это справедливо для гладкой поверхности твердого тела. Для пористых тел, наоборот, с увеличением числа атомов углерода в молекуле наблюдается не повышение адсорбции, а понижение ее. Хотя адсорбция на единицу поверхности с повышением молекулярного веса и увеличивается, но доступная для адсорбции площадь уменьшается, так как с удлинением углеводородной цепи, т. е. с возрастанием размера молекул, число канальцев, пор, трещин, в которые могут проникать адсорбируемые молекулы, снижается. При этом уменьшение удельной поверхности адсорбента превышает увеличение адсорбции на единицу поверхности (правило Траубе). [c.19]

    Наряду с полярными молекулами прочно адсорбируются и молекулы, способные поляризоваться. Под действием локальных положительных зарядов катионов в молекуле может индуцироваться диполь. Такая поляризующая молекула затем прочно адсорбируется вследствие электростатического притяжения катионов. Чем больше ненасыщенность молекулы, тем более она способна поляризоваться и тем прочнее адсорбируется на молекулярных ситах. На рис. 4 показаны кривые адсорбции двух веществ — окиси углерода и аргона, обладающих приблизительно одинаковой летучестью. Однако молекула окиси углерода полярна и поэтому адсорбируется в больших количествах, чем неполярный аргон. [c.206]

    Адсорбция на цеолитах. Изотермы адсорбции полярных веществ на молекулярных ситах и на обычных адсорбентах (силикагеле, активированной окиси алюминия и активированном угле) резко различаются. Изотермы адсорбции на цеолитах круто поднимаются при сравнительно низких давлениях или концентрациях (рис. 6). Поэтому молекулярные сита обладают высокой адсорбционной емкостью по отношению к воде и другим полярным веществам даже при низком парциальном давлении или концентрации. Это означает, что молекулярные сита можио применять для удаления таких полярных примесей до весьма низкой остаточной концентрации (часто до нескольких десятитысячных долей процента и даже меньше) из газовых и жидких смесей, причем они обладают высокой адсорбционной емкостью. [c.208]

    Скорость адсорбции. Скорость адсорбции данного вещества на таблетированных молекулярных ситах определяется главным образом четырьмя параметрами а) скоростью диффузии адсорбата в кристаллы активированных молекулярных сит во внутренних зонах таблетки б) относительными размерами молекулы адсорбата и пор в структуре молеку- [c.209]

    Для рассмотрения явлений адсорбции растворенного вещества на границе раствор — газ молекулярно-кинетические представления, которыми мы широко пользовались в предыдущей главе, мало пригодны. Здесь гораздо целесообразнее рассматривать явления с термодинамических позиций и связывать адсорбцию растворенного вещества с изменением свободной энергии поверхности или ее поверхностного натяжения. [c.114]

    При решении вопроса о том, какому механизму соответствует найденное кинетическое уравнение (1.9), необходимо иметь в виду, что водород может адсорбироваться на поверхности катализатора и реагировать с адсорбированными молекулами толуола в молекулярной форме либо в виде атомов или ионов. Выше отмечалось, что изомеризация углеводородов при гидрировании олефинов свидетельствует о диссоциативной адсорбции и последовательном присоединении атомов или ионов водорода к ненасыщенным связям гидрируемого соединения. Поэтому логичным будет допустить, что и при гидрировании ароматических углеводородов происходит диссоциативная адсорбция водорода и что лимитирующей стадией является присоединение первого атома или иона водорода к ароматическому кольцу. Тогда в случае лэнгмюровских изотерм адсорбции исходных веществ можно написать следующее выражение дпя скорости реакции  [c.32]

    Изменение концеитрацин жидкости при взаимодействии с твердой фазой вблизи границы раздела фаз невелико вследствие малой сжимаемости. Однако даже эти незначительные изменения приводят к особым свойствам связанной полем твердой частицы жидкости. В промывочных жидкостях дисперсионная среда редко бывает чистой . Оиа состоит из собственной жидкости, а также растворенных в ней ионов и молекул, адсорбирующихся одновременно с растворителем. Последнее затрудняет создание общей теории адсорбции па твердой поверхности, учитывающей также межмолекулярное взаимодействие в жидкой фазе. Поэтому при анализе явлений на границах раздела твердое—жидкость рассматривают отдельно смачивание и адсорбцию растворенных веществ (нейтральных молекул — молекулярная адсорбция и ионов — адсорбция электролитов). [c.47]

    В результате адсорбции (накопления газо- или парообразных веществ на поверхности поглотителя) частицы сильно сближаются, что облегчает реакцию. А. Беллани приписывал адсорбцию молекулярным притяжениям в связи с электрическими силами. В том же году другой итальянский ученый Э. Фузиньери при опытах с раскаленной платиной пришел к заключению, что каталитическая сила проявляется тем сильнее и отчетливее, чем тоньше распределена масса металла. Эта сила более заметна на углах и ребрах кристаллов, чем на гладкой поверхности. [c.90]

    Наряду с адсорбцией ионов, вызываемой электростатическими силами, может иметь место специфическая для каждого сорта частиц адсорбция, вызываемая силами Ван дер Ваальса или химическими силами. Проявление последних приводит к адсорбции ионов на одноименно заряженной поверхности, а также к адсорбции органических веществ молекулярного типа. При этом влияние анионов может наблюдаться не только на восходящей ветви электрокапиллярной кривой (электростатические силы), но и на нисходящей (химические силы). Аналогичный эффект оказывают катионы. Соответственно максимум электрокапиллярной кривой смещается в электроотрицательную (действие анионов) или электроположительную (действие катионов) сторону. Так как работа адсорбции положительна (процесс совершается самопроизвольно), поверхностная энергия адсорбента уменьшается, т. е. уменьшается а. В присутствии поверхностноактивных веществ молекулярного типа смещение максимума не наблюдается, но величина о заметно снижается. Смещение потенциала электрода в положительную или отрицательную сторону до значений, при которых электростатические силы начинают преобладать над силами специфической адсорбции, приводит к прекращению действия поверхностно-активных веществ, вследствие их вытеснения из двойного электрического слоя, и электрокапиллярная кривая сливается с кривой, полученной в отсутствие поверхностно-активных веществ. Соответствующие потенциалы называются положительным и отрицательным потенциалами десорбции (е .с и бдес) и ограничивают область потенциалов, внутри которой происходит адсорбция поверхностно-активных веществ (от бдес до бдес). [c.100]

    Как показывает название, в основе адсорбционной хроматографии лежит адсорбция разделяемых веи еств на твердой поверхности выбранного адсорбента. Адсорбция обусловлена или физическими ван-дер-ваальсовыми силами межмолекулярного взаимодействия в системе адсорбат—адсорбент (молекулярная хроматография), или силами химического сродства, действующими, например, в процессе реакции при обмене ионов разделяемых компонентов на поверхностные ионы применяемого ионообменного адсорбента (ионообменная хроматография). В обоих случаях главным условием для осуществления разделения должно быть различие энергии адсорбции разделяемых веществ, что равносильно различию коэффициентов адсорбции. [c.11]

    Жесткие остовы молекул афлатоксинов, зеараленонов и трихотеценов являются неплоскими, что. уменьшает их удерживание. Поэтому они представляют собой удобные объекты для применения хроматоструктурного метода. Для этого надо экспериментально определить К1 для адсорбции таких веществ на ГТС и сопоставить их с результатами молекулярно-статистического расчета К для предполагаемых конфигураций и квнформаций молекул этих веществ. В расчете надо использовать полученные в лекции 9 атом-атомные потенциалы для межмолекулярного взаимодействия с атомами углерода ГТС атомов водорода, углерода и кислорода молекул. [c.202]

Рис. 76. Обычная форма электрокапиллярной кривой а—ф и плотность заряда двойного электрического слоя е на поверхности ртути (а) и изменение формы этой кривой (/) вследствие адсорбции ПАВ б), аниоиов (2), катионов (3), молекулярных веществ (4) Рис. 76. Обычная форма <a href="/info/4403">электрокапиллярной кривой</a> а—ф и <a href="/info/321810">плотность заряда двойного электрического слоя</a> е на <a href="/info/348791">поверхности ртути</a> (а) и <a href="/info/518155">изменение формы</a> этой кривой (/) <a href="/info/694927">вследствие адсорбции</a> ПАВ б), <a href="/info/188534">аниоиов</a> (2), катионов (3), молекулярных веществ (4)
    Совершенно другой характер носит адсорбция битумных веществ на графите и коксах. В результате адсорбции на них цвет люминесцетного битумного раствора резко изменяется в сторону голубых и фиолетовых оттенков. Это свидетельствует о селективной адсорбции из раствора веществ с большим молекулярным весом. Попытка отмыть адсорбированные вещества не дала положительного результата, так как в растворитель полностью перешли только петролены. [c.173]

    Большое значение имеет адсорбция высокомолекулярных компонентов. Согласно правилу Траубе, адсорбция органических веществ из раствора возрастает по мере у величения размера молекуу растворенного вещества. Исходя из этого следует ожидать, что адсорбция высокомолекулярных асфальтенов значительно выше, чем других компоиентов битума, повышаясь с ростом их молекулярного веса (размера). [c.117]

    В качестве ионитов обычно используют ионообменные высо молекулярные соединения — ионообменные смолы кислого или новного характера, нерастворимые в воде и органических раство] телях. Полученные извлечения пропускают через колонку, зап( ненную сорбентом. Сорбент и условия адсорбции должны бь выбраны такие, чтобы адсорбция извлекаемого вещества (или ществ) была избирательной и максимальной. Десорбция (элюиро ние) алкалоидов проводится подходящим растворителем, обеспе вающим максимальное элюирование. [c.134]

    Рассмотренная в разделе 4 этой главы методика расчета изотермы адсорбции молекулярно растворенных веществ позволяет приближенно оценить равновесный расход адсорбента при разных способах осуществления адсорбционного процесса —при применении адсорберов с неподвижным слоем адсорбента или со нзвешснным слоем адсорбента. [c.109]


Смотреть страницы где упоминается термин Адсорбция молекулярных веществ: [c.37]    [c.164]    [c.224]    [c.212]    [c.377]    [c.86]    [c.228]   
Электрохимия металлов и адсорбция (1966) -- [ c.56 , c.57 , c.61 , c.66 , c.70 , c.83 , c.125 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция молекулярная

Вещества молекулярные



© 2025 chem21.info Реклама на сайте