Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клеи для соединения эпоксидных полимеро

    Упругие свойства отвержденных клеев, зависящие от физического состояния эпоксидного полимера, плотности сетки химических связей и интенсивности межмолекулярного взаимодействия, во многом определяют когезионную прочность пленки клея и, следовательно, работоспособность соединений. Однако этим вопросам не уделяется пока должного внимания, и в литературе приводятся в основном данные об изменении прочности клеевых соединений при воздействии температуры и некоторых других факторов. Установление взаимосвязи между характеристиками соединений и упругими свойствами пленок клеев различного состава облегчает создание соединений с требуемыми эксплуатационными параметрами. [c.128]


    Из числа работ, в которых не установлена корреляция между смачиванием и адгезией, следует назвать работы, посвященные соединениям линейных полимеров на разных клеях [66—68], прочности связи стеклянных и графитовых волокон с эпоксидными связующими [69, 70] и др. Принципиально отвергается роль смачивания в работах Я. О. Бикермана, поскольку по его данным прочность адгезионных соединений определяется другими свойствами поверхностного слоя адгезива, а не его смачивающей способностью [5,71]. [c.18]

    Некоторые клеи, изготовленные искусственно на основе полимеров, настолько превосходят по свойствам все ранее известные клеи, что это открыло методу склеивания новые области применения. Например, в определенных случаях путем склеивания соединяют металлические детали изделий вместо их спаивания, сварки или склейки в швейной и обувной промышленности метод склеивания все 1лире применяют для соединения различных материалов. В качестве синтетических клеев применяют фенолальдегидные, карбамидные, эпоксидные смолы, полиуретаны, полиэфиры, полиакрилаты, полиамиды, поливинилацетат, кремнийорганические полимеры и др. Сюда же можно отнести резиновые клеи, употребляемые иногда с последующей вулканизацией, а также полиизобутиленовые клеи, используемые при изготовлении липких лент. [c.229]

    На основе модифицированных кремнийорганических полимеров получены клеи холодного и горячего отверждения. Разработаны эпоксидно-кремнийорганические термостойкие клеи холодного отверждения (К-300 и К-400), способные длительно работать при 220— 250° С, кратковременно выдерживают температуры 300—400° С, дают герметичные клеевые соединения, устойчивы к влаге, некоторым реагентам, топливам и маслам . [c.88]

    Эпоксидные полимеры характеризуются значительной атмосферо- и водостойкостью, а также высокой инертностью ко многим химическим и агрессивным соединениям. Эти полимеры обладают высокими электроизоляционными свойствами. На их основе готовят различные связующие для производства пластических масс, клеи и клеевые композиции (с добавлением пластификаторов), эмали и шпаклевки, лакокрасочные материалы, химические мастики, замазки и бетоны. [c.398]

    Наибольшее значение при изготовлении клеев имеют эпоксидные смолы, модифицированные феноло-формальдегидными полимерами, полисульфидами и элементоорганическими соединениями. [c.121]


    Совмещать кремнийорганические и эпоксидные полимеры можно непосредственно в клеевых композициях с последующим взаимодействием в процессе отверждения клея. Клеи, получаемые по этому методу, как правило, отверждаются при повышенных температурах. Другой путь — получение клеев на основе предварительно совмещенных кремнийорганических и эпоксидных соединений. В полученных эпоксидно-кремнийорганических смолах сохраняются эпоксидные группы, поэтому их химические свойства аналогичны свойствам эпоксидных смол. [c.28]

    Кратковременно некоторые клеи на основе модифицированных эпоксидных соединений выдерживают нагревание при 350—400 °С. Потеря массы эпоксидными полимерами в вакууме 6 (10 мм рт. ст.) зависит от температуры и составляет около 5% при 100 и около 80% при 300 °С. Данных о влиянии различных видов излучения на свойства эпоксидных клеев практически нет, но известно , например, что прочность эпоксидной композиции изменяется сравнительно мало при дозах облучения до 8-10 р. Введение неорганических наполнителей повышает стойкость к действию излучений . [c.74]

    Теплостойкость немодифицированных эпоксидных клеев не превышает 100°. Она возрастает при модификации клеев различными мономерными и полимерными соединениями. Для этой цели используются главным образом продукты конденсации фенолов с альдегидами и некоторыми элементоорганическими соединениями [И]. Другим путем повышения теплостойкости эпоксидных клеев является применение в качестве основы композиций полимеров, представляющих собой системы, насыщенные ароматическими ядрами и содержащие гетероатомы фосфора, фтора, хлора или брома [7, 12]. Прочность клеевых соединений на основе таких композиций не изменяется вплоть до 200°. [c.15]

    Немаловажное значение для обеспечения высокой прочности клеевого соединения имеет правильный выбор клея. Для каждого полимера существует свой клей, обеспечивающий наибольшую прочность клеевого соединения как правило, это клей на той же (или близкой по составу) основе, что и у склеиваемых материалов [40]. Вместе с тем имеются универсальные клеи, пригодные для склеивания большого количества пластмасс. Как свидетельствует рис. 2.15, к числу наиболее универсальных клеев следует отнести полиуретановый и полихлоропреновый клеи. Для склеивания многих типов полимеров могут быть рекомендованы эпоксидный, полиэфирный, полиакриловый и фенолокаучуковый клеи. [c.46]

    Вместо бисфенола А могут использоваться и другие гидроксилсодержащие соединения (например, гликоли, глицерин, резорцин и их производные). Полученные в результате подобных реакций эпоксидные смолы представляют собой высоковязкие жидкости или твердые тела с высокими температурами плавления. Эпоксидные смолы могут далее отверждаться добавками аминов, полисульфидов, полиамидов (см. раздел 11.9.3). Эпоксидные смолы находят весьма широкое и разнообразное применение благодаря своей химической устойчивости и хорошей адгезии. Эпоксидные смолы являются отличными конструкционными клеями. После полного отверждения эпоксидные смолы могут образовывать очень прочные материалы. Эти смолы используются для покрытия полов в промышленных зданиях, для получения вспененных материалов, герметизирующих композиций для электрических изоляций и т.д. Эпоксидные полимеры служат одним из основных компонентов многих пластиков, армированных волокном. [c.202]

    Наиболее стойки к действию повышенных температур неорганические (элементорганические) полимеры. Но они обладают, как правило, невысокой адгезией. Поведение клеевых соединений при низких температурах представляет интерес для криогенной техники. Полиуретановые и модифицированные эпоксидные клеи могут успешно эксплуатироваться при температурах жидкого азота (—196°С) и жидкого водорода (—253°С). На основе эпоксидно-фенольных соединений разработаны клеи, выдерживающие многократные резкие перепады температур. При термо-циклировании в клеевом шве возникают большие остаточные напряжения из-за разности коэффициентов линейного расширения (КЛР) полимера и подложки, вымораживания или вскипания низкомолекулярных фракций, а также фазовых переходов в полимерах и изменения их надмолекулярных структур. [c.31]

    Для указанных целей используют компаунды холодного отверждения на основе эпоксидных смол общего и электроизоляционного назначения (табл. 55.5), герметики и клеи-герметики на основе кремнийорганических полимеров (табл. 55.6). Последние применяют для герметизации металлических соединений в воздушной среде при —60. .. - -250 °С в условиях воздействия механических нагрузок [3]. [c.644]

    Положительное влияние полярности полимерной основы клея и соединяемых материалов на прочность клеевого шва подтверждается след, фактами неполярные полимеры не образуют прочного соединения работоспособность шва возрастает при повышении полярности склеиваемых поверхностей, напр, путем их химич. или физич. обработки (см. ниже) хорошими адгезионными свойствами по отношению к полярным полимерам и материалам на их основе обладают клеи из полимеров, макромолекулы к-рых содержат полярные группы — уретановые, гидроксильные, эпоксидные, карбоксильные (при С. материалов разной полярности высокая прочность соединения достигается применением клеев на основе сополимеров, синтезируемых из мономеров, содержащих группы различной полярности). Следует, однако, отметить, что зависимость прочности соединений от содержания полярных групп в клее имеет экстремальный характер при слишком большом содержании таких групп ухудшаются механич. свойства клеевой прослойки, в частности повышается ее хрупкость. [c.206]


    В составах для резинокордных систем карбоксильные, пиридиновые, нитрильные, аминные и эпоксидные группы дисперсий взаимодействуют с функциональными группами резорциноформальдегидной смолы. Поскольку отверждение смолы приводит к образованию пространственной сетки, то подвижность эластомера ограничивается. После достижения оптимальной степени взаимодействия функциональных групп смолы и полимера латекса прочность клеевых соединений может уменьшаться. Ограничение подвижности макромолекул эластомера снижает возможность образования связей в области контакта волокно—клей и клей— резина [137]. Таким образом, степень взаимодействия смолы и эластомера влияет на концентрацию межфазных связей и, следовательно, на прочность соединения. Данные о влиянии содержания смолы на прочность связи корда с резиной приведены на рис. 3.19. Чем выше концентрация реакционноспособных функциональных групп компонента клея, тем прочнее межфазные связи [138]. С целью снижения напряжений на границе раздела необходимо использовать латексы полимеров, отличающихся определенной степенью гетерогенности на молекулярном и глобулярном уровнях [138]. [c.121]

    Модификация с использованием полимеров, несовместимых с эпоксидными олигомерами. При разработке эпоксидных, а также и некоторых других клеев, являющихся в большинстве случаев многокомпонентными системами, особое значение приобретает вопрос о совместимости компонентов. Чаще всего происходит химическое взаимодействие между компонентами системы, приводящее в результате реакций, протекающих уже при формировании конечного, в большинстве случаев пространственного полимера, к об-, разованию клеевого соединения с ожидаемыми свойствами. [c.33]

    Для склеивания фторопласта-4 достаточно эффективным является способ обработки поверхности полимера в течение 15 мин при комнатной температуре раствором металлического натрия в смеси нафталина и тетрагидрофурана. Прочность при равномерном отрыве клеевого соединения фторопласта-4, обработанного указанным способом, на эпоксидном клее составляет 10—12 МПа, при сдвиге— 11,0 МПа. [c.227]

    Из данных, приведенных в табл. 5,18, видно, что при повышении температуры и увеличении влажности прочность соединений снижается. Незначительный рост прочности после вакуумирования обусловлен, по-видимому, восстановлением межмолекулярных связей. Различие между исходной прочностью к прочностью после вакуумирования вызвано, видимо, разрушением химических связей на границе раздела. Эти процессы имеют место и при эксплуатации соединений в атмосферных условиях, особенно при повышенной влажности, но они протекают с значительно меньшей скоростью. Тот факт, что происходит разрушение химических связей, дополнительно подтвержден результатами испытаний образцов эпоксидных полимеров, отвержденных по указанному выше двухступенчатому режиму, — после их предварительной выдержки в течение 72 ч при 100 °С на воздухе и в воде с последующим определением прочности в той же среде при различных температурах (табл. 5.19). Образцы, выдержанные при 100 °С и испытанные в воде, имеют более высокие прочность и удлинение по сравнению с образцами, выдержанными на воздухе. Можно предположить [113], что в процессе испытя-нщТвода, проникающая в полимер, разрушает более напряженные связи, происходит их перегруппировка. В этом случае удлинение повышается в большей степени, чем при пластификации клея водой [113], а кривая напряжение — деформация характеризуется наличием значительного плато вынужденной эластичности. [c.149]

    Можно заменить диамины другими соединениями с подвижными атомами водорода — полиамидами, фенолоальдегидными полимерами, макромолекулы которых содержат свободные группы ОН, СООН, NH2 (получение блок- и привитых сополимеров, эпоксиднополиамидных клеев), а также инициаторами ионной полимеризации. При необходимости сочетают эпоксидные полимеры с высыхающими маслами, наполнителями и пластификаторами. [c.316]

    Для склеивания пластмасс существует очень большое число клеев на основе почти всех промышленных полимеров [123,273]. При выборе клея учитывают прежде всего химическую природу соединяемых материалов [287, с. 385 316], полярность, растворимость, реакционную способность, структуру поверхности [317]. Не меньшую роль играют условия работы соединения, термический коэффициент линейного расширения соединяемых материалов, конструктивные особенности изделия и требования к технологическим свойствам клея [318]. Существуют и универсальные клеи, которыми можно склеивать материалы любой химической природы. Эта — клеи на основе эпоксидных полимеров [319], полиуретановых форноли-меров [123, с. 172 273, с. 72], полиакрилатов [123, с. 244 273, с. 82], каучуков [123, с. 272 273, с. 89] и др. Как правило, рекомендуется использовать клеи, одинаковые или близкие по химической природе к полимерной основе материала [12, с. 676 190 272 307 320]. В этом случае физические и химические свойства клеевой прослойки (водо- и термостойкость, диэлектрические показатели, коррозионная стойкость и- т. д.) будут близкц к соответствующим свойствам соединяемого материала, а условия образования шва будут мало отличаться от условий формования деталей и не будут сказываться на свойствах пластмассы. [c.213]

    Трудность склеивания акриловых полимеров с такими ма-териалами, как. металлы, стекло и фарфор, обусловливается главным образом большими различиями коэффициентов термического расширения акрилового стекла, с одной стороны, и неорганических материалов, с другой. Поэтому клеящий слой должен оставаться эластичным, чтобы компенсировать эти различия. При использовании термореактивных клеев, в частности эпоксидных смол, или полимеризационных клеев на основе метилметакрилата в зоне контактирования могут возникнуть значительные внутренние напряжения, в связи с чем такие клеи пригодны только при малых контактируемых плоскостях. Сравнительно высокое качество кл еевого соединения акриловых полимеров с др гими материалами достигается применением вклеенной каучуковой прослойки. Этот способ сводится к обработке поверхности каучука и органического стекла и их соединению полимеризационными акриловыми клеями. [c.215]

    На основе полимеров можно приготовить различные клеи и мастики, применяемые в строительстве для склеивания литых, слоистых и волокнистых материалов, элементов различных изделий и конструкций из древесины, металла и бетона. Широко применяются перхлорвиниловые клеи и поливинилацетатная дисперсия (для приклеивания декоративно-обшивочных материалов), фенолоальдегидные клеи (для производства древесностружечных плит), фенолокаучуковые клеи (для соединения стекловолокнистых материалов с металлом), полиуретановые и эпоксидные клеи (для склеивания различных неорганических материалов друг с другом и металлами), мочевино- и фенолоформальдегидные клеи (для склеивания фанерных плит и строительных конструкций из древесины, металлов, пластмасс, стекла, керамики и т. д.). Из клеящих мастик следует отметить битумные, битумно-резиновые, кумарино-каучуко-вые, коллоксилиновые, казеино-цементные и др. [c.434]

    Одним ИЗ сравнительно новых способов обработки поверхности является механохимический [64]. Он основан на образовании свободных радикалов, возникающих при механической обработке поверхности в среде клея. При механической обработке поверхности полимера происходит разрыв макромолекул, что приводит к образованию микрорадикалов, время жизни которых составляет 10- —10- с. Образование радикалов, генерируемых в среде клея, предохраняет их от контакта с воздухом и друг с другом. По-видимому, в этом случае увеличение прочности соединений, склеенных эпоксидными клеями, происходит за счет радикальных процессов в зоне контакта и образования химических связей между макромолекулами субстрата и клея, В качестве подтверждения этого механизма в [78] приводятся данные о стабильности свойств соединений, подвергнутых такой обработке в условиях длительного хранения. [c.126]

    Для производства электроизоляционных, антикоррозийных и герметизующих материалов [16] (герметики), клеев, формовочных масс, настилов для полов, а также в качестве связующих при изготовлении твердого ракетного топлива применяют жидкие каучуки [17], способные превращаться в результате вулканизации в резиноподобные продукты. К ним относятся олигомеры бутадиена, его соолигомеры с акрилонитрилом, а риловыми кислотами и винилпиридинами, непредельные эпоксиды, олигоуретаны, сравнительно низкомолекулярные полисульфиды (тиоколы) вида Н8—[—RSn—]ж — ЗН, некоторые кремнийорганические полимеры и т. д. Введение концевых функциональных групп (эпоксидных, ОН, СООН, 5Н и др.) с соответствующим мономером или путем химической обработки олигомера (например, эпоксидиро-ванием кратных связей) упрощает процесс вулканизации и позволяет осуществлять его полифункциональными низкомолекулярными соединениями с помощью обычной олигомерной технологии (см. с. 265). Полученные вулканизаты отличаются повыщенными прочностью и эластичностью. Жидкие каучуки с эпоксидными, группами являются эффективными нелетучими стабилизаторами хлорсодержащих полимеров. [c.290]

    Сравнительно легко гидролизуются полиамидные клеи, по-этбму их целесообразно применять для соединения негигроскопичных материалов. Эпоксидные смолы сравнительно стойки к гидролизу, но присутствующие в отвержденном продукте сложноэфирные группировки могут омыляться в присутствии щелочей. Имеются также данные о возможности гидролиза и других связей в макромолекулах эпоксидных смол [15]. Однако при сопоставлении действия воды на эпоксидные клеи в свободном виде и в клеевом соединении можно сделать вывод о том, что причиной снижения прочности в основн-ом является не гидролиз полимера, а разрушение адгезионных связей. Клеи на основе ненасыщенных полиэфирмалеинатов (смола ПН-1 и т. п.) гидролитически достаточно устойчивы в большинстве соединений, однако, если склеиваются материалы щелочной природы, на- [c.40]

    Соединения бетона и асбестоцемента на эпоксидных клеях водостойки. Очевидно, это является результатом особенностей химического состава бетона, а не его пористости. Соединения такого пористого материала, как древесина, на эпоксидных клеях ограниченно водостойки. Достаточно высокой водостой костью независимо от природы склеиваемых материалов отличаются соединения на эпоксидных клеях, отвержденных низко-молекулярными полиамидами (ПО-300, Л-20 и т. п.), в то время как избыток алифатических аминов против стехиометрического количества приводит к снижению прочности и переходу от когезионного разрушения к адгезионному [9]. Модификация эпоксидных клеев кремнийорганическими полимерами увеличивает их водостойкость. Достаточно привести в качестве примера эпоксидно-кремнийорганические клеи [29]. Клеи-герметики на основе кремнийорганических эластомеров тем не менее без применения специальных грунтов дают ограниченно водостойкие соединения металлов. [c.42]

    Клеевые соединения на эпоксидных клеях холодного отверждения менее прочны, чем соединения на клеях горячего отверждения. Для повышения эластичности клеевого шва в отвержденном состоянии в клеевую композицию вводят пластификаторы — ди-бутилфталат, трикрезилфосфат, модификаторы — жидкие каучуки СКН-26-1, СКН-18-1, тиоколы, оли-гоэфиракрилаты МГФ-9, ТГМ-3, низкомолекулярные полиамиды Л-20, ПО-300, иоливинилацеталн — поли-винилбутираль и целый ряд других полимеров и олигомеров. [c.14]

    Кремнийорганические клеи сохраняют прочностные свойства при высоких температурах (от 300 до 1000°С). Это возможно потому, что кремнийорганические полимеры содержат в цепи чередующиеся атомы кремния и кислорода, связи между которыми обладают высокой термостойкостью. Эти клеи предназначены для склеивания различных сталей и сплавов титана, для приклеивания к этим металлам неметаллических теплостойких материалов, работающих в условиях длительного воздействия высоких температур. Например, эпоксидно-кремнийорганиче-ский клей Т-111 отличается хорошей адгезией к различным материалам в интервале температур от —60 до 300 °С. Так, для образцов из алюминиевого сплава, склеенного этим клеем, разрушающее напряжение при сдвиге при 20 °С составляет 20 МПа (200 кг / м ), а при 200 °С —6 МПа (60 кгс/см ). Для фенолокремнийорганического клея марки ВС-ЮТ для соединений из нержавеющей стали прочность при 20 °С составляет 20 МПа (200 кгс/см ) и при 200 °С — [c.20]

    Стойкость к действию природных условий. Приборами и механизмами, имеющими клеевые соединения, пользуются в различных климатических условиях. Клеевой шов подвергается воздействию повышенной или пониженной влажности, морского тумана, плесневых грибков, солнечной радиации, воды и агрессивных сред. Высокую атмосферостойкость имеют фенолокаучуковые клеевые композиции, прочность которых, как показывает опыт, снижается за 10 лет эксплуатации на 10—15%. Для эпоксидных клеев наблюдается значительное падение прочности при сдвиге (до 50%) уже через 1—2 года. Для клеев, эксплуатирующихся в условиях иовышенной влажности и в воде,. необходимо применять гидрофобные наполнители и в качестве связующих выбирать полимеры с небольшим числом гидроксильных и карбоксильных (полярных) функциональных групп. [c.32]

    Отверждение термореактивных клеев является, наряду с подготовкой поверхностей, наиболее важной операцией в технологии С. Выбор реншмов этого процесса (теми-ра, давление, продолжительность) зависит не только от ирироды клея, но и от типа соединяемых материалов и условий эксплуатации изделий. Соединения, образуемые эпоксидными и полиуретановыми кле-ялш при комнатной темп-ре, имеют высокую прочность. Повышение темп-ры отверждения этих клеев приводит к получению более тепло- и водостойкого соединения с лучшими электроизоляционными свойствами. При С. реактопластов феноло-формальдегидными, кремнийор-ганическими или полпимидными клеями обязателен нагрев зоны шва, способствующий ускорению отверждения, более полному удалению растворителя и образованию полимера с большей мол. массой. Выбор теми-ры С. термопластов зависит от их теплостойкости. Склеиваемые участки нагревают в термошкафу, контактными нагревателями, с помощью токов высокой частоты или ультразвука. [c.209]

    Процесс выполнения соединений на эпоксидной смоле включает следующиоперации подготовку кле. , нанесение его на поверх 1( сть и проведение полимер 1за-ции. [c.176]

    Эпоксидно-полисульфидные клеи оЗеспечивают высокую прочность соединения металлов и стеклопластиков между собой и друг с другом. Напр., наилучшие результаты при соединении изделий из анодированного алюминия удается получить при использовании отечественного клея КЛН-1. Клеевые соединения масло-и бензостойки, обладают высокой стойкостью в агрессивных средах и высокой эластичностью, однако их прочностные характеристики после пребывания в воде в течение 30 сут снижаются на 15—30%. Максимальная рабочая темп-ра 60—70°С. Клеи этого типа проявляют ползучесть под повышенными нагрузками, особенно при темп-рах, близких к темп-рам размягчения полимеров. Аналогичны отечественным эпоксидно-полисульфидным клеям клеи РРЬ-828 и РРЬ-852 (США) и др. [c.492]

    Эпоксидные дисперсии с малым сухим остатком (около 20 %) применяют для получения полимербетонов. Ими также пропитывают стеклоткань, ровницу и другие стекловолокнистые материалы, что обеспечивает высокую прочность при межслойном сдвиге стеклопластика. В клеевых композициях можно применять смеси эпоксидных и других дисперсий. Например, в качестве водостойкого клея для древесины предлагается смесь дисперсии сополимера этилакрилата, акриловой кислоты и стирола с карбоксиЛированным бутадиен-стирольным латексом и 45 %-ной дисперсией дифенилолпропановой эпоксидной смолы в соотношении 100 100 20. Известны и дисперсии сополимеров с соединениями, содержащими эпоксигруппы. Так, при изучении влияния на свойства полимера эпоксигрупп на поверхности частиц дисперсии сополимера этилакрилата с глицидилметакрилатом [125] показано, что прочность и модуль упругости снижаются, а набухание в диоксане и водопоглош,ение медленно возрастают с уменьшением числа эпоксидных групп. [c.107]

    Прозрачность клеевых швов достигается при црименении полининилбутиральных пленок, пленок из полимеров эфиров метакриловой и акриловой кислот (бутил-, циклогексилметакри-латы, метилакрилат, их сополимеры и др.), поливинилацетата, начальных продуктов полимеризации диметилвинилэтинилкарбинола, полиизобутилена, сополимеров ненасыщенных полиэфиров на основе малеиновой и фумаровой кислот со стиролом и др. Некоторые из перечисленных полимеров предложено применять в виде растворов. В большинстве случаев в состав клеев и клеевых пленок вводят пластификаторы (фталаты, себацинаты и т. п.). Если клеевое соединение не обязательно должно быть прозрачным, то склеивание изделий из силикатного стекла и приклеивание их к другим неметаллическим материалам, а такл е металлам может быть выполнено с применением эпоксидных и полиуретановых клеев. Безосколочное стекло триплекс, пригодное для работы в интервале темпера-т-ур от —53 до -М77°С, предложено изготовлять с применением промежуточного слоя из крем нийорганического каучука . [c.354]

    Известен способ модификации эпоксидных олигомеров, заключающийся в изменении их вязкоупругих свойств непосредственно на склеиваемых поверхностях в процессе отверждения. Для этого используют диглицидиловые эфиры дифеиилолпропана, способные в неотвержденном состоянии образовывать с модификатором — эластифицирующим полимером — гомогенную дисперсию. В ходе отверждения растворимость изменяется и начинается осаждение модификатора в виде равномерно распределенной фазы с размерами частиц 4000 и 400 А. Эта фаза и обеспечивает высокую прочность и эластичность клея. Клеевые соединения на клее такого типа (PL-717, фирма Goodri h ) имеют разрушающее напряжение при сдвиге при 20 °С 37—47, а при 80 °С 22—29 МПа, прочность при отдире Т-образного образца при 20 °С составляет 7,45 кН/м, а при отдире барабаном при 20 и 80 °С — 430 Н-м/м [45]. [c.34]

    Прозрачность клеевых швов достигается при применении по-ливинилбутиральных пленок, пленок из полимеров эфиров метакриловой и акриловой кислот и др. Некоторые из перечисленных полимеров предложено применять в виде растворов. В большинстве случаев в состав клеев и клеевых пленок вводят пластификаторы (фталаты, себацинаты и т. п.). Если клеевое соединение может быть непрозрачным, то склеивание силикатного стекла и при-жлеивание его к другим неметаллитеским материалам и металлам может быть выполнено с применением эпоксидных, фенолокаучуковых и полиуретановых клеев. [c.234]

    Исключительной стойкостью к действию высоких температур характеризуются полиимиды прочность клеевых соединений остается удовлетворительной после старения при 370 °С в течение 60 ч. Клеевые соединения на основе эпоксидных олигомеров, совмещенных с новолачными, и циклоалифатических эпоксидных олигомеров могут работать в интервале температур 230—260 °С и кратковременно до 315 °С (все сказанное относится к клеевым соединениям закрытого типа, работающим в отсутствие непосредственного воздействия кислорода воздуха, который резко ухудшает клеящие свойства полимеров). Наибольшей термостабильностью характеризуются клеящие системы на основе модифицированных фенолоальдегидных олигомеров и прежде всего карборансодержащие композиции. Карбамидные клеи в соединениях древесины характеризуются относительно невысокой термостабильностью, по-видимому, в связи с большой жесткостью отвержденного продукта и значительными остаточными напряжениями в клеевом соединении. Значительно более термостабильны меламиновые и карбамидомеламиновые клеи. Ненасыщенные полиэфиры обладают сравнительно низкой стойкостью к тепловому старению. Устойчивы к тепловому старению элементоорганические и неорганические полимеры, содержащие бор и фосфор. Клеи на основе фосфатных связующих выдерживают нагревание при 1000 °С, однако вследствие высокой хрупкости и разности термических коэффициентов линейного расширения склеиваемых материалов и клея прочность клеевых соединений при этом может существенно снижаться. [c.248]

    Большой интерес представляют эпоксиноволачные смолы, получающиеся в результате реакции между фенольной смолой и эпи-.хлоргидрином и полимеры глицидилового эфира тетрафенилол-этана. Прочность клеевых соединений на их основе выше прочности обычных эпоксидных клеев и очень незначительно меняется в интервале температур 20—200 °С (табл. 5). [c.133]


Смотреть страницы где упоминается термин Клеи для соединения эпоксидных полимеро: [c.3]    [c.71]    [c.71]    [c.429]    [c.362]    [c.43]    [c.55]    [c.206]    [c.302]   
Способы соединения деталей из пластических масс (1979) -- [ c.214 , c.216 ]




ПОИСК





Смотрите так же термины и статьи:

Клеи для соединения

Клеи эпоксидные

Клей эпоксидные

Эпоксидные полимеры



© 2024 chem21.info Реклама на сайте