Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие методы исследования дисперсии

    Другие методы исследования дисперсии [c.370]

    ДРУГИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ДИСПЕРСИИ [c.371]

    Другой метод исследования гидратации латексных частиц основан на измерении объемного или теплового эффекта фазового перехода при замораживании и плавлении водных дисперсий синтетических латексов. Поведение различных дисперсных систем при замораживании и существование в них незамерзающих межфазных прослоек воды изучается давно (обзор ранних работ см. в [I]). Исследования течения незамерзающих прослоек воды в кварцевых капиллярах [32, 329, 525] углубили представления о структурных изменениях граничных слоев воды, эффективная толщина которых имеет порядок 10 м и убывает с понижением температуры замораживания. [c.191]


    В настоящее время изданы обобщающие монографии, касающиеся физико-химической механики контактных взаимодействий металлов, дисперсий глин и глинистых минералов. Однако в области вяжущих веществ, в частном случае тампонажных растворов, такие обобщения практически отсутствуют. В этом направлении накоплен большой экспериментальный материал, который изложен в разрозненных статьях, в специальных журналах, информационных изданиях. Уже сейчас высказан ряд различных гипотез и предположений о механизме формирования дисперсных структур в твердеющих системах, которые требуют однозначной трактовки с позиций физико-химической механики с использованием данных об этих процессах, получаемых с помощью различных физических, физико-химических и других методов исследований. Поэтому, наряду с изданием монографии С. П. Ничипоренко с соавторами Физико-химическая механика дисперсных минералов , немаловажное значение имеет издание настоящей книги. Исходя из имеющихся экспериментальных данных в книге сформулированы некоторые принципы и закономерности формирования дисперсных структур на основе вяжущих веществ. Конечная задача физико-химической механики заключается в получении материалов с требуемыми свойствами и дисперсной структурой, с высокими прочностью, термостойкостью и долговечностью в реальных условиях их работь и в научном обосновании оптимизации технологических процессов получения тампонажных растворов и регулировании их эксплуатационных показателей. Для этих целей широко используется обнаруженный авторами в соответствии с кривой кинетики структурообразования цементных дисперсий способ их механической активации, который получил вполне определенную трактовку. В отношении цементирования нефтяных и газовых скважин разработаны глиноцементные композиции с применением различного рода поверхностно-активных веществ, влияющих на процессы возникновения единичных контактов и их прочность в пространственно-коагуляционной, коагуляционно-кристаллизационной и конденсационно-кристаллизационной структурах. [c.3]

    Наконец, по мере накопления фактического материала и опыта использования этих методов должна постепенно создаться определенная максимально стандартизированная логика исследования, позволяющая быстро проводить структурный анализ соединения. По-видимому, серьез-ное вспомогательное значение для установления строения моносахаридов и их производных могут приобрести и другие физические методы, например дисперсия оптического вращения, рентгеноструктурный анализ и т. д. [c.627]


    Известно несколько методов исследования кинетики коагуляции дисперсий, состоящих из мелких коллоидных частиц. Один из этих методов основан на непосредственном подсчете частиц и их агрегатов с помощью обьино-го или поточного микроскопа. В ультрамикроскопическом варианте он позволяет установить временн)га зависимость полного числа всевозможных агрегатов и одиночных астиц [11, 12]. Другой широко распространенный метод основан на измерении зависимости светорассеяния (или коэффициента экстинкции Е) от времени в коагулирующей дисперсной системе. Этот метод является косвенным, и корректность интерпретации соответствующих результатов оказывается сильно зависящей от ряда свойств исследуемой дисперсии, в частности, от размера и формы ее исходных частиц и возникающих агрегатов и от концентрации дисперсной фазы. [c.160]

    Определенную информацию о структуре можно получить и другими методами 1) по данным о дипольном моменте, 2) о магнитной восприимчивости, 3) по интенсивности электронных спектров, 4) с помощью мессбауэровской (гамма-резонансной) спектроскопии и 5) по круговому дихроизму и путем изучения дисперсии оптического вращения. Эти физические методы имеют существенные ограничения в отношении числа и вида молекул, которые можно исследовать с их помощью, и некоторые другие недостатки. Эти методы не дают сведений о длинах связей и углах между ними. Более того, в некоторых случаях из-за сложности интерпретации данных могут быть сделаны неправильные выводы, поэтому эти методы редко используют в структурных исследованиях. [c.294]

    С тех пор как методы определения оптической активности — вращательная дисперсия и круговой дихроизм — начали развиваться, они используются главным образом для детальных исследований карбонильной группы в жестких асимметричных структурах. Это объясняется двумя причинами. Во-первых, кетогруппа имеет оптический переход слабой интенсивности при 300 ммк, который достаточно чувствителен к асимметричному окружению следовательно, поглощение не является помехой для проведения измерений. Во-вторых, стероиды и терпены предоставляют большой выбор соединений с карбонильной группой, абсолютная конфигурация которых обычно уже определена с помощью различных других методов. На основе этих соединений установлен ряд эмпирических правил, и они могут быть использованы в дальнейшем для решения специальных проблем. [c.109]

    В последние годы физические и физико-химические методы исследования в химии достигли особого расцвета. Появились новые методы, о которых в справочнике Ландольта не могло быть и упоминания (мессбауэровская спектроскопия, органическая масс-спектрометрия, дисперсия оптического вращения, круговой дихроизм и многие другие). Колоссально вырос и объем материала, полученного старыми, классическими методами. Всего этого материала в справочнике Ландольта нет, можно ожидать его появления в соответствующих томах Новой серии . [c.53]

    Но все же положение не так уж безнадежно, как это может показаться на первый взгляд. Кроме кинетических методов исследования элементарных химических актов существуют и другие методы изучения реакционноспособных систем. В их числе физические методы оптическая спектроскопия, радиоспектроскопия, методы рентгенографического и рентгеноструктурного анализов, масс-спект-рометрия, изучение дисперсии оптического и магнитного вращения. Информация, получаемая с помощью этих методов и надлежащим образом обработанная, позволяет проникнуть в мир элементарных взаимодействий электронов и ядер. А для того чтобы разобраться в том, как происходит химическое преобразование на атомно-молекулярном и электронном уровнях, надо ввести определенные микроскопические представления о структуре молекул и постараться понять макроскопические свойства реакционных систем как следствие внутренних особенностей молекул. Это очень важный и, кстати, очень увлекательный момент исследования реакций. Вряд ли кто из химиков откажет себе в удовольствии сконструировать молекулярный механизм изучаемой реакции. Но сколь трудна эта прогулка по внутреннему миру элементарных актов , может понять только тот, кто не однажды испытал па себе горечь разочарования. [c.42]

    Действительно, следует отметить, что в случае р. в. в. наблюдаемая на опыте дисперсия емкости в широком диапазоне частот служит признаком распределения констант скорости, что можно связать с заметной собственной поверхностной неоднородностью. Данные, полученные совершенно другим методом, а именно путем исследования дифференциальной газовой десорбции [134], также указывают на существенную собственную неоднородность поверхности ряда металлов. [c.465]

    При выборе растворителя следует отдавать предпочтение плохому растворителю, поскольку в этом случае для осаждения первой фракции достаточно будет добавить в систему лишь небольшое количество осадителя. Иногда желательно использовать смесь растворителя и осадителя, в которой исходный образец полимера может образовывать дисперсию. Например, Комитет стандартов и методов исследований Отделения химии целлюлозы Американского химического общества рекомендует смесь ацетона и воды (91 9) в качестве растворителя нитрата целлюлозы при исследовании распределения по молекулярным весам в исходных образцах целлюлозы [16]. Разумеется, нелегко провести растворение образцов в плохих растворителях или в смесях растворитель —осадитель. Тем не менее, если для растворения полимера применяется хороший растворитель, а осадитель добавляют в систему только до точки помутнения, то часто наблюдается исчезновение уже возникшей мутности при выдерживании раствора в течение нескольких часов или ночи. Подобное явление известно под названием ложной точки помутнения и объясняется Бойером [9] следующим образом. При растворении в хорошем растворителе молекулы полимера, вероятно, принимают довольно вытянутую форму и, очевидно, в определенной степени перепутываются друг с другом. Добавление осадителя к системе обусловливает переход молекул в клубкообразное состояние. С увеличением доли осадителя в смеси клубки становятся более плотными. Но если осадитель добавляется слишком быстро, система проскакивает требуемое состояние (наличие молекул в форме отдельных плотных клубков с последующим осаждением их из раствора) за очень короткий промежуток времени, поскольку молекулы не успевают разъединиться одна от другой до перехода в клубкообразное состояние. В итоге образуется система перепутанных друг с другом клубков. Следовательно, необходимо выдерживать раствор в течение некоторого времени с тем, чтобы дать молекулам время на отделение друг от друга в возможно большей степени. Иными словами, ложная точка помутнения не является истинным равновесным состоянием, для достижения которого требуется определенное время. Бойер указывает, что иногда необходимо выжидать более 24 час, например в случае системы полистирол — бензол — метанол, даже несмотря на то, что приблин ение к точке помутнения осуществляется крайне медленно. В силу изложенного значительно удобнее пользоваться плохим растворителем. [c.45]


    Для анализа процесса отверждения олигомерных систем применяются методы, отличные от методов исследования линейной полимеризации и формирования покрытий из растворов и дисперсий полимеров. Сущность химических методов сводится к исследованию кинетики трехмерной полимеризации. Рассмотрение этих методов и оценка их пригодности для анализа кинетики трехмерной полимеризации приведены в работах А. А. Берлина, Возможности методов, основанных на регистрации числа функциональных групп, участвующих в процессе полимеризации, рассмотрены на основе большого экспериментального материала и теоретического анализа процесса полимеризации олигоэфиракрилатов, Нерастворимость трехмерных полимеров в любых растворителях делает невозможны.м использование вискозиметрических методов, а также затрудняет применение и значительно снижает точность других методов, используемых для анализа линейной полимеризации дилатометрических, гравиметрических, диэлектрических. [c.122]

    Огромный интерес к стереорегулярным полимерам обусловил поиски упорядоченных конформаций этих полимеров в растворах и в твердом состоянии. Именно для этой цели ДОВ послужит незаменимым методом исследования, даже несмотря на то что такие работы находятся в самом начале. В совокупности с другими физико-химическими методами исследования метод дисперсии оптического вращения даст богатые сведения относительно структуры полимеров. [c.127]

    Лучшие результаты получаются при применении физических методов анализа двух- и трехкомпонентных смесей. Плохая адсорбция насыщенных углеводородов, низкие величины плотности, коэффициента преломления и дисперсии отличают насыщенные углеводороды от ненасыщенных, в особенности от ароматических, и в меньшей степени от других углеводородов. В смесях с растворимыми в воде растворителями насыщенные углеводороды можно иногда титровать, для чего прибавляют при определенной температуре воду до помутнения. Методы исследования некоторых смесей приведены в табл. 35. [c.960]

    В табл. 9 приводятся данные исследования фракций ароматических углеводородов, выделенных из масел различных нефтей [4, 12]. Из этих данных следует, что характер ароматических углеводородов масляных фракций, кипящих в одних и тех же пределах температуры, резко отличается по всем физико-химическим показателям. Первые фракции ароматических углеводородов, десорбированных с силикагеля изооктаном (или другими аналогичными неполярными растворителями), отличаются низкими значениями плотности и коэффициента преломления, высоким молекулярным весом и индексом вязкости, близким к индексу вязкости нафтеновых фракций. Кольцевой анализ по методу п-й-М показал, что эти углеводороды имеют одно ароматическое кольцо, несколько нафтеновых колец и значительное количество атомов углерода в боковых цепях. Фракции ароматических углеводородов, десорбируемых бензолом, имеют высокие плотности и удельную дисперсию, относительно низкий молекулярный вес и крайне низкие значения индекса вязкости. Кольцевой анализ показывает [c.21]

    Описанный выше механизм кольматации терригенных пористых коллекторов в отсутствии трещин в призабойной зоне свидетельствует о сложности и неоднозначности явлений, происходящих при закачке в них дисперсных систем. Поэтому применение их в качестве агента, выравнивающего профиль приемистости нагнетательных скважин, должно осуществляться с определенной осторожностью. При этом в обязательном порядке необходимы предварительные исследования скважины, планируемой под закачку дисперсии. Необходимо снять профиль приемистости, кривую падения давления и некоторые другие доступные виды исследования пласта и скважины. Эффективность применения дисперсных систем во многом зависит от степени анизотропии пласта. Понятно, что этот метод совершенно не приемлем в изотропных пластах. [c.119]

    Интенсивное изучение пространственного строения синтетических полипептидов продолжалось в течение 1950-х и первой половины 1960-х годов. Были привлечены практически все известные физические и физикохимические методы, позволяющие получать информацию о строении молекул в твердом состоянии и в растворах. Наибольшее количество данных было получено с помощью рентгеноструктурного анализа, методов рассеяния рентгеновских лучей под малыми углами, дисперсии оптического вращения, кругового дихроизма и дейтерообмена, с помощью обычных и поляризованных инфракрасных спектров. Из полученного при исследовании синтетических полипептидов огромного экспериментального материала, однако, не удалось сделать обобщающих заключений о причинах стабильности регулярных структур и сказать что-либо определенное на этой основе о принципах структурной организации белков. И тем не менее, результаты исследования повсеместно были восприняты как подтверждающие ставшее общепринятым представление о том, что пространственное строение белковой глобулы представляет собой ансамбль унифицированных регулярных блоков вторичных структур, прямую информацию о геометрии которых дают высокомолекулярные синтетические пептиды. а-Спиральная концепция Полинга не только не была поставлена под сомнение, но еще более утвердилась. В 1967 г. Г. Фасман писал "Общепризнано, что лишь несколько конформаций, благодаря своей внутренней термодинамической стабильности, будут встречаться наиболее часто и, по-видимому, именно они составляют общую основу белковой структуры" [5. С. 255]. Между тем, в то время уже были известны факты, настораживающие от безусловного принятия а-спиральной концепции Полинга. Но они выпадали из множества других фактов, согласующихся с традиционным представлением, казавшимся логичным и правдоподобным, к тому же не имевшим альтернативы. Поэтому на данные, противоречащие концепции Полинга, долгое время не обращали внимания. [c.72]

    Основные научные работы посвящены химии природных соединений, изучению возможности использования физических методов для исследования органических продуктов. Разработал промышленные методы получения женских половых гормонов — эстрона и эстрадиола, синтезировал кортизон из растительного сырья, первое пероральное противозачаточное средство — норэтистерон и другие медицинские препараты. Открыл около 50 новых алкалоидов, содержащихся в южноамериканских растениях, и установил их строение. Исследовал антибиотики-мак-ролиды и первым определил (1956) структуру одного из них — мети-мицина. Ввел в широкую лабораторную практику в органической химии новые методы исследования— дисперсию оптического вращения (1953) и круговой дихроизм при низких температурах (1963). Применил (1961) в структурной органической химии масс-спектро-метрию. [c.172]

    Другой метод исследования заключается в использовании оптически неактивных катионных красителей, при связывании которых со спиралью поли-Ь-глутаминовой кислоты появляется сильный эффект Коттона. При этом кривая дисперсии пересекает линию нулевого вращения вблизи полосы поглощения красителя (фиг. I). Для поли-О-глутаминовой кислоты также можно получить подобный, но противоположный по знаку, эффект Коттона, который исчезает при переходе от спирали к хаотической конформации, несмотря на то что краситель остается связанным с макромолекулой. Белки, в состав которых входят гемогруппы, содержащие железо (миоглобин, гемоглобин, ката-лаза, пероксидаза), обладают своим собственным красителем , и в их спектрах наблюдается эффект Коттона в видимой области, т. е. в области поглощения гема. При денатурации этот эффект исчезает, но поглощение в видимой области при этом сохраняется. При добавлении оптически неактивного восстановленного никотинадениндинуклеотида к алкогольдегидрогеназе из печени (ферменту, содержащему цинк) наблюдается эффект Коттона в области поглощения нуклеотида. Однако в этом случае эффект Коттона обусловлен, по-видимому, асимметрией связывающей поверхности фермента, а не асимметрией спирали. Аналогичным примером могут служить комплексы оптически активных аминокислот (не поглощающих видимого света) с медью. В полосе поглощения медных комплексов, уже находящейся в видимой области, наблюдается эффект Коттона, индуцируемый аминокислотами. [c.294]

    Выбор химической модели, а именно количества реакций и их стехиометрических коэффициентов, может потребовать варьирования не только концентраций реагентов, но и других условий, в первую очередь температуры. Примером является рН-метрическое исследование равновесий в растворах боратов. Несмотря на многолетние исследования, состав полиборат-анионов вызывал постоянные сомнения, путь к разрешению которых был неясен, и изучение таких систем на некоторое время прекратили. При этих исследованиях широко применяли ЭВМ, пытаясь дискриминировать химические модели, в частности, по величине остаточной дисперсии. Лишь недавно [12 ] были получены новые сведения о составе полиборат-анионов. При этом применялись измерения с водородным электродом в широком диапазоне температур, причем оказалось, что различные частицы лучше всего выявляются в своей температурной области. Из этого примера видна большая роль инициативы химиков, позволяющей в трудных случаях выйти за рамки традиционной области исследований, включить в рассмотрение дополнительный параметр или даже метод исследования. [c.175]

    Моделирование композиционного материала эквивалентной однородной средой недостаточно для исследования локальных пластических деформаций или разрушения, дисперсии волн и решения других задач, определяемых как раз неоднородностью свойств материала по координатам. Естественно, что точное решение подобных задач для неоднородного хматериала возможно только в редких случаях, поэтому были развиты приближенные методы исследования. Из этих методов наибольшее распространение и обоснование получили методы малого параметра и осреднения, основные идеи которых и будут рассмотрены в данном параграфе. [c.123]

    В работах [57, 58, 70, 76, 125, 131, 133] отмечено количественное преобладание гидросульфоалюминатов, гидросульфоферритов и родственных им гидратных фаз над другими новообразованиями в начальные периоды твердения, хотя иногда доминирующую роль приписывают Са (ОН)г [138]. Признано [57, 76], что гидросиликаты обуславливают основные механические свойства цементного камня Б поздние сроки твердения. Однако в литературе недостаточно данных по количественному изучению кинетики структурообразования как цемента, так и мономинеральных вяжущих, что связано, как указывалось, прежде всего с отсутствием надежных и тонких методов исследования. Недостаточность сведений по этому вопросу не позволяла установить непосредственную взаимосвязь между явлениями гидратации и формированием пространственных структур в дисперсиях, выявить роль индивидуальных гидратных фаз Б коагуляционном и конденсационно-кристаллизационном струк-турообразовании. В настоящей работе мы попытались восполнить указанный пробел детальным изучением кинетики структурообразования 3A 3S, а также различных цементов в комплексе с кинетикой их гидратации. О степени гидратации судили как на основании литературных данных, так и собственных результатов. Последние, в основном, получены с целью контроля и возможности надежного [c.74]

    В общем методы отражения (и исследования дисперсии) для определения абсолютных интенсивностей имеют наибольшее значение для переходов, дающих сильное поглощение. Для исследований в поглощении нужны чрезвычайно тонкие образцы. Абсорбционные методы являются также наилучшими для более слабых полос переходов. Таким образом, оба метода дополняют друг друга. Влияние отражения на измеряемые интенсивности поглощения обсуждалось Даусом и Холленбергом [29], а также Шацем н Маэда [89]. [c.596]

    Другой метод, позволяющий получить сведения о конфигурациях и конформациях молекул и существенно дополняющий метод Брюстера, был развит в конце 50-х годов на основе интенсивных экспериментальных исследований Джерасси и его сотрудников. Джерасси использовал не просто величину оптического вращения, а его зависимость от д.лины волны, так называемую дисперсию оптического вращения (ДОВ) [159а, 160] .  [c.199]

    В системе, пигментированной несколькими пигментами, флокуляция одного из компонентов обнаруживается по изменению цвета. Это один из наиболее широко распространенных методов измерения флокуляции хроматических пигментов в смеси с белыми пигментами. Однако необходимо гарантировать отсутствие фладинга, который также может привести к изменению цвета на поверхности пленки. Другим методом, который может быть использован для систем с несколькими пигментами, является микроскопическое наблюдение флокулятов цветных пигментов в тонких срезах сухой пленки, полученных с помощью микротома Возраст пленки влияет на легкость получения среза, но техника работы проста и позволяет устранить ошибки из-за расслаивания и фладинга. Таким образом, существует ряд методов, позволяющих оценить стабильность дисперсий или способность к флокуляции, начиная от более строгих исследований в разбавленных суспензиях до методов, удобных для использования в практических красочных системах.  [c.159]

    Поскольку новые методы исследования тесно связаны со стереорегулярностью полимеров, в книге приведена отдельная глава но определению микротактичности. Только одна глава книги — фракционирование—составлена с препаративной точки зрения. Но даже в этом случае выбраи один метод — экстракционная хроматография применительно к полиолефинам. В шести главах изложены методы, которые можно отнести к категории оптических. К ним относятся использование поляризованного излучения и дейтерированных образцов в инфракрасной спектроскопии, двойное лучепреломление и светорассеяние твердыми полимерами, дисперсия оптического вращения, поляризационная флуоресценция, дифракция рентгеновских лучей под малыми углами и дифракция электронов. В главе о ядерном магнитном резонансе рассматриваются только спектры высокого разрешения. Двумя термометрическими методами являются дифференциальный термический анализ и новый метод измерения тепловых эффектов при механической деформации. Остальные пять глав посвящены свойствам растворов и некоторым другим свойствам светорассеянию и осмометрии при повышенных температурах, ультрацентрифугированию в градиенте плотности, двойному лучепреломлению в потоке, эластоосмометрии и полимерным монослоям. [c.7]

    Анализ текстуры и расширения линий. Малоугловое рассеяние 5.1. Определение текстуры поликристаллических материалов (определения, плотность полюсов и полюсная фигура, экспериментальное определение текстуры рентгеновскими методами, в том числе фотографические методы с неподвижным и движущимся образцом, дифрактометрические методы, техника эксперимента морфологические и другие методы, в том числе оптические методы и косвенные методы интерпретация полюсных фигур и текстурных 1 арт стереографическая проекция, в том числе физический смысл параллелей, меридианов круги отражения, круги отражения для метода Шульца поправки при исследовании текстуры в проходящих и отраженных лучах). 5.2. Размеры частиц и их статистика из пиний Дебая — Шеррера (ширина линии и размер частиц, в том числе определение ширины линии, определение размера частиц, форма кристаллов, методы введения поправок к ширине линии, использование эталонов, поправка на дублет профили линий и статистика размеров частиц, в том числе аналитическое выражение и фурье-преобразование для профиля линии статистика размеров частиц, втом числе средние диаметры, отклонения и дисперсия, доля частиц с заданным интервалом диаметров, объемная статистика, функция распределения по диаметрам, выбор масштаба методы исправления профиля линии, в том числе прямые методы, методы Фурье, детальный анализ факторов расширения линии эффект конечного суммирования). 5.3. Малоугловое рассеяние (порядок величины углов для малоуглового диффузного рассеяния, единичная однородная частица, в том числе общая формула для рассеивающей способности, различные формы частиц сферически симметричная неоднородная частица, группа малой плотности из идентичных беспорядочно ориентированных частиц, в том числе общая формула, частицы различной формы, приближенная формула, закон Гинье, приближение для хвоста кривой, закон Порода эффекты интерференции между частицами для плотных групп идентичных частиц, в том числе формулы Дебая и Фурье группы малой плотности из частиц, имеющих различную форму, в том числе 1фивые Роиса и Шалла, вкспоненциальное приближение, приближение для хвоста кривой общий случай, предельная рассеянная интенсивность при нулевом угле полная энергия, рассеянная при малых углах, поправки на высоту щели у первичного луча, в том числе случай гауссовского распределения интенсивности, поправка для однородного луча с бесконечно высокой щелью, формулы преобразований). [c.324]

    Экстраполяция основана на выявлении тенденции изменения по,казателя во времени и распространении этой тенденции на последующий период. В основе тенденции могут лежать прямая или параболическая зависимости. Вид зависимости определяется заранее на основе проведения специальных исследований. Досто верность принятых норм должна быть П одтверждена р>асчетом величины возможной ошибки, т. е. вычислением показателей дисперсии, и сравнением его с нормативной величиной. Эксцрапол я-ция не предусматривает анализа факторов изменения пО казате-ле11, возможных отклонений при. качественных сдвигах (ввод новых технических средств, применение новых материалов), поэтому пользоваться этим методом можно только в тех случаях, когда не могут быть использованы никакие другие. [c.153]

    Продолжается активное развитие ряда фугих направлений коллоидно-химической науки и смежных областей знания учения об аэрозолях (играющего важную роль в создании методов защиты окружающей среды от загрязнения) физикохимии электроповерхностных явлений, включая коллоидно-химические аспекты борьбы с коррозией термодинамики поверхностных явлений и фазовых равновесий в дисперсных системах, теории электрокинетргаеских и оптических свойсгв коллоидных дисперсий изучения коллоидных свойств дисперсий ВМС (включая методы получения полимерных покрытий, особенности латексной полимеризации) исследований специфических коллоидно-поверхностных эффектов в кристаллах особенностей смачивания и других поверхностных явлений в высокотемпературных системах. Энергично развивается физико-химическая механика природных дисперсных систем (глинистые минералы, уголь, торф и др.) конструкционных и строительных материалов (стали, сплавы, керамика, материалы на основе минеральных вяжущих веществ) контакта твердых поверхностей, трения, смазывающего действия. [c.14]

    Предыдущий пункт приводит прямо к обсуждению минимально возможного размера зонда для рентгеновского анализа. Для каждого типа источника и напряжения, как детально показано в гл. 2 (рис. 2.16), для любого заданного размера зонда существует максимальное значение тока. Для обычных источников из вольфрама ток зонда изменяется пропорционально диаметру луча в степени 8/3 И имеет при 20 кВ типичные значения Ю А для зонда диаметром 20 нм (200 А), 10 А — для 100 нм (1000 А) и 10 А —для 1000 нм (10000 А). В спектрометре с дисперсией по энергии три помощи детектора диаметром 4 мм, находящегося на расстоянии 1 см от образца из чистого никеля, можно получить скорость счета около 10 имп./с для угла выхода 35° при диаметре зонда 20 нм (10 А) и 100%-ной квантовой эффективности. Как следует из рис. 5.33, скорость счета 10 имп./с является слишком высокой для реализации максимального энергетического разрешения, так что оператор должен либо отодвинуть детектор, уменьшить постоянную времени спектрометра с дисперсией по энергии, либо уменьшить ток зонда, перейдя к пятну меньшего размера. С другой стороны, соответствующая скорость счета для спектрометра с дисперсией по длинам волн составляла бы около 100 имп./с, что слишком мало для практического использования. Для массивных образцов (толщиной более нескольких микрометров) пространственное разрешение при химическом анализе не улучшается при использовании зондов с диаметром значительно меньше 1 mikm, поскольку объем области генерации рентгеновского излучения определяется рассеянием и глубиной проникновения электронов луча, а не размером зонда. Это демонстрируется на рис. 5.54, где показана серия расчетов рассеяния электронов и распределения генерации рентгеновского излучения, выполненных по методу Монте-Карло для зонда диаметром 0,2 мкм и гипотетического включения ТаС размером 1 мкм в матрицу пз Ni — Сг. Легко видеть, что траектории электронов и, следовательно, область генерации рентгеновского излучения, особенно при высоком напряжении, заметно превышают 1 мкм или 5- кратный диаметр зонда. Предельное значение диаметра зонда при исследовании таких образцов ниже нескольких сотен нанометров, поэтому полный анализ можно выполнить при форсированпи тока зонда до 10 нА и использова- [c.262]

    Сопоставление строения стероидов с одной стороны и три-, ди- и сёсквитерпенов с другой, впервые выполненное Клайном на основании монохроматических исследований инкрементов вращения, в дальнейшем получило строгое химическое подтверждение [156, 191]. Соединения, для которых было проведено подобное сопоставление, служат подтверждением метода установления строения на основании кривых дисперсии. В табл. 14 приведены заимствованные из работы Джерасси [7] примеры кривых дисперсии вращения, имеющих ту форму, которая была для них предсказана. [c.340]


Смотреть страницы где упоминается термин Другие методы исследования дисперсии: [c.15]    [c.6]    [c.82]    [c.553]    [c.320]    [c.125]    [c.517]    [c.106]    [c.36]    [c.11]    [c.332]   
Смотреть главы в:

Техника и практика спектроскопии -> Другие методы исследования дисперсии

Техника и практика спектроскопии -> Другие методы исследования дисперсии




ПОИСК





Смотрите так же термины и статьи:

Другие методы



© 2025 chem21.info Реклама на сайте