Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гиббса тепловая

    Применение уравнений Гиббса — Гельмгольца к электрохимическим системам позволяет найти соотношение между электрической энергией пРЕ и тепловым эффектом токообразующей реакции. Подстановка в уравнения (21) и (22) вместо величин и АО эквивалентных им величин электрической энергии из (52) и (53) дает [c.20]

    Потенциометрические кривые могут быть использованы для количественной оценки результатов титрования и для получения физико-химических величин константы диссоциации слабой кислоты, pH при титровании многоосновных кислот с учетом гидролиза, растворимости малорастворимых солей, константы нестойкости комплекса. Используя потенциометрические кривые реакции окисления — восстановления, можно рассчитать стандартные окислительно-восстановительные потенциалы, константы равновесия электродных реакций, энергию Гиббса и т. п. Если проводить потенциометрическое титрование в небольшом интервале температур, то по кривым титрования можно определить температурный коэффициент э. д. с., энергию Гиббса, тепловой эффект и реакции. [c.314]


    Поскольку в реакциях крекинга из исходных высокомолекулярных углеводородов образуются низкомолекулярные, а при синтезе, наоборот, низкомолекулярные превращаются в высокомолекулярные продукты, то эти две группы реакций термолиза должны антибатно различаться не только по тепловым эффектам (эндо — и экзотермические), но и по температурной зависимости энергии Гиббса А2 . [c.10]

    Значит, энтальпия есть тепловая функция состояния тела или какой-либо системы (функции Гиббса). [c.70]

    Химическое равновесие. Самопроизвольно, т. е. без затраты работы извне, каждая система может переходить только из менее устойчивого состояния в более устойчивое. При постоянных температуре и давлении такой переход всегда сопровождается уменьшением энергии Гиббса системы. Пределом протекания реакции,, т. е. условием равновесия, является равенство AG = 0. Согласно равенству (1,7) самопроизвольному течению реакции благоприятствуют большие отрицательные значения АН (т. е. значительное выделение энергии в ходе реакции) и большие положительные значения AS (т.е. возрастание энтропии). Для многих не слишком сложных реакций первый (энергетический) фактор отражает обычное повышение устойчивости системы при уменьшении запаса ее внутренней энергии, которое проявляется в тенденции к большей агрегации вещества, укрупнению частиц. Второй же фактор энтропийный отражает тенденцию к дезагрегации, к усилению всяческих процессов диссоциации на более простые частицы, происходящих под действием теплового движения частиц. В реакциях, которые приближают систему к состоянию равновесия, эти два фактора действуют в противоположных направлениях, и общее течение процесса определяется действием преобладающего фактора и сопровождается сближением значений величин АН и TAS до тех пор, пока не будет достигнуто равенство их между собой,. [c.25]

    Повышение давления и концентрации водорода увеличивает термодинамически возможную глубину гидрогенолиза. Гидрокрекинг идет с выделением тепла и (при температурах риформинга) с убылью стандартной энергии Гиббса. Тепловые эффекты и изменение стандартной энергии Гиббса в реакциях гидрокрекинга алкил-циклогексанов при 800 К следующие  [c.244]

    Иногда точные данные по термодинамическим функциям или равновесию реакций отсутствуют. Тогда для их количественного расчета прибегают к экспериментальному определению равновесий. Оно позволяет во многих случаях не только измерить константы равновесия, но и сделать полезные, а часто и наиболее точные расчеты других термодинамических функций — энергии Гиббса, тепловых эффектов и т. д. [c.37]


    Это равенство выполняется вследствие того, что кривые, определяющие зависимость /S.Gt°=G T) и АНт°=Н (Т), сближаются при понижении температуры и совпадают между собой уже в окрестности абсолютного нуля и они имеют общую касательную. На этом основании В. Нернст сформулировал теорему о тангенсе угла наклона касательной к обеим кривым в такой форме при температуре, стремящейся к абсолютному нулю для реакций, протекающих между веществами в конденсированной фазе, тепловой эффект равен изменению энергии Гиббса или изменению энергии Гельмгольца, а производные от этих функций равны друг другу и равны нулю  [c.210]

Таблица 10.1. Тепловой эффект и изменение энергии Гиббса при гидрировании сераорганических соединений Таблица 10.1. <a href="/info/39671">Тепловой эффект</a> и <a href="/info/12512">изменение энергии Гиббса</a> при гидрировании сераорганических соединений
    Но по уравнению Гиббса—Гельмгольца и по тепловому закону Нернста при Т- 0 [c.318]

    Другие параметры реакций. Изменение энергии Гиббса в результате реакции (Л0°) определяется по уравнению (11,3) через компонентов реакции из простых веществ. Значения AGf для большого числа веществ имеются в справочных изданиях, тоже главным образом для 298,15 К. При отсутствии в литературе готового значения AG для какого-нибудь из компонентов реакции оно может быть рассчитано по уравнению (1,13), если для него известны АН и 5 при данной температуре. Наряду с этим А0° реакции может быть рассчитано через константу равновесия по уравнению (1,13) или через функции энергии Гиббса компонентов по уравнению (1,22) и тепловой эффект реакции по равенству  [c.56]

    Зависимость изменения стандартной энергии Гиббса [ДгО°(Т)] и теплового эффекта [Д Я°(Г)] реакции от температуры в соответствии с (78.1) и (64.7) может быть выражена уравнениями [c.261]

    Уравнение Гиббса-Гельмгольца, Связь максимальной полезной работы с тепловым эффектом процесса. [c.28]

    Та блица 6.1. Тепловые эффекты и изменение стандартной энергии Гиббса прн реакциях полимеризации пропилена и бутенов [c.189]

    Реакция Тепловой эффект, кДж/моль полимера Изменение стандартной энергии Гиббса, кДж/моль  [c.189]

    Вернемся вновь к интегрированию уравнения Гиббса-Гельмгольца. Так как величина АЯ непосредственно измерима, то по уравнению (31.11) можно рассчитать АЯц из калорических данных. В правой части уравнений (38.9) или (38.10) остается тогда в качестве неизвестной константы интегрирования величина AS(). Тепловой закон Нернста является общим способом предсказания этой константы интегрирования. [c.185]

    Изменение энергии Гиббса рассчитывалось двумя методами по разности между тепловым эффектом и изменением связанной энергии реакции [c.10]

    В случае полярных растворителей методики расчета перераспределения компонентов между фазами даже для отдельных конкретных систем пока не разработаны. Между тем использование энергии Гиббса в уравнении параметра растворимости удобно в том отношении, что в изобарно-изотермический потенциал входят лишь две функции — тепловая и энтропийная. Не требуется отдельно искать математическую зависимость степени ассоциации молекул растворителя при разных температурах процесса, так как этот эффект учитывается изменением теплоты смешения. [c.247]

    Согласно уравнению Гиббса — Гельмгольца изменение термодинамического потенциала связано с термохимическим тепловым эффектом реакции при постоянном давлении Рр  [c.61]

    Во второй половине XIX столетия голландские ученые К. Гульдберг и П. Вааге и русский физико-химик Н. Н. Бекетов сформулировали закон депствущих масс. В это же время П. Дю-гем выводит уравнение для расчета термодинамических свойств растворов (уравнение Гиббса—Дюгема). М. Планк (1887 г.) разделяет процессы на обратимые и необратимые, В. Нернст (1906 г.) формулирует тепловую теорему, а М. Планк в 1912 г. — третий закон термодинамики. Значительное влияние на развитие термодинамики химических процессов оказали работы Я. Вант-Гоффа (понятие о химическом сродстве, изобаре и изотерме), Рауля Ф., А. Л. Брауна и А. Ле-Шателье. [c.14]

    И ДЛЯ экзотермических — наоборот, Ь < 0. Численное значение коэффициента Ь зависит от величины теплового эффекта оно увеличивается симбатно с ростом теплового эффекта реакций. Так, в реакциях с малым тепловым эффектом (например, изомеризации и гидрокрекинга) энергия Гиббса слабо зависит от температуры, в то время как для сильно эндо— и экзотермических реакций она И11меняется от температуры значительно сильнее. [c.12]

    Для грубой оценки того, в каком нанравленни может протекать та илн иная реакция прн низких ч при высоких температурах, можно воспользоваться приближенными уравнениями энергии Гиббса реакции. При низких температурах множитель Т мал и абсолютное значение произведения TAS тоже мало. В этом случав для реакций, имеющих значительный тепловой эффект, 1AW . Toi да в выражении [c.200]


    Стандартные изменения энергии Гиббса. Значения AS, а поэтому и AG сильно зависят от концентрации реагирующих веществ, Ввиду этого для характеристики влияния температуры на данный процесс и ддя сравнения различных реакций необходимо выбирать какие-либе сопостаЕшмые (стандартные) состояния. В качестве последних обычно принимают состояния реагирующей (неравновесной) системы, в которых концентрации каждого вещества равны 1 моль/кг ЬЬО (или парциальные давления равны 101 кПа), а вещества находятся в модификациях, устойчивых в данных условиях. Изменение энергии Гиббса для процессов, в которых каждое вещество находится в стандартном состоянии, принято обозначать А6 °, Введение стандартного состояния весьма удобно, так как если при этом фиксирована и температура, то величина AG° отражает только специфику реагентов. Поэтому подобно тепловым эффектам и энтропиям принято приводить в таблицах стандартные изменения энергии Гиббса образования веществ AG° (чаще всего AG 2os)- Имея значения AG] и S° для веществ, участвующих в реакции, можно с помощью уравнений (2.17), (2,23) и (2.24) вычислить АН° реакции. [c.189]

    В результате применения термодинамического метода к исследованию этого вопроса в работах Горстмана (1873), Гиббса (1874), Л. А. Потылицына (1874), Вант-Гоффа (1885) и ряда других ученых было показано, что возможность самопроизвольного течения химической реакции зависит как от ее теплового эффекта, так и от изменения энтропии и соответственно от концентраций реагирующих веществ. Эта возможность характеризуется общими условиями самопроизвольного течения процессов ( 82) и уравнением изотермы химической реакции. [c.266]

    Таким же путем может быть рассчитана стандартная энергия Гиббса образования СаС1а (к), его энтропия и т. п. Широко используются термодинамические свойства ионов и при проведении других термодинамических расчетов (констант равновесия, тепловых эффектов реакций и т. п.). Стандартные термодинамические свойства ионов, как и любых индивидуальных веществ, связаны соотношением [c.447]

    Величину константы интегрирования можно определить если известны теплоемкости, тепловой эффект при АН298 и значение Кх Для одной из температур или установлена температура, при которой AGr=0 (как, например, для реакции превращения модификаций 5пбелое 5псерое, AGr = 0 при Г = 292 К). Численное значение изменения энергии Гиббса можно определить экспериментально, измеряя электродвижущие силы для элемента, в котором осуществляется заданная реакция, используя соотношение  [c.208]

    Стирол в промышленности получают дегидрированием этилбензола в присутствии 2п—Ре оксидного катализатора при Г=833К. Рассчитать тепловой эффект реакции и изменение энергии Гиббса и определить константу равновесия. Рассчитать равновесные выходы стирола при разбавлении смеси водяным паром в отношении воды ЭБ=1, 3, 5, 7, 10, 20, 30 и Р=0,01 0,1 0,5 и 1,0 атм, теплоту реакции с учетом равновесных выходов прн разных давлениях и выявить оптимальное разбавление смеси водяным паром, если коэффициенты в уравнении для расчета прибыли таковы < 1 = 1, 2—0,008 и Сз=0,03. [c.282]

    Уравнения (69.28) — (69.30) также называются уравнениями Гиббса — Гельмгольца. Энергия Гиббса широко используется в термодинамике, когда в качестве независимых переменных выбраны Р Т. Параметры Р и Т, как V и Т, легко могут быть определены экспериментальным путем. Если химическая реакция будет протекать при постоянных давлении и температуре термодинамически необратимо (нестатически), то АН будет равно тепловому эффекту Q реакции. Следовательно, величина АН в уравнении (69.29) может быть определена термохимическим способом (калориметричейки или вычислена на основании закона Гесса). Произведение TAS согласно уравнению [c.228]

    При физической адсорбции энтропия адсорбции многих газов лежит в пределах 80—]00Дж/(моль К). Если принять предельное значение адсорбции Гоо= = 10 моль-см и толщину адсорбционного слоя 5-10 см, то концентрация газа в адсорбционном слое будет равна 10 /5 10 1 = 0,02 моль/см , или 20 моль/л. Если рассматривать газ как идеальный, то уменьшение энтропии газа в результате адсорбции при нормальном давлении газа над адсорбентом будет равно / 1п20 22,4 и 54 Дж/(моль К). Если учесть двухмерное состояние адсорбированного газа, то изменение энтропии будет еще больше. Следовательно, при взаимодействии субстрата с поверхностью катализатора только за счет физической адсорбции изменение энтропии газа Д 5° будет равно 80 Дж/(моль К)- Это равносильно тому, что энергия Гиббса адсорбированного газа, если рассматривать его как идеальный, возрастает примерно на 24 Дж/(моль К), так как при изотермическом сжатии идеального газа ДО + 4- /"Д 5 =0 (см. 71). Тепловой эффект физической адсорбции изменяется в широких пределах. Термодинамические характеристики процесса адсорбции некоторых веществ на саже приведены ниже. [c.641]

    В табл. 6.1 приведены данные о тепловом эффекте и изменении энергии Гиббса при реакциях полимеризации пропилена и бутенов. Тепловые эффекты полимеризации составляют 8 кДж/моль (17 2 ккал/моль) полимеризовавшегося олефина. При температурах до 500—550 К в стандартных условиях полимеризация идет с уменьшением свободной энергии Гиббса. Энергия Гиббса образования сооответствующих изоолефинов на 2—19 кДж/моль (0,5— 4,5 ккал/моль) ниже, чем а-олефинов нормального строения, и сни- [c.189]

    С помощью данных, представленных в табл. 8.1—8.3, можно рассчитать 1) теплоемкость вещества при любой температуре в интервале 298,15—1000 К (для На504 при 298,15—700 К) 2) теплоту образования соединения в конденсированном состоянии 3) низшую и высшую теплоты сгорания вещества 4) иа менение энтальпии соединения при его нагревании или охлаждении 5) термодинамические параметры химической реакции при любой температуре от 298,15 до 1000 К (тепловой эффект, изменение энтропии, изменение энергии Гиббса,, термодинамическую константу равновесия, степени превращения компонентов). [c.423]

    Тогда при стандартной температуре 298,15 К тепловой эффект (Qp,, jg, в кДж), изменение энтропии (ASjog в Дж-К" ), изменение энергии Гиббса (A j,, в кДж) и термодинамическую константу равновесия реакции (Ig/Ср (aeg)) можно рассчитать по уравнениям  [c.425]

    В таблицах приведены константы равковесия, тепловые эффекты, изменения энергии Гиббса и связанной энергии реакций, а в некоторых случаях также степени превращения веществ и равнсвесные составы газовой смеси в зависимости от температуры в пределах от 298,15 до 1500° К с интервалом 100 град. Для большинства реакций впервые получены полные термодинамические характеристики, для остальных получены новые характеристики на основании более точных исходных данных и в большем температурном интервале. [c.2]

    Уравнения (II, 162) и (II, 163) называются уравнеипямн Гиббса — Гельмгольца. Для химической реакции А// и АЦ представляют собой ее тепловые эффекты. [c.123]

    При проведении аналогий между ультрамикрогетерогенными системами и истинными растворами часто обсуждается специфика применения правила фаз Гиббса к этим системам. Возможность применения к золя]и молекулярно-кинетических законов, законов статистики и энтропии позволяет их рассматривать как системы, обладающие свойствами гетерогенно-дисперсных систем и истпн-ных растворов. Частицы истинных гетерогенно-дисперсных систем не участвуют в тепловом движении. С уменьщением размера до величин, отвечающих ультрамикрогетерогеиной области, частицы постепенно теряют свойство фазы — независимость термодинамических свойств от количества фазы. Как уже известно из разд. II. Д, термодинамические свойства частиц в этой области зависят от дисперсности (изменяются внутреннее давление, растворимость, температура плавления и другие параметры). Одновременно частицы начинают участвовать в тепловом движении системы. Чем меньше частицы, тем дальше система от истинного гетерогенно-дисперсного состояния и тем ближе к истинному раство-ру. [c.209]

    Длина углеводородного радикала оказывает решающее влияние иа мицеллообразование в водных средах. В процессе мицеллообразования ионии<ение энергии Гиббса системы тем больше, чем длиннее углеводородная цепь. Исследования показывают, что образование предмицеллярных ассоциатов наблюдается в поверхностно-активных электролитах с длиной углеводородной цепи более четырех атомов углерода. Однако в таких соединениях недостаточно выражено различие между гидрофильной и гидрофобной частями (высокое значение ГЛБ). В связи с этим энергия агрегирования недостаточна, чтобы удержать молекулы от беспорядочного теплового движения. Как правило, способность к мицеллооб-разовапию свойственна молекулам ПАВ с длиной углеводородного радикала более 8—10 атомов углерода. [c.300]


Смотреть страницы где упоминается термин Гиббса тепловая: [c.251]    [c.233]    [c.139]    [c.172]    [c.210]    [c.246]    [c.282]    [c.312]    [c.23]    [c.82]    [c.8]    [c.161]   
Понятия и основы термодинамики (1962) -- [ c.224 ]




ПОИСК





Смотрите так же термины и статьи:

Гиббс

Гиббсит



© 2025 chem21.info Реклама на сайте