Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полипропилен стеклования

    Рассмотренные выше кинетические осложнения стеклования могут возникнуть и в случае полимеров, если они способны кристаллизоваться. Более того, часто они оказываются непреодолимыми и получить, например, полиэтилен или изотактический полипропилен в полностью стеклообразном состоянии не удается ни при каких режимах переохлаждения. [c.77]

    Изучение изменения динамического модуля и гистерезисных потерь смесей натурального, бутадиен-стирольного и бутадиен-нитрильного каучуков между собой и с Полиэтиленом, полипропиленом, полиамидами и другими пластиками показало, что почти во всех рассматриваемых системах имеется две области стеклования Исключение составляет смесь бутадиен-нитрильного каучука СКН-40, с поливинилхлоридом, которая обладает практически полной совместимостью при. смешении их в виде растворов. Исследование влияния сажи, пластификаторов, различных вулканизующих веществ и прочих ингредиентов, показало, что они, как правило, не влияют на принципиальный характер положения максимума на кривой гистерезисных потерь, но изменяют его форму и величину. [c.20]


    При исследовании некоторых кристаллизующихся полимеров было обнаружено, что наряду со сферолитами они могут образовывать монокристаллы [18 504 506, с. 1171]. Электронно-микроскопическое исследование кристаллических структур полистирола и полипропилена [507, с. 1280] показало, что кристаллизация полистирола, происходящая ниже температуры стеклования, обычно сопровождается возникновением вторичных структурных образований, не дающих четкой электронно-микроскопической картины. При кристаллизации же выше температуры стеклования образуются ромбические кристаллы. Полипропилен также может образовывать монокристаллы. [c.189]

    При небольших напряжениях и деформациях благодаря существенному вкладу в общую деформацию деформации аморфных областей М. с. аморфно-кристаллич. полимеров имеют сходство с М. с. аморфных полимеров. При повышении темп-ры происходит уменьшение модуля Юнга, причем при переходе через темп-ру стеклования аморфных участков иногда наблюдается падение модуля, однако не на 4—5, как в случае аморфных полимеров, а всего на 1—2 порядка. Ниже определенной темп-ры аморфно-кристаллич. полимеры, как и аморфные, разрушаются обычно хрупко (исключение составляют полипропилен и нек-рые полиимиды, напр, полипиромеллитимид, сохраняющие способность к большим деформациям до темп-ры —200 °С). [c.116]

    На основании исследования термодинамических свойств полипропилена показано, что теплота горения фракции полимера, растворимой в эфире, на 0,1% ниже теплоты горения изотактического полипропилена йз данных по теплоемкости вычислены энтропии и энтальпии изотактического и атактического полипропиленов. Снижение температуры стеклования, имеющее место при переходе от изотактического к атактическому полипропилену, объясняется облегчением вращения сегментов в аморфном материале В то же время наблюдается постоянство отношения температуры стеклования к температуре плавления, равное 0,66. [c.302]

    Поскольку эти материалы, действительно, содержат две кристаллические фазы, то, по-видимому, важным условием улучшения их механических свойств является наличие в системе небольших количеств аморфного полиэтилена. Следует отметить, что аморфные области в полиэтилене имеют температуру стеклования —80 °С (по сравнению с —10 °С в полипропилене) [674, с. 16], [c.182]

    Для большинства исследованных полимеров С (К) больше при низких температурах, что объясняется уменьшением вероятности рекомбинации радикалов. Влияние температуры на накопление радикалов в различных фазовых состояниях полимеров различно. Так, в кристаллическом полиэтилене [14] и полипропилене [242], облучаемых при 300° К, накапливается радикалов на 1—2 порядка больше, чем в аморфных образцах. Для аморфного полипропилена, наоборот, при 77° К выход радикалов в 2 раза больше, чем для кристаллического полимера [242[. В общем случае облучение аморфных полимеров при температурах выше точки стеклования дает значительно меньшее количество стабилизированных радикалов, чем при температурах ниже этой точки. В каучуках и вулканизатах каучуков с плотностью пространственной сетки, равной — 10 с язь/сл , при повышении температуры за точку стеклования концентрация радикалов резко уменьшается [243]. [c.316]


    В аморфных полимерах кинетика рекомбинации радикалов описывается уравнением второго порядка прп температурах выше температуры стеклования. Второй порядок наблюдается также в реакциях некоторых кристаллических полимеров, но нри сравнительно высокой температуре. Так, по уравнению второго порядка рекомбинируют радикалы в поливинилхлориде при температуре выше 300° К [131 — 135], в полиметилметакрилате выше 330° К [98, 100, 101, 136, 137], в полиэтилентерефталате выше 250° К [111] и др. [138—140]. В политетрафторэтилене разной степени кристалличности рекомбинация радикалов также следует второму порядку [109,110,141—144]. В полиэтилене [145—1511, полипропилене [5, 152], поливиниловом [c.336]

    Для полимеров высокой степени кристалличности (полиэтилен, полипропилен) увеличение Ас в области предполагаемого стеклования становится крайне незначительным и растянутым в широком интервале температур, так что определение температуры стеклования и самого факта стеклования для таких полимеров представляет значительные экспериментальные трудности в -ее Ддд примера на рис. 5 приведены экспериментальные данные о теплоемкости атактического и изотактического полипропилена в области стеклования [c.183]

    В то же время, образцы с другими размерами сферолитов, а также атактический полипропилен, не способны давать ниже температуры стеклования такие большие деформации. Было обнаружено, что эта деформация в значительной степени (на 50— 70 %) обратима при температуре растяжения и полностью обратима после нагревания полимера выше температуры стеклования. Общая деформация полипропилена в этом случае значительно превышала деформацию, соответствующую пределу вынужденной эластичности полимера, что принципиально отличает механизм обратимой деформации этой системы от механизма обратимости деформации, рассмотренного в работах [129—131. Восстановление размеров образцов сопровождается полным восстановлением исходной структуры полимера. МетО  [c.70]

    ПО миграционному механизму. С повышением температуры вступает в силу также рекомбинация вследствие смещения участков макромолекул или фазовых переходов. С этим согласуются повышение энергии активации с увеличением температуры до 27 ккал/моль и рекомбинация радикалов в точке стеклования в аморфном полипропилене [5, 8]. [c.198]

    Зауэр и др. нашли, что падение АЩ, соответствующее -переходу (стеклованию в аморфных областях) в изотактическом полипропилене, происходит при температурах приблизительно на 30 град выше, чем в атактическом. [c.201]

    Метод экструзии приобрел особенно большое значение за последние годы по мере развития производства новых полимерных материалов и оборудования для их переработки вследствие своей универсальности. Экструзионный метод производства пленок может быть осуществлен в двух вариантах — рукавный и плоскощелевой. Получение пленок из высококристаллических полимеров с высокой температурой стеклования (полиэтилентерефталат, поликарбонаты, полипропилен, полиамиды) происходит в основном методом экструзии расплава через плоскощелевую головку с эффективным охлаждением пленки на валках или в водяной ванне. Однако было бы ошибкой недооценивать рукавный вариант экструзии при производстве пленок. Этот метод более универсален в смысле возможностей вариации параметров структуры непосредственно в процессе экструзии и достаточно перспективен при модификации свойств пленочных материалов на основе полиолефинов и сополимеров винилиденхлорида. [c.111]

    При введении в полипропилен более 45% СЬ повышаются жесткость, температуры размягчения и стеклования вследствие увеличения межмолекулярного взаимодействия. [c.591]

    Хотя в полипропилене не наблюдается низкотемпературного перехода, все же в высших поли- -а-олефинах такой переход должен существовать, поскольку в боковых ответвлениях этих полимеров имеются достаточно длинные последовательности метиленовых групп. Было найдено, что даже в том случае, когда боковые ответвления представляют собой этильные группы, в полибутене-1 наблюдается низкотемпературный переход при —120° С, вызванный движением в аморфных областях полимера . Кроме того, в этом полимере наблюдается обычное стеклование в области тем  [c.267]

    На основании очень быстрого изменения жесткости полипропилена при температурах, близких к температуре стеклования, и в сочетании с тем фактом, что при некоторой произвольности методов определения хрупкости образцы полипропилена могут оказаться неудовлетворительными, был сделан вывод о совершенной бесполезности данного материала при низких температурах. Однако это неверно, поскольку даже при температуре ниже температуры стеклования полипропилен обладает большей гибкостью и вязкостью, чем такой распространенный материал, как полистирол при комнатной температуре. При очень низких температурах полиэтилен переходит в стеклообразное состояние и становится значительно жестче полипропилена, который в этом температурном интервале обладает значительно большей гибкостью. Свойства полипропилена изменяются в широком интервале, но общая картина, представленная на рис. 8, правильна. Зависимость изменения свойств от температуры может быть изучена путем определения сопротивления удару, т. е. способности противостоять внезапному удару. На рис. 9 приведена зависимость сопротивления удару от температуры следующих материалов полиэтилена высокой плотности, полипропилена и полистирола. Полипропилен обладает большей вязкостью при температуре выше комнатной, однако следует отметить, что при низких температурах его прочность хотя и относительно низка, тем не менее по прочности полипропилен находится между полистиролом и полиэтиленом высокой плотности. Полистирол, обладающий высокой прочностью на удар, широко применяют в холодильниках ввиду его прочности при низких температурах. Эти данные не распространяются на очень низкие температуры (см. предыдущие рисунки), но из данных, приведенных на рис. 9, кажется вероятным, что если продолжить кривые, то линия, характеризующая полиэтилен, опустится в конце концов значи- [c.28]


    Если изобразить графически зависимость удельного объема от температуры, то для атактического и изотактического полимеров получаются разные диаграммы. Кривая зависимости, полученная для атактического полипропилена, характерна для аморфных материалов и состоит в грубом приблгжении нз двух линейных ветвей, которые пересекаются в точке, обозначаемой как температура перехода второго рода, или как температура стеклования (рис, 5.16) [,40], Положение этой точки в известной мере зависит от метода измерения. Таким образом, мы имеем здесь дело не с типичным фазовым превращением, а скорее с изменением энергии межмолекулярного взаимодействия, в результате которого увеличивается подвижность отдельных участков макромолекулярной цепи (сегментов), В то время как ниже температуры стеклования взаимное положение сегментов практически фиксируется, выше этой температуры энергия теплового движения сегментов увеличивается и становится достаточной для преодоления межмолекулярного, а также внутримолекулярного взаимодействия. Особенно сильно это проявляется в изменении модуля упругости аморфных полимеров. Из твердого, а часто и хрупкого состояния полимер переходит в каучукоподобное (высокоэластическое), когда уже под действием небольшой внешней силы он приобретает значительную деформацию, которая после снятия нагрузки почти мгновенно исчезает. Высокоизотактический полипропилен практически вообще не обнаруживает перехода второго рода. Зато прн температуре, близкой к точке плавения кристаллитов, его удельный объем [c.112]

    Характерно, что температуры стеклования каучука и гуттаперчи тоже близки друг к другу по своей величине Пространственные изомеры, например атактический и изотактический полипропилен, также характеризуются одинаковыми температурами стеклования, что свидетельствует о постоянстве гибкости цепной молекулы, независимо от ее конфигурации. Поэтому можно предположить, что изменение конфигурации цепных молекул полимеров, находящихся в высокоэластичном состоянии оказывает скорее косвенное влияние на газопроницаемость, так как транс-изомеры и изотактические изомеры, обладая более прямой регулярно построенной линейной молекулой, легче образуют кристаллические структуры, как известно, способствующие снижению проницаемости. В работебыла изучена проницаемость натурального каучука, гуттаперчи и г ис-гранс-полиизо-прена (мольное соотношение 2 3) в интервале температур 323—363 К по отношению к парам н-бутана. Полученные результаты свидетельствуют о постоянстве значений Р, О а для всех трех исследованных полимеров. [c.71]

    Термомеханическая кривая кристаллического полипропилена (рис. 2, 1) показывает, что в широком интервале температур в отличие от атактического полипропилена образец остается практически недеформируемым и лишь при температуре плавления переходит в вязкотекучее состояние. Однако если полипропилен аморфизовать (нагреванием выше температуры плавления и последующим быстрым охлаждением), то на термомеханической кривой появится область, соответствующая высокоэластическому состоянию (рис. 2,2). Как и у атактического полипропилена, область высокоэластических деформаций начинается с —10°, но нри дальнейшем повышении температуры деформируемость падает, что связано с переходом полимера из аморфного состояния в кристаллическое. Это свойство объясняется регулярным строением цепей полипропилена, благодаря которому аморфизованный полипропилен способен повторно кристаллизоваться. В расплаве меняется конфигурация цепей, но сохраняется правильная последовательность асимметрических углеродных атомов в молекулах. Быстрое охлаждение расплава препятствует процессу упорядочивания цепей, и в стеклообразном состоянии они сохраняют ту форму, которую приобрели в расплаве. Кристаллизация происходит только выше температуры стеклования, когда подвижность звеньев достаточно велика. Исследование термомеханических свойств амор-физованного образца является, таким образом, одним из методов определения температуры стеклования кристаллизующегося полимера. [c.133]

    Каргин и Марченко [66] нашли, что темнература стеклования изотактического и атактического полипропилена лежит около —10° С. Полинро-пилеи кристаллизуется в моноклинной системе (ср. гр. Сг размеры элементарной ячейки а = 6,65 Ъ = 20,96 с = 6,50 А ж В — 99°20) [67]. Изотактический полипропилен так же, как и другие изотактические полимеры а-олефинов, имеет спиральное расположение боковых групп [67—69], как это показано на рис. 67. [c.183]

    Так, например, в изотактическом полипропилене наблюдается три перехода и соответствующие им три максимума на кривой изменения внутреннего трения от температуры (рис. 56). а-Переход соответствует а-переход перемещению сегментов и определяется -перехоб температурой стеклования р-переход происходит за счет движения более мел-ких структурных единиц и соответствует температуре хрупкости упереход осу- ществляется за счет вращения метильных -групп вокруг основной цепи полииропи-лена. В полиметилметакрилате, напри-мер, р-переход объясняется движением емпература [c.115]

    В работе Томанна с соавторами [28] описан ряд статистических этиленбуте-новых сополимеров, синтезированных с использованием металлоценовых катализаторов. Содержание бутена-1 в сополимерах этого ряда составляло 52,70,82 и 88 %. Температуры стеклования имели следующие значения -57,9, -45,5, -41,4 и -39,5 °С. Эти сополимеры также могут быть использованы в смесях с другими полиолефинами, в частности, с изотактическим полипропиленом. [c.117]

    Известно достаточно много публикаций, посвященных исследованию смесей каучуконодобных сополимеров с изотактическим полипропиленом, обладающих этим свойством из-за относительно высокой температуры стеклования. Эластомерные статистические сополимеры типа этилен/а-олефин являлись наиболее распространенными объектами исследования. Первичными а-олефинами служили пропилен, бутен-1, гексен-1 и октен-1. Многие из этиленнрониленовых сомономеров (ЭПМ) являлись тройными полимерами (ЭПДМ). [c.122]

    Формование из расплава смесей полипропилена и поликарбоната изучал Йю [89]. В этих волокнах также наблюдались кристаллы а-моноклииного изотактического полипропилена. Йю обнаружил, что полипропилен в смесях проявляет более слабую ориентацию кристаллической фазы, чем чистый изотактический полипропилен или смеси полипропилен-ЭПДМ. По-видимому, этот эффект сходный с обнаруженным Мином с соавторами [64] в полиэтилен-полистироль-ных смесях (см. раздел 8.6.3). Высокая температура стеклования Т в поликарбонате является причиной быстрого изменения вязкости при изменении температуры и вызванного этим перераспределения напряжений вдоль линии формования. [c.177]

    Формование из расплава смесей нолинронилена и поликарбоната изучал Йю [89]. В этих волокнах также наблюдались кристаллы ос-моноклинного изотактического полипропилена. Йю обнаружил, что полипропилен в смесях проявляет более слабую ориентацию кристаллической фазы, чем чистый изотактический полипропилен или смеси полипропилен-ЭПДМ. По-видимому, этот эффект сходный с обнаруженным Мином с соавторами [64] в полиэтилен-полистироль-ных смесях (см. раздел 8.6.3). Высокая температура стеклования Г в поликарбона- [c.177]

    В полиэтилене [81], полипропилене [82], производных целлюлозы [83], в политетрафторэтилене [78], поливинилацетате [84], облученных при 77° К, большая часть радикалов рекомбинирует при нагревании до температуры стеклования (или какого-либо другого фазового перехода). У аморфных полимеров исчезновение радикалов резко ускоряется в области стеклования. В кристаллических полимерах концентрация радикалов монотонно уменьшается вплоть до температуры плавления. У полимеров, содержапр1х аморфную и кристаллическую фазы, термическая устойчивость радикалов тем выше, чем больше степень кристалличности [5, 85]. В ряде аморфных полимеров — полиизобутилене [5], натуральном каучуке и синтетическом [c.333]

    Вопросы, связанные с влиянием подвижности боковых групп на температурную зависимость и величину теплоемкости полимеров, изучались в работах Сочава и Трапезниковой . Рассмотрение возможного влияния подвижности боковых радикалов на характер изменения и значения низкотемпературной теплоемкости проведено в последнее время О Рейли и Карашем На кривой температурной зависимости теплоемкости таких полимеров, как полистирол, полиметилметакрилат, поливинилиденхлорид и полипропилен ниже температуры стеклования экспериментально не обнаружено каких-либо размытых или резких пиков. На основании сравнительного анализа исследованных полимеров Сочава приходит к выводу, что высокое значение теплоемкости полистирола при температуре ниже 40° К обусловлено крутильными колебаниями бензольного кольца Что касается аномалии, описанной в работах то ее появление объяс- [c.187]

    Комплекс свойств этиленпропиленовых сополимеров определяется соотношением и расположением мономерных звеньев в цепи сополимера. Гомополимеры полиэтилен (ПЭ) и полипропилен (ПП) имеют регулярное строение и досточно гибкие цепи, в результате чего их температуры стеклования и должны быть достаточно низ- [c.176]

    Бромирование полиэтилена описано в [128], а направленное фторирование углеводородных полимеров —в [129]. В [130] исследовано влияние растворителя на хлорирование поливинилхлорида. Изучение хлорирования в диметилформамиде при различных температурах показало, что при 25—50°С содержание хлора может достигать 58,2% (мае.). При повышенных температурах наблюдается дегидрохлорирование. Более высокая растворяющая способность диметилформамида обеспечивает более высокое содержание связанного хлора, но высокая основность этого растворителя вызывает интенсивное дегидрохлорирование. В [131] сообщается о распределении хлора при хлорировании поливинилхло-уида различными методами. Протекание этой реакции зависит и от тактичности поливинилхлорида [132, 133] на степень хлорирования влияет содержание синдиотактических структур. Продукты с синдиотактичностью более 56%, в которых чередуются синдио-тактические и изотактические диады, энергично поглощают хлор. В литературе сообщается о хлорировании и сульфохлорировании полиэтилена низкой и высокой плотности [134] и полипропилена [135, 136]. При хлорировании и сульфохлорировании атактического полипропилена [137] в U были получены продукты, содержащие от 3 до 72,3% хлора, и сульфохлорированный полипропилен с содержанием 3—54,4% хлора и 1,2—5,9% серы. Одновременно определено влияние замещения в полимерной цепи на относительную молекулярную массу, характеристическую вязкость и температуру стеклования полимера. Особенно интересны динамические и механические характеристики, изменения которых обусловлены распределением хлора в процессе хлорирования атактического по-липропилена. В случае хлорирования изотактического полипропилена с увеличением содержания хлора снижается доля кристаллических областей. При этом признаков деструкции и сшивания не обнаружено. Галогенирование других линейных полимеров возможно при наличии в их структуре атомов водорода, способных к замещениго (см. также [124]). [c.133]

    Так, атактич. полипропилен в зависимости от молекулярного веса при обычных темп-рах представляет собой вязкую жидкость или каучукоподобный пекриеталлизующийся материал с темп-рой стеклования порядка —40°. Изотактич, полипропилен — кристаллизующийся волокнообразующий полимер, т. пл. кристаллов 176 . Атактич. полистирол не кристаллизуется, темп-ра стеклования порядка 80 . Изотактич. поли- [c.87]

    При замещении в полиэтилене обоих атомов водорода в каждом втором углеродном атоме на метильные группы образуется полиизобутилен, повторяющееся звено которого СН2С(СНз)2 (молекулярный вес 56,11). Обычно этот полимер полностью аморфный. Ферри и Паркс (1936) измерили теплоемкость образца с низким молекулярным весом М 4900) в температурном интервале от 120 до 295 К. Фурукава и Рейли (1956) провели измерения теплоемкости высокомолекулярного образца (Л135-10 ) в температурном интервале 14...380К. Температуры стеклования этих образцов оказались равными соответственно 197 и 199 К. Теплоемкость низкомолекулярного образца была на 1... 2% выше, что соответствует данным для других полимеров, для которых проводили измерения теплоемкости на образцах различного молекулярного веса. В табл. П1. 15 суммированы сглаженные данные Фурукава и Рейли. Сравнение с полипропиленом показывает, что ниже 80 К теплоемкость атактического полипропилена выше теплоемкости полиизобутилена, несмотря на то что полиизобутилен обладает тремя дополнительными низкочастотными колебаниями — крутильными СНз-группы и двумя С—СНз-деформа-ционными колебаниями. [c.180]

    Полимерная цепь полистирола в кристаллическом состоянии образует спираль типа 2 3—1, так же как полипропилен и полибутен-1. Элементарная ячейка ромбоэдрическая. Образцы со степенью кристалличности примерно 0,40 и с Г...5% атактичности были исследованы Дейнтоном, Ивенсом, Хоу-аром и Мелиа (1962) в температурном интервале 20...310К, Абу-Иза и Долом (1965) в интервале температур 220...550К и Карашем, Бейером и О Рейли (1965) в области температур от 300 до 525 К. В области температур от 80 К до температуры стеклования, по-видимому, нет различия между теплоемкостью полукристаллического изотактического и атактического полистирола. За исключением результатов, полученных при низкой температуре Абу-Иза и Долом, которые, по-видимому, [c.185]

    Так, температура стеклования для полипропилена (Гс=—27 С) выше, чем для полиэтилена (7 с=—120 С). С другой стороны, полиизобутилек имеет более низкую температуру (Гс=—65 С), чем полипропилен, поскольку полиизобутилен имеет две метильные группы, присоединенные к одному и тому же атому углерода, из-за чего снижается дипольный момент (полярность). То же самое справедливо и для поливинилиденхлорида (Гс=—17 °С) по сравнению с поливинилхлоридом (7 с=+80 °С). Водородная связь является одной из сильнейших сил побочной валентности, приводящей к увеличению Гс- Поли-е-капролактам, мало предрасположенный или вОобЩе неспособный к образованию водородных связей, имеет Гс=,—70°С, тогда как найлон 6 характеризуется сильной способностью к образованию водородных связей и за счет наличия —СОЫН-групп имеет Гс 50 С. [c.113]

    Полипропилен (ПП) [10], как и полиэтилен высокой и средней плотности, получают стереоспецифической полимеризацией. Наличие боковых метильных групп при их стереорегулярном расположении увеличивает жесткость цепи и плотность упаковки макромолекул, что вызывает повышение температуры стеклования и текучести по сравнению с полиэтиленом. Полипропилен способен образовывать разнообразные надмолекулярные структуры. Это связано с высокой, епенью кристалличности, асимметричностью и незначительной по- рностью макромолекул. Свойства пленок, получаемых из полипропилена методом экструзии, зависят от режима переработки 111]. [c.17]

    В ряду полиэтилен — полипропилен — полистирол — поливинилкар-базол температура стеклования непрерывно возрастает, так как увеличиваются размеры боковых групп и сегмента. Увеличение числа боковых групп при сохранении симметрии цепи не повышает температуру стеклования так же резко, как при несимметричном замещении. Так, температура стеклования поливинилхлорида (несимметричного) 80° С, а поливинил-иденхлорида (симметричного) 17° С, аморфная часть полипропилена подвергается стеклованию при —10° С, а полиизобутилен, в котором метальные группы расположены симметрично,— при —65° С. [c.30]


Смотреть страницы где упоминается термин Полипропилен стеклования: [c.105]    [c.125]    [c.101]    [c.150]    [c.118]    [c.185]    [c.438]    [c.173]    [c.198]    [c.49]    [c.176]    [c.267]   
Кристаллические полиолефины Том 2 (1970) -- [ c.268 ]

Полиолефиновые волокна (1966) -- [ c.46 , c.51 ]




ПОИСК





Смотрите так же термины и статьи:

Полипропилен



© 2024 chem21.info Реклама на сайте