Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пористость электронной микроскопии

    Определение типа и концентрации дефектов кристаллической решетки, выходящих на поверхность кристаллов, производится главным образом методом электронной микроскопии. Для выявления дефектов применяется химическое или ионное травление свежих сколов кристаллов, позволяющее охарактеризовать своеобразные структуры минералов, однако интерпретация полученных результатов чрезвычайно затруднена из-за неопределенной кристаллографической ориентации граней кристалла. Кроме того, возникают трудности, связанные с получением качественных реплик с поверхности пористых образцов. Несомненно, что исследование минералов при использовании просвечивающих электронных микроскопов позволило бы получить больший объем информации о дефектности структуры минералов, если бы было возможно без особых затруднений приготавливать для анализа образцы требуемой толщины. Рельеф поверхности скола не дает прямой информации о направлении и величине вектора Бюргерса наблюдаемых дислокаций, что затрудняет идентификацию отдельных видов этих дефектов, однако электронно-микроскопическая картина поверхно- [c.236]


    Влияние свойств пористого слоя на скорость фильтрования нередко выражают посредством параметров, определяющих его структуру, в частности эквивалентного размера пор, пористости слоя, удельной поверхности и щероховатости частиц. С этой целью принимают идеализированные модели пористого слоя, например модель цилиндрических капилляров. Однако в настоящее время принципы построения моделей пористых сред требуют уточнения [24]. Так, следует отметить, что способы определения параметров пористых сред адсорбцией, капиллярной конденсацией, ртутной поро метрией, электронной микроскопией нередко приводят к разным результатам, причем одни параметры модели и объекта могут совпадать, а другие различаться. Использование идеализированных моделей пористых сред не способствует лучшему пониманию процесса фильтрования, а все параметры, характеризующие пористую среду, в конечном счете приходится объединять в один, находимый экспериментально параметр, называемый коэффициентом проницаемости или удельным сопротивлением. К сказанному надлежит добавить, что отмечено шесть типов укладки моно-дисперсных шарообразных частиц в слое, причем форма пор, влияющая на гидродинамику слоя, различна для разных типов укладки [39]. [c.24]

    Как известно, интервал pH, в котором ацетатцеллюлозные мембраны могут использоваться, ограничен 3<рН<8. Поэтому при обработке агрессивных растворов конкуренцию динамическим мембранам могут составить только новые типы синтетических мембран. В среднем проницаемость динамических мембран оказывается выше, чем у лучших образцов полимерных мембран. Это объясняется тем, что адсорбция добавок происходит только на поверхности пористой структуры со стороны прикладываемого давления, подтверждением чему являются исследования срезов подложки под электронным микроскопом. Толшина адсорбционного слоя по исходному веществу при этом. мала. Так, для [c.91]

    Детальное изучение структуры ацетатцеллюлозной мембраны с помощью электронного микроскопа [50] выявило не два, а три слоя (А — активный слой, В — подслой, С — пористая подложка), различающиеся по размеру пор. Соотношение толщин А-слоя (6а) и В-слоя (бв) зависит от технологии приготовления мембран, в частности от времени испарения растворителя (рис. И-З). Важное следствие из этого рисунка — снижение толщины активного слоя с увеличением времени испарения растворителя, что необходимо у читывать при разработке технологии получения полупроницаемых мембран. [c.49]


    Электронная микроскопия по сравнению с другими методами, применяемыми для исследования структуры высокодисперсных и пористых тел, отличается тем, что позволяет видеть изучаемый объект. Если данные других методов необходимо так или иначе интерпретировать для получения упрощенных схематизированных представлений о структуре тел, то электронная микроскопия в известной области размеров свободна от этого ограничения [78—97]. [c.308]

    По нашему мнению, образование пор в нефтяных коксах обусловлено главным образом пористостью зародышей, из которых в дальнейшем формируется массив кокса, вспучиванием нефтяных остатков, обусловливающим получение, в основном, макропор, видимых простым глазом, и появлением канальных пор в результате выделения продуктов деструкции из кристаллитов кокса. Эти поры не остаются постоянными с изменением внешних условий и, например, при прокаливании коксов непрерывно меняются. Невооруженным глазом можно рассмотреть поры размером 10 А, под оптическим микроскопом — поры размером 5-10 А, а электронный микроскоп позволяет обнаружить поры размерами 50—100 А и ниже. [c.159]

    Исследования методом электронной микроскопии не выявили никакой пористости. Отсюда можно заключить, что N1, полученный консолидацией порошка ИПД кручением, обладает плотно- [c.55]

    С помощью электронной микроскопии установлено, что геликами становятся компактные зерна с плотной упаковкой составляющих их глобул микронного уровня при различной степени упаковки глобуЛ от монолитных стекловидных частиц, в которых границы между глобулами практически полностью исчезли, до пористых белых, но с порами, преимущественно замкнутыми из-за образования в таких зерна) монолитного поверхностного слоя толщиной до 10 мкм. [c.192]

    Для всех таких порошков величина поверхности, определяемая по адсорбции азота, примерно соответствует значениям, подсчитанным из распределения частиц по размерам, если плотность кремнезема принимается равной 2,2 г/см , а кривая распределения строится по данным, полученным методом электронной микроскопии [66]. Из этих результатов можно заключить, что частицы рассмотренного типа имеют пористость (по отношению к молекулам азота) менее чем 5—10 объемн. %. [c.443]

    Если проницаемость О (Р) не линейна относительно Р, то значение От = а ,р/ ,5 будет определяться наклоном асимптоты к 0 Р) при Р- оо. Радиус йт, определенный из проницаемости, следует подставлять в формулу для Ро (3.173) вместо обычного радиуса а, если пористый фильтр отличается от модели длинных капилляров. Указанные выше эффективные радиусы пор вместе с другими эффективными радиусами, получаемыми методами адсорбции измерения пористости, рентгеновской дифракции и электронной микроскопии, могут быть использованы для определения структуры при испытаниях качества прототипов пористых фильтров. Они могут быть использованы для предсказания результатов опытов ио разделению. [c.128]

    Микроскопическая структура кокса — это совокупность микропористой структуры кокса, так как само вещество кокса занимает около половины объема его пористого тела, а другую половину занимают поры различного размера (от нанометров до нескольких миллиметров). По размерам их условно подразделяют на микропоры (< 6 нм) переходные поры (6 нкм — 22 мкм) и макропоры О 22 мкм). Макропоры обусловливают значительную внутреннюю поверхность до сотен квадратных метров в одном грамме кокса. Они занимают от 40 до 90 % всей внутренней поверхности. Определяют их с помощью электронной микроскопии, адсорбцией газов при низких температурах и другими методами. [c.180]

    Для изучения и определения пористости ионообменных смол пригоден метод электронной микроскопии. [c.93]

    Так как структура реальных пористых тел, в том числе и силикагелей, не может быть образована порами правильной цилиндрической формы, то расчеты по уравнению Томсона дают некоторые эффективные значения радиусов пор. Однако хорошее согласие между результатами расчета размеров пор из представления о капиллярной конденсации и другими независимыми методами [280] (электронная микроскопия, ртутная порометрия и др.) указывает на то, что эффективные радиусы пор, вычисляемые из уравнения Томсона, имеют вполне реальный смысл. [c.135]

    Физическая адсорбция, хотя и не играет решающей роли в гетерогенном катализе, тем не менее она полезна как средство для исследования пористой структуры твердых тел. Она удобна для определения удельной поверхности, формы и размеров пор, наличия закрытых пор и других деталей геометрического строения пористых катализаторов и носителей, особенно в сочетании с электронной микроскопией и ртутной порометрией. [c.202]

    Модельные расчеты Дубинина, исходящие из цилиндрической модели нор (судя но данным электронной микроскопии, шаровая модель несколько ближе к истине), естественно, приводят к качественно правильным результатам при небольшой пористости. Но, как видно по данным таблицы, приведенной Дубининым, уже начиная с пористости 0,6, расхождение составляет 20 — 30%, а нри высоких пористостях экспериментальные и вычисленные значения R различаются в несколько раз. При значительных изменениях пористости надает общее число частиц (пор, каналов) и координационное число, и в этом вопросе у нас нет никаких расхождений с Дубининым и Исирикяном. [c.84]


    Таким образом, неоднородность пористой структуры адсорбента оказывает существенное влияние на кинетику адсорбции. В то же время задача определения пористой структуры адсорбентов по кинетическим данным представляется весьма сложной, так как в зависимости от условий эксперимента, как было показано выше, адсорбент с бидисперсной пористой структурой может вести себя и как однороднопористый и описываться системой уравнений (1), (2). Более того, бидисперсную структуру адсорбента можно трактовать по-разному. По-видимому, было бы правильным сказать, что для определения пористой структуры адсорбента одних кинетических измерений недостаточно, необходимо привлечение данных по ртутной порометрии, электронной микроскопии, рентгеноструктурному анализу, данных по проницаемости. Однако кинетические измерения позволяют получить важную информацию о пористой структуре адсорбентов. [c.289]

    В области адсорбционных исследований электронная микроскопия пока не имеет подобных достижений, хотя некоторые результаты ее применения здесь можно отметить. Так, электронно-микроскопические наблюдения позволили установить, что пористые тела — адсорбенты разделяются на две группы тела глобулярного (корпускулярного) и губчатого строения [3, стр. 239]. Далее, при помощи метода реплик были прослежены последовательные стадии формирования монослоя при адсорбции из раствора молекул жирных кислот на поверхности стекла возникающие вначале изолированные островки постепенно сливаются [4]. [c.287]

    А, П. Карнаухов (Институт катализа СО АН СССР, Новосибирск). Заключение Дубинина [1] о необходимости получения более исчерпывающей информации о природе и строении пористого тела совпадает с нашим мнением [2] о важности изучения структуры реальных твердых теп для достижения успехов в последующих теоретических обобщениях. Представления о пористом твердом теле до недавнего времени развивались на основе идеализированной модели цилиндрических пор. К настоящему времени высокого совершенства достиг электронный микроскоп, с помощью которого можно рассматривать основные элементы пористой структуры реальных твердых тел, определять их форму, взаимное расположение, размеры и т. д. [c.297]

    Особенности рельефа поверхности волокон могут быть выявлены не только методом электронной микроскопии, но и анализом поперечных срезов на световых микроскопах (рис. III.9, см. вклейку). В последнем случае видна характерная извитость рельефа гидратцеллюлозных волокон (рис. 111.10, а, см. вклейку) и значительно меньшая извитость волокон супер (рис. 111.10, б). Волокна, сформированные из расплава (полиамидные, полиэфирные), имеют практически круглую форму поперечного среза (рис. 111.10, в). Для волокон, так же как и для пленок, характерна определенная, иногда значительная, пористость. Наибольшей монолитностью обладают волокна, получаемые прядением из расплава (например полиамидные). Но даже и в этих волокнах имеются пустоты, микротрещины и поры, вытянутые вдоль оси волокна [22, 23]. При мокром и сухом прядении из растворов образуются волокна с наибольшим содержанием пустот. Особенно изобилуют порами и пустотами вискозные волокна. Многие из Пустот имеют достаточно большие размеры и могут быть обнаружены на поперечных срезах с помощью светового микроскопа в виде темных зерен (рис. 111.10, а). Иногда поры в вискозных волокнах более равномерны по величине и [c.102]

    С помощью оптической микроскопии можно определить размеры и другие характеристики макропор и трещин размером более 10 мм, а путем электронной микроскопии и рентгеноструктурного анализа — поры размером от 1 до 200 мм. Адсорбционные методы измерения позволяют определить пористую структуру с отверстиями пор размером от нескольких десятых до 100 нм. [c.51]

    Пористая структура исследовалась в электронном микроскопе как прямым методом на просвет, так и косвен]Чым методом реплик. Диспергирование исходного образца [c.46]

    Алюмосиликатные мицеллы имеют шарообразную форму. Естественно, что и в состоянии геля эта форма сохраняется. Кроме косвенных соображений по этому вопросу имеются прямые наблюдения под электронным микроскопом [9]. Размер элементарных коллоидных частиц и их взаимное расположение в массе геля определяют пористость и величину площади поверхности готового катализатора. Условия формирования той или иной структуры алюмосиликатного катализатора в процессе застудневания золя широко изучены многочисленными авторами [10, 11]. Вкратце они сводятся, к тому, что более концентрированный золь образует гель с большей поверхностью. В нейтральной и щелочной среде получается более широкопористый гель и одновременно с большей площадью поверхности. [c.88]

    Эффективным средством идентификации параметров и автоматизированного построения моделей пористых сред являются вычислительные комплексы, оснащенные средствами автоматического анализа изображения (ААИ). Принципиальная схема одного из таких вычислительных комплексов показана на рис. 3.3. При помощи передающего телевизионного сканирующего устройства изображение объекта может быть введено в цветном или чернобелом варианте непосредственно с плоскости наблюдения во всех ее видах, т. е., например, с фокальной плоскости окуляра оптического микроскопа, с экрана электронного микроскопа, с экрана телевизора, а также фотографических репродукций и др. Соответственно в схему ААИ может быть включен оптический микроскоп, электронный микроскоп (просвечивающий, эмиссионный или растровый), приемное телевизионное устройство, эпидиаскоп и т. п. Скорость работы современных ААИ более чем на 5 порядков превышает скорость работы человеческого глаза при значительно более высокой чувствительности (свыше 200 точек на [c.125]

    Важной практической проблемой является трансформация глобулярной модели с учетом реального строения пористых тел. Экспериментальные данные исследования морфологии пористых тел, основанные на методе электронной микроскопии, показывают, что вторичные частицы в зависимости от химической природы и способа синтеза катализатора (адсорбента) могут представлять собой глобулы, пластины, иглы и пр. различных размеров. Трансформация глобулярной модели на реальную осуществляется на основе следующих предпосылок а) соотношение плотной фазы и сформированного ею объема пор не зависит от строения первичных и вторичных частиц (суммарный объем пор и вес единичной гранулы катализатора не зависят от типа аппроксимации ее строения) б) суммарная поверхность первичных частиц при данном геометрическом размере зависит только от их числа (находится из экспериментально определенной удельной поверхности и веса единичной гранулы образца) в) число первичных частиц во вторичных зависит от типа их аппроксимации (в силу необходи- [c.146]

    Ю. и. Дытнерским, Н. С. Орловым, Н. С. Снегиревой проведено сравнение результатов исследования ядерных мембран гидродинамическим методом, объединяющим пузырьковый метод и метод продавливания растворителя, и методом растровой электронной микроскопии. Принципиальная схема установки для определения параметров пористой [c.102]

    Более универсален для исследования структуры пористых тел метод реплик, когда в электронном микроскопе изучают тонкие отпечагки с внеши поверхности пористого тела или с поверхности его скола [78, 84]. [c.309]

    Особое значение имеют граничные слои в пористых телах, содержащих жидкость. При утоньшении пор может наступить полное перекрытие граничных слоев, при котором поровая жидкость ни в одной точке не идентична по свойствам равновесной объемной фазе воды. В этом случае существенно изменяются закономерности массопереноса при фильтрации жидкости, используемые в техноло-) ических расчетах. Эти новые закономерности в настоящее время полностью не изучены, но весьма полезными для их изучения являются эксперименты на модельных системах — тянутых кварцевых капиллярах, где для внутренней поверхности высота неровностей (по данным электронной микроскопии) не превышает 0,3—0,5 нм. В этих опытах установлено, что при использовании капилляров со свежетянутой молекулярногладкой поверхностью вся жидкость (вода) участвует в течении и гидродинамически неподвижные слои йе обнаруживаются . Исследование вязкости (вероятно, отличной от вязкости объемной воды) подвижных граничных слоев позволит в будущем построить основы для технологических расчетов массопереноса. [c.163]

    При сорбции газов или паров сорбентами типа активных углей была предложена следующая классификация их пористости, которая может быть с определенным приближением применима и к полимерам сорбенты с макропорами сорбенты с переходными порами сорбенты с микропорами. Макропоры — это поры с радиусами, превышающими 4-10 см. Суммарный объем мак-ропор составляет 0,2—0,5 см /г. Такие поры хорошо видны в электронный микроскоп. Переходные лоры —это [c.132]

    В качестве иллюстрации приведем пример компактирования ИПД кручением полученного в шаровой мельнице наноструктурного порошка N [26]. Проведенные исследования показали, что плотность полученных образцов близка к 95% от теоретической плотности массивного крупнокристаллического N1. При этом в образцах отсутствовала видимая в просвечивающем электронном микроскопе пористость и был очень малый средний размер зерен, равный примерно 17нм, а, следовательно, границы зерен занимали относительно большой объем. Авторы предполагают, что данные образцы демонстрируют снижение теоретической плотности в связи с тем, что границы зерен в материалах с очень малым размером зерен и сильными искажениями кристаллической решетки обладают пониженной атомной плотностью (см. также гл. 2). [c.13]

    Фурукава с соавторами [13] изучали влияние температуры образования прогеля на свойства получаемого геля при прогреве в течение 30 мин. По данным этих авторов, прогрев до 105 °С на когезию геля не влияет. Наоборот, прочность геля достигает максимума при температуре прогрева прогеля 80 °С. В таких условиях теплового воздействия можно выделить 3 типа геля применительно к изолятам соевого белка мягкий (при температуре ниже 50 °С), твердый, прочный (60—110°С), непрочный (свыше 110°С). Эти разные гели под электронным микроскопом обнаруживают различную структуру. Прочные, долговечные гели обладают пористой структурой с порами размером 10— 20 мкм, стенки которых образованы тонкими и компактными пленками. [c.520]

    С помощью сканнирующего электронного микроскопа Л5М-2 авторы [53, 54] непосредственно наблюдали пористую структуру поверхности полимерных сорбентов с разной величиной удельной поверхности и отметили наличие на поверхности сорбентов пор разных размеров (увеличение 500—10000). [c.12]

    Когда для изучения камней Жильсона стали использовать электронный микроскоп, то обнаружилось, что они обладают той же микроструктурой, что и природные опалы, т. е. строгой последовательностью упаковки мелких шариков кремнезема. Однако мелкие шарики опалов Жильсона не сложены из еще более мелких сфер, что характерно для естественных опалов. К тому же опалы Жильсона содержат цементирующий материал, заполняющий полости между шариками. Нельзя ожидать, что такая микроструктура будет обладать высокой пористостью, и действительно, ие все синтетические камни пористые. [c.120]

    Очевидно, что надежная качественная характеристика и количественное описание пористости адсорбентов, катализаторов, разнообразных материалов и естественных сред приобретают все возрастающее значение в науке и технике. Были предложены многочисленные методы изучения и оценки пористости, основанные как на визуальном наблюдении и количественном описании характера, формы и размеров пор при помощи оптических и электронных микроскопов, так и на использовании явлений адсорбции, капиллярности, проницаемости д других, для вычисления общей поверхности и объема пор и их, расяред ления по размерам. Помимо этого различные физические методы позволяют получать в разных приближениях количественную информацию о некоторых параметрах пористости. [c.5]

    Методом светорассеяния разбавленных водных суспензий было определено число элементарных частиц в параграфитовой структуре, молекулярный вес и степень разветвленности [16]. Эта разветвленность но отношению к крупным полимерным молекулам должна рассматриваться как некий вид пористости. Такое представление развивается в работах [17, 18], в которых изучались цепочечные структуры с помощью электронной микроскопии. [c.61]

    Мосс и сотр. [21, 43], используя при исследовании катализаторов Р1/5102 данные электронной микроскопии, уширения рентгеновских дифракционных линий и адсорбции окиси углерода, довольно подробно выяснили, в частности, влияние содержания платины, метода приготовления, температуры восстановления и прокаливания на воздухе и величины поверхности силикагеля. В катализаторах с 0,15—11,5% Pt, приготовленных пропиткой силикагеля дэвисон 70 в растворе НгРЮЬ, обнаружены две области зависимости размера частиц от содержания металла. В интервале от 0,15 до - 3% Р1 средний диаметр частиц приблизительно постоянен и составляет около 3,6 нм, в то время как количество частиц платины, отнесенное к 1 г катализатора, увеличивается с 0,11-10 до 3-10 . В интервале 3—11,5% Р1 число платиновых кристаллитов приблизительно постоянно ( 3,3-10 на 1 г катализатора), а средний диаметр частиц платины увеличивается приблизительно до 6—7 нм (катализаторы сушили 16 ч при 390 К и восстанавливали водородом 2 ч при 480 К). Эта особенность, несомненно, связана с влиянием пористой структуры силикагеля на рост кристаллитов платины, и поэтому поведение систе.мы изменяется в зависимости от структуры носителя. Средний диаметр кристаллитов, как правило, уменьшается с ростом удельной поверхности, т. е. с уменьшением среднего размера пор носителя. [c.195]

    Микроструктуру скелетного никеля детально исследовали Андерсон и сотр. [179—182] и Фуйо и др. [176], используя ряд методов, в том числе электронную микроскопию, дифракцию рентгеновских лучей и адсорбцию газов. Данные сканирующей электронной микроскопии показывают, что большая часть поверхности никеля покрыта кристаллитами байерита, что, несомненно, препятствует спеканию никеля. Доля поверхности никеля, свободной от байерита, меняется в интервале 55—85% при обычных способах получения образцов, и количество байерита тем больше, чем более разбавлена щелочь, используемая для выщелачивания. Количество байерита уменьшается также в результате продолжительной экстракции свежим раствором щелочи. Тем не менее изменение доступной поверхности никеля плохо коррелирует с изменением каталитической активности, и практически нет смысла пытаться свести к миниму.му количество остаточного байерита. В основном частицы никеля весьма велики (>100 нм), но они состоят из более мелких кристаллитов размером 2,5—15 нм и образуют пористую структуру с рыхлой упаковкой без какой-либо преимущественной ориентации. Общая поверхность образцов несколько меняется в зависимости от условий их получения. Низкотемпературное ( 320 К) выщелачивание благоприятствует сохранению высокой удельной поверхности (80—100 м /г) и более мелких пор. Средний диаметр пор образцов разного происхождения составляет 2,6—12,8 нм, и имеются некоторые данные о бимодальном распределении пор по размерам [182]. Наблюдается тенденция к блокировке некоторых пор байеритом. [c.239]


Смотреть страницы где упоминается термин Пористость электронной микроскопии: [c.336]    [c.423]    [c.164]    [c.320]    [c.146]    [c.33]    [c.6]    [c.47]   
Мембранные процессы разделения жидких смесей (1975) -- [ c.53 ]




ПОИСК





Смотрите так же термины и статьи:

Микроскоп

Микроскоп электронный

Микроскопия

Электронная микроскопия

Электронная микроскопия микроскоп



© 2025 chem21.info Реклама на сайте