Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюмосиликатный катализатор структура

    Следует отметить, что в данном процессе в отличие от процесса получения шарикового алюмосиликатного катализатора структура получаемого катализатора может регулироваться на стадии не только синерезиса, но и активации и распылительной сушки, причем зависит она в основном от pH геля на этих стадиях. Данные по влиянию pH (на всех стадиях обработки) на насыпной вес и структуру катализатора приведены в табл. 4. [c.447]


    Синтетический алюмосиликатный катализатор отличается от естественных главным образом более высокой термостойкостью и активностью, а также аморфной структурой (естественный катализатор имеет кристаллическую структуру). [c.49]

    ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ ПОКАЗАТЕЛЕЙ КРЕКИНГА ТЯЖЕЛОГО СЫРЬЯ ОТ ПОРИСТОЙ СТРУКТУРЫ АЛЮМОСИЛИКАТНОГО КАТАЛИЗАТОРА [c.230]

    Данную картину более наглядно можно представить следующим образом. В полостях цеолита при термодинамически подходящих условиях каталитический крекинг н-парафинов протекает по механизму, аналогичному для алюмосиликатного катализатора, однако десорбция продуктов возможна лишь для линейных структур (неразветвленные олефины и парафины). [c.307]

    Для алюмосиликатных катализаторов установлена определенная шкала индексов активности, значение которых важно для подбора катализатора применительно к данному сырью. Индекс активности 40 означает, что на данном катализаторе из легкого газойля в течение 10 мин при температуре около 450° С можно получить 40 объемн. % бензина с к. к. = 210° С. Для тяжелых дистиллятов требуется катализатор с индексом активности около 30, для легкого сырья необходимо использовать катализатор с более высоким индексом активности. Активность катализатора пропорциональна его удельной поверхности и зависит от структуры и химического состава. В процессе крекинга катализатор периодически подвергают воздействию углеводородов при 450—480° С, а затем водяного пара и продуктов сгорания (кокса) при 550—600° С. При контакте углеводородного сырья и катализатора в порах последнего адсорбируются участники процесса — в первую очередь смолы, затем непредельные углеводороды и наконец высокомолекулярные углеводороды. На поверхности [c.14]

    Синтетические алюмосиликатные катализаторы более устойчивы при переработке сернистого сырья. Как правило, процессы формирования структуры этих катализаторов проводят при температуре прокаливания 700—800° С. Вследствие этого при регенерации катализатора при температурах, не превышающих 650° С, заметной дегидратации поверхности не происходит. Однако при переработке сернистого сырья происходит так называемое вторичное отравление катализатора продуктами коррозии аппаратуры. В процессе каталитического крекинга при переработке сернистого сырья или сырья, содержащего минеральные соли, в связи с большой подачей пара происходит интенсивная коррозия стенок аппаратов (реакторов и регенераторов). Продукты коррозии в виде сернистого железа, окислов железа и других соединений в мелкодисперсном состоянии захватываются потоком паров или газов и переносятся на катализатор. Они прочно удерживаются на внешней поверхности гранул катализатора, проникают в его поры и препятствуют доступу паров и газов к внутренней новерхности катализатора, т. е. снижают его дегидрирующую активность. Происходит необратимая потеря активности катализатора, так как простыми физическими методами эти отложения не удается удалить. [c.19]


    В процессе производства алюмосиликатного катализатора очень ва>т по точное соблюдение заданной величины pH смеси (золя) гелеобразующих растворов. Если формование проводить при высоких значениях pH, катализатор получается рыхлой структуры, широкопористый, с низкой насыпной плотностью. Прп низких величинах pH катализатор образуется тонкопористый, т. е. с повышенной насыпной плотностью. Практически pH золя должен быть несколько смещен в сторону щелочной среды и равен 7,9—8,2. [c.42]

    Формование — один из основных технологических процессов в производстве катализаторов и адсорбентов в результате этой стадии закладываются форма, структура и качество будущего продукта. Первичное взаимодействие растворов жидкого стекла и сернокислого алюминия (или магния) при синтезе катализатора протекает в коллоидном растворе (золе) с образованием частиц различной формы и размера — микросфер, крупных шариков, таблеток и др. Схема первичного синтеза алюмосиликатного катализатора примерно выражается следующим уравнением  [c.45]

    Для увеличения отбора светлых нефтепродуктов из нефти ряд установок каталитического крекинга на некоторых нефтеперерабатывающих заводах переведен на переработку тяжелого сырья — вакуумного газойля. В связи с этим возникла необходимость улучшения регенерационной характеристики алюмосиликатного катализатора, так как при работе на тяжелом сырье регенерационная характеристика катализатора с тонкопористой структурой ухудшается. Необходимо, чтобы катализатор был широкопористым, т. е. в нем преобладали крупные поры радиусом 40—50 А и более. Широкопористый катализатор по сравнению со стандартным алюмосиликатным катализатором имеет более низкую насыпную плотность, меньшую удельную поверхность (250—300 м г) и увеличенный размер пор. Пористая структура алюмосиликата зависит от глубины синерезиса чем глубже синерезис, тем меньше насыпная плотность и больше ширина пор. Скорость синерезиса возрастает с повышением температуры и увеличением pH золя и среды. [c.89]

    Алюмосиликатные катализаторы можно приготовить из природных глин или синтетическим путем. Природные алюмосиликатные катализаторы применяли на первых промышленных установках крекинга. Позднее широко распространились синтетические алюмосиликатные катализаторы, которые пс своей структуре делятся на аморфные и кристаллические (цеолитсодержащие). В последнее время 90% применяемых в крекинге катализаторов составляют кристаллические алюмосиликаты. Однако аморфные природные и синтетические катализаторы все еще используют на некоторых предприятиях. Кроме того, цеолитсодержащие катализаторы обычно содержат 80—90% природных или синтетических аморфных алюмосиликатов. [c.7]

    По структуре скелета синтетические алюмосиликатные катализаторы делятся на аморфные и кристаллические. Последние появились лишь в шестидесятых годах. Высокая активность, селективность и стабильность способствовали быстрому распространению кристаллических, или цеолитсодержащих, катализаторов крекинга. [c.12]

    Спекание при пропарке и прокалке вызывает изменения в пористой структуре, а также изменяет состояние вещества катализатора. В работе [71] на основании представлений о пластинчатой структуре алюмосиликатных катализаторов дается следующее объяснение закономерностей изменения поверхности, удельного объема и среднего радиуса пор в процессе спекания. При термообработке разрушаются наружные стенки пор, и ряд пор около наружной поверхности частицы катализатора уничтожается. Остальная часть пор изменяется незначительно. При обработке паром внутренние перегородки между порами разрушаются, что приводит к увеличению размеров пор при незначительном изменении их общего объема. [c.54]

    Исследования с помощью электронного микроскопа аморфных алюмосиликатных катализаторов и близких к ним по структуре силикагеля, окиси алюминия и др. показали [73, 75], что в процессе старения размеры первичных частиц действительно изменяются. У катализатора, обработанного при 750 °С паром, А. В. Киселев с сотрудниками обнаруживали частицы диаметром 400— 700 А [75]. Диаметр частиц исходного катализатора составлял 100—200 А. У прокаленных при 900 °С образцов, как правило, частицы имеют те же размеры, что и у исходного катализатора, хотя иногда удается обнаружить и более крупные частицы. [c.56]

    Как видно из этих данных, металлы, нанесенные на алюмосиликатный катализатор, не изменяют его физико-химических свойств. Удельные поверхности, насыпные плотности, поровая структура всех образцов катализаторов, независимо от природы металла и его концентрации, практически остались такими же. Обменная способность катализатора в зависимости от природы добавляемого металла изменяется по-разному. Щелочные и щелочноземельные металлы способствуют снижению кислотности катализатора. Это, видимо, является следствием замещения указанными металлами протона кислотного центра катализатора. [c.139]


    Физико-химические и каталитические свойства вещества определяются в конечном счете электронной структурой его атомов (ионов). В связи с этим представляет интерес проследить влияние металлов, добавленных к алюмосиликатному катализатору, на коксообразование и регенерацию катализатора в зависимости от их положения в периодической системе элементов Д. И. Менделеева. [c.177]

    Неодинаковое изменение структуры, например, алюмосиликатных катализаторов после прокаливания при высокой температуре и обработки водяным паром отмечалось разными исследователями. Исследование структурных изменений и выявление закономерностей, по которым они протекают в результате прокаливания и обработки паром, было проведено на образце алюмосиликатного катализатора [125]. Показано, что и перегрев до 900 °С на воздухе, и обработка паром при 750 °С приводят к уменьщению поверхности катализаторов и объема пор. Отмечено различное действие термической и паровой обработок на пористую структуру. Так,-при перегреве катализатора в воздухе удельная поверхность уменьшается приблизительно пропорционально сокращению объема пор. Размеры пор существенно не меняются. В случае же обработки паром объем пор сокращается значительно медленнее, чем удельная поверхность, при этом размеры пор резко возрастают. При длительном воздействии пара при температуре 750 °С полностью исчезают мелкие поры, катализаторы становятся крупнопористыми. Кроме того, водяной пар ускоряет уменьшение удельной поверхности катализатора. [c.54]

    Действие высокой температуры и водяного пара на цеолитсодержащие катализаторы крекинга совершенно иное, чем их действие на аморфные алюмосиликатные катализаторы. Цеолитсодержащие катализаторы обладают высокой стабильностью при термической и термопаровой обработках. В режимах термопаровой обработки, когда начальная активность аморфных катализаторов снижается вдвое, активность некоторых цеолитсодержащих катализаторов даже несколько повышается. Это объясняется высокой стабильностью кристаллического каркаса цеолитного наполнителя. Ниже приведены максимальные температуры, при которых структура цеолитов сохраняется после прокаливания сухим воздухом в течение 3 ч [23]  [c.60]

    Избирательность характеризует соотношение выходов различных продуктов (газ, бензин, кокс) на данном катализаторе. Химический состав и пористая структура в основном и определяют избирательность катализатора. Крупнопористые катализаторы дают меньший выход газообразных продуктов, чем тонкопористые. Крекинг тяжелого сырья стараются проводить на крупнопористых катализаторах. Если сопоставить магнийсиликатный и алюмосиликатный катализаторы, то в одинаковых условиях первый дает больший выход бензина, но с меньшим содержанием ароматических и изопарафиновых углеводородов. [c.237]

    Указанный метод состоит в том, что носитель (сорбент) растворяется в расплаве ванадатов щелочных металлов, меняя ири этом свою макроструктуру. Это было установлено при создании износоустойчивого ванадиевого катализатора КС для окисления сернистого ангидрида во взвешенном слое. Этот катализатор был получен путем пропитки носителя — алюмосиликатного катализатора крекинга — раствором солей ванадия с последующей его термической обработкой [89—94, 147—149, 153]. Как известно, алюмосиликатный катализатор крекинга — материал, имеющий вполне определенную, сформировавшуюся глобулярную пористую структуру [84, 122]. Радиус большинства иор составляет единицы и десятки ангстрем. При прокаливании пропитанного соединениями ванадия (например, КУОз) алюмосиликата, структура его изменяется следующим образом радиус иор увеличивается на 1—3 порядка при пропорциональном уменьшении удельной поверхности суммарный же объем изменяется очень незначительно. Результаты, свидетельствующие о трансформации структуры алюмосиликата, представлены на рис. 33. Данные отражают средние результаты многочисленных серий опытов. [c.86]

    Алюмосиликатные катализаторы приготавливаются из природных газов или синтетическим путем. Синтетические алюмосиликатные катализаторы по своей структуре делятся на аморфные и кристаллические (цеолитсодержащие). Цеолиты имеют ряд преимуществ по сравнению с аморфными алюмосиликатами более активны, селективны, устойчивы при высоких температурах (табл. 7.22). Они отличаются также способностью к легкому обмену катионов, что позволяет без особых сложностей получать их в виде наиболее активных форм (кальциевая, магниевая, редкоземельная и др.). Однако на практике цеолиты в чистом виде как катализаторы крекинга не используются. Цеолитсодержащие катализаторы представляют собой аморфные (природные или синтетические) алюмосиликаты, в которые введено 10—25% цеолита. [c.405]

    Математическое описание каталитического облагораживания получено при тех же Д01пущениях, что и приведенное выше для крекинга газойлей (уравнение на стр. 141), и использовано для управления производственным процессом. Следует отметить, что структура математического описания сохраняется и при использовании новых алюмосиликатных катализаторов на основе кати-он-замещенных форм цеолитов. Однако при переходе к новому типу катализатора необходимо найти коэффициенты V и ко. [c.143]

    ОПЫТНЫХ ОБРАЗЦОВ МИКРОШАРИКОВЫХ АЛЮМОСИЛИКАТНЫХ КАТАЛИЗАТОРОВ С РАЗЛИЧНОЙ ПОРИСТОЙ СТРУКТУРОЙ [c.228]

    Таким образом, найдена зависимость характера н ористой структуры микрошарикового алюмосиликатного катализатора от условий синерезиса, а также заБисимость величины индекса каталитической активности катализаторов от их пористой структуры в процессе длительных испытаний. [c.232]

    Цеолитсодержащие катализаторы (цеолиты) характеризуются сочетанием высоких адсорбционных и каталитических свойств, большой избирательной способностью и стабильностью структуры, поэтому в настоящее время большое значение приобретают синтетические катализаторы с добавками цеолитов. При введении пх, например, в состав алюмосиликатного катализатора крекинга значительно повышается его активность, избирательность, адсорбционная способность и паротермостабильность. Цеолиты могут быть получены как шариковые, так п микросферические. [c.14]

    Избирательность. Широкое применение каталитических процессов требует подбора катализаторов, избирательно ускоряющих процесс превращения сырья в желательном направлении. Например, крекинг углеводородов сопровождается реакциями дегидрогенизации, изомеризации, полимеризации, циклизации и др. Подбором катализатора и технологических параметров осуществляют процесс в нужном направлении с преимущественным выходом желаемых продуктов. Принцип избирательности используют при выборе алюмосиликатных катализаторов различного строения и структуры, учитывая при этом относительное значение выходов и качеств целевых продуктов. Например, для превращения низкокипящего термически стабильного сырья прил1еняют высокоактивные синтетические катализаторы раз- чожение же тяжелых смолистых дистиллятов осуществляют на менее активных катализаторах. Некоторые природные катализаторы [c.15]

    В зависимости от способа приготовления алюмосиликатные катализаторы могут быть тонкопористыми, широкопористыми и со смешанной структурой. Нормально приготовленные алюиоси шкатные катализаторы — это пористые тела с широко развитой внутренней поверхностью, составляющей до 600 на 1 г катализатора. У катализаторов работает не только внешняя поверхность гранулы, но и (в основном) внутренняя поверхность пор, поэтому чем больше удельная поверхность, тем активнее катализатор. [c.17]

    Промышленный катализатор имеет насыпную плотность 0,7— 0,8 г/см . Шариковый алюмосиликатный катализатор с насыпной плотностью 0,3—0,4 г/см имеет рыхлую, непрочную структуру катализатор с насыпной плотностью более 0,8 г1см — стекловидный, прозрачный и хрупкой структуры. [c.17]

    Удельная поверхность и структура (размер и характер пор) являются важными характеристиками, определяющимн адсорбционные свойства адсорбента. Адсорбция зависит от величины поверхности чем больше пористость твердого тела, тем больше его общая удельная поверхность и способность к адсорбции. Для силикагелей, алюмогелей и алюмосиликатных катализаторов величина удельной поверхности может быть в пределах от 10 до 1000 м г. [c.24]

    В производстве алюмосиликатных катализаторов концентрация сухого вещества в гидрогеле и pH среды строго постоянны. Процесс регулируют изменением температуры и времени термообработки. Особенно чувствительны к изменению температуры скорость и глубина синерезиса даже при незначительном увеличении температуры они заметно повышаются. В производстве катализаторов выбраны такие условия, при которых синерезис протекает сравнительно медленно, что позволяет лучше регулировать процесс формирования структуры катализатора, новышая его качество. [c.57]

    Последней стадией приготовленпя алюмосиликатного катализатора являются процессы термической обработки — с шка и прокаливание. После процессов мокрой обработки влажные" шарики содержат 90—92% воды (9 — 12 кг воды на 1 кг сухого материала), заполняющей все норы геля. Основную массу этой влаги удаляют при сушке, после которой катализатор приобретет твердую пористую структуру. При высушивании катализатора вначале удаляется гигроскопическая, затем капиллярная (адсорбционная) вода и, наконец, начинается переход гидроокисей в безводные окислы. Наибольшее значение имеет процесс разложения гидроокисей, т. е. конец термической обработки катализатора — процесс прокаливания. [c.64]

    Прокаливание микросфер. Если обезвоживание суспензии в процессе сушки осуш ествляется непрерывным методом, то процесс прокаливания микросферического катализатора в прокалочной колонне протекает периодически в кипяш,ем слое, создаваемом дымовыми газами, подаваемыми под слой катализатбра. Количество дымовых газов регулируют таким образом, чтобы в колонне было достаточное шевеление прокаливаемого катализатора и в то же время не было уноса не только основной массы, но и наиболее легких частиц. Разность температур катализатора и дымовых газов должна быть максн-мальЕюп, но в то же время такой, чтобы при быстром парообразовании и затруднительности его диффузии через поры катализатора она не могла привести к деформации частиц. При резком повышении температуры в прокалочной колонне катализатор вследствие оседания на его поверхности большого количества органических веществ может загореться и в результате произойдет спекание микросфер и все поры закроются. Каталитическая активность такого катализатора сильно снижается. Путем прокаливания исправляются некоторые нарушения в структуре катализатора, появившиеся в процессе сушки. После прокаливания катализатор приобретает высокую механическую прочность и термическую стабильность. Кроме того, при температуре прокаливания 600 — 750° С входящий в состав алюмосиликатного катализатора глинозем ЛиОд переходит в каталитически активную форму. [c.68]

    Данные та бл. 2.3 показывают, что иаши результаты и результаты зару беЖ(Ных исследователей весьма близки, что объясняется сходством структуры алюмосиликатных катализаторов, применявшихся И. В. Головановым, Вейцем и Пра- [c.33]

    Следует отметить, что присутствие в катализаторах окислов железа (РегОз), натрия (NaaO), кальция (СаО) нежелательно, так как приводит к ухудшению стабильности и избирательности катализатора. Порошкообразный алюмосиликатный катализатор характеризуется насыпным весом, структурой, механической прочностью, каталитической активностью, тер-мо- и плроустойчивостью, регенерируемсстью. [c.12]

    Алюмосиликатные катализаторы характеризуются крупнотонкопористой либо смешанной структурой. При температурах порядка 1200 — 1400° С алюмосиликатные катализаторы оплавляются и теряют пористую поверхность. Установлено, что активность катализатора пропорциональна его удельной поверхности. [c.13]

    Изучение влияния содержания окиси кремния на свойства промышленных алюмокобальтмолибденовых и алюмоникельмолибдено-вых катализаторов показало, что введение 3102 увеличивает объем и средний радиус пор, повышает в 1,5 раза механическую прочность катализатора. При этом возрастают расщепляюш,ая и изомеризующая активности катализаторов У Большое значение в настоящее время уделяется катализаторам на цеолитной основе. Эти катализаторы обладают высокой активностью и хорошей избирательностью, а кроме того позволяют часто проводить процесс без предварительной очистки сырья от азотсодержащих соединений. Содержание в сырье до 0,2% азота практически не влияет на их активность Применение цеолитных катализаторов часто позволяет проводить процесс при более низкой температуре Повышенная активность катализаторов на основе цеолитов объясняется более высокой концентрацией активных кислотных центров в кристаллической структуре по сравнению с аморфными алюмосиликатными катализаторами [c.322]

    Природные активированные алюмосиликатные катализаторы крекинга представляют собой главным образом монтмориллонито-вые глины, обработанные серной кислотой, сформованные и прокаленные. Применялись и другие природные алюмосиликаты — каолин, галлуазит. В процессе кислотной обработки из природного алюмосиликата удаляются кальций, натрий и калий, часть содержащихся в его структуре железа и алюминия. В катализаторах, полученных на основе различных глин, содержание алюминия (считая на АЬОз) составляет от 17,5 до 45%. Катализаторы этого типа обладают относительно низкой устойчивостью к действию высоких температур. Высокое содержание железа отрицательно влияет на их свойства, так как железо катализирует паразитную реакцию распада на углерод и водород. Антидетонационные свойства бензинов, получаемых при крекинге с катализаторами из природных алюмосиликатов, существенно ниже, чем при применении синтетических катализаторов. В настоящее время катализаторы на основе природных алюмосиликатов практически не применяют. [c.209]

    Все катализаторы крекинга различаются по структуре, форме, размерам частиц, методам приготовления, физико-химическим свойствам, уровню активности, селективности, стабильности, но все они обладают кислотными свойствами, что является основой их каталитической активности. Кроме того, практически все катализаторы крекинга содержат алюмосиликатные системы. Поэтому в настоящей монографии термин алюмосиликатные катализаторы относятся ко всем типам катализаторов крекинга, включая природные и синтетические, свежие и равновесные, аморфные и кристаллические (цеолитсодержащие), микросферические и щари-ковые и др. [c.8]

    Нагрев синтетических алюмосиликатных катализаторов, содержащих 9—12% окиси алюминия, в воздухе приводит к появлению кристаллической фазы лищь при 1100°С и выще [50, 51], т. е. в условиях, которые вызывают полное разрушение перовой структуры катализатора. С повышением концентрации алюминия в катализаторе температура появления кристаллической фазы снижается. Показано [52], что катализатор с 25% окиси алюминия после трехчасовой прокалки при 840 X уже содержит у-окись алюминия. При 880 °С образуется муллит. После прокалки при 1200 °С катализатор содержит а-кристобалит. [c.40]

    Изменение в зависимости от условий спекания активности алюмосиликатных катализаторов, пористой структуры, удельной поверхности изучалось рядом авторов. В работе [56] проводили крекинг фракции 200—400 °С ка алюмосиликатных катализаторах с разным диаметром пор и пришли к выводу, что поверхность пор диаметром 5—7 А и менее не используется в реакциях крекинга сырья из-за эффекта ультрапористости. Активность единицы доступной поверхности катализатора оказалась приблизительно постоянной. [c.41]

    Многокомпонентность коксовых отложений на катализаторах, образующихся по консекутивному механизму, обусловливает неоднородность их структуры. Уже в первых работах по исследованию характеристик кокса, отлагающегося на алюмосиликатных катализаторах, установлено наличие как рентгеноаморфных, так и псевдографитных структур. Доля аморфных структур в коксе достигает в некоторых случаях 50,0% (масс.). При большем содержании аморфных структур кокс может быть пластичен [28, 29]. Доля псевдографитной составляющей возрастает при повышении температуры и времени закоксовывания, а также ужесточения режима последующей продувки закоксованного ка- [c.9]

    Рентгенофазовое исследование отложений кокса, полученных обработкой алюмосиликатного катализатора парами гексадекана при 390 °С и выделенных растворением катализатора в горячем растворе КОН, подтвердило, что кокс содержит трехмерные, в том числе и псевдогра-фитные структуры [32]. Размер кристаллов, по расчетам кйторов, составлял около 4 нм. Установлено, что трехмерные структуры формируются в момент, когда большая часть поверхности (до 90%) еще свободна от кокса. Аналогичные результаты получены для катализаторов риформинга и гидроочистки [33-35]. [c.10]

    Нами исследовались изменения структуры пор и удельной поверхности цеолитсодержащих катализаторов крекинга при закоксовании, а также характеристики кокса, вьщеленного с поверхности катализатора [28, 29]. Как установлено, преобладающая часть кокса на катализаторах крекинга представляет собой сферообразные частицы. Их размер достигает 30 нм и мало зависит от содержания образующегося кокса при его изменении в пределах 0,4 до 7,0% (масс.). Возможность образования крупных глобул получает логическое объяснение, если допустить, что углеводороды и продукты их уплотнения могут мигрировать по поверхности катализатора. Такое допущение основывается на том, что для миграции требуется существенно меньшая энергия, чем для перехода из адсорбированного состояния в газообразное (примерно на величину, равную теплоте испарения). Поскольку промежуточные продукты реакций уплотнения способны частично десорбироваться в газовую фазу, естественно, они способны и к диффузии по поверхности. Определенным подтверждением этого является ранее отмеченный факт пла-сти>шого состояния кокса, выделенного из катализатора крекинга, при температурах 450-500 °С. Предположение о диффузии было подтверждено также исследованиями по изучению влияния термообработки в токе гелия на распределение кокса по грануле аморфного алюмосиликатного катализатора крекинга. Как установлено, после прогрева наблюдается выравнивание распределения кокса. [c.10]

    Алюмосиликатные катализаторы благодаря своей изомеризацион-лой активности способны образовывать большое число структурно и стереохимически измененных углеводородов, столь широко представленных в нефтях. Эти катализаторы могут в ряде случаев сохранять ез изменений реликтовые структуры, так как процессы изомеризации и деструкции протекают в основном в соединениях, имеющих ратные связи и обладающих поэтому значительно большей реакцион- [c.194]


Смотреть страницы где упоминается термин Алюмосиликатный катализатор структура: [c.111]    [c.159]    [c.227]    [c.311]    [c.92]    [c.15]    [c.53]    [c.81]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Катализаторы структура



© 2024 chem21.info Реклама на сайте