Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение мембранных методов веществ

    Так, очень перспективно применение мембранных методов для очистки сточных вод сыроваренных заводов, на которых в США и Дании построено несколько опытно-промышленных установок для извлечения пищевых белков, лактозы, витаминов и молочной кислоты. Эти установки состоят из двух последовательно включенных мембранных элементов. На первой ступени ультра-фильтрационно отделяется и концентрируется пищевой белок. Этот белок после промывки и сушки используется для приготовления детских питательных смесей и обогащения полноценными белками других пищевых продуктов. Прошедшая через мембрану первой ступени сыворотка, уже не содержащая белков, поступает на вторую ступень — обратноосмотическую, где выделяется лактоза, молочная кислота и витамины. Прошедшая через эту ступень вода с очень небольшим содержанием примесей низкомолекулярных органических веществ может быть сброшена в обычную канализацию. [c.117]


    Широко используют варианты фильтрационной обработки сточных вод различных производств с применением мембранных методов разделения загрязняющих веществ, в частности, процессы ультрафильтрации и обратного осмоса. [c.53]

    Классификация загрязняющих веществ сточных вод предприятий газовой промышленности, данные о составе загрязнений. Основные мембранные процессы, используемые для очистки сточных вод микрофильтрация, ультрафильтрация и обратный осмос. Технологические схемы очистки сточных вод от водомасляных эмульсий, ионов тяжелых металлов, термальных вод от фенолов, обессоливания и опреснения сточных вод. Промышленное применение мембранного метода обратного осмоса. Технико-экономическое сопоставление обратноосмотического метода с дистилляционным. Вопросы предварительной обработки сточных вод перед их подачей в мембранные установки для увеличения срока их службы при сохранении разделительных характеристик мембранных модулей [c.107]

    Как и всем мембранным методам, обратному осмосу и ультрафильтрации свойственно явление концентрационной поляризации, которое заключается в увеличении концентрации растворенного вещества у поверхности мембраны вследствие преимущественного переноса растворителя через мембрану. В результате происходит падение проницаемости и селективности, сокращается срок службы мембран. Для уменьшения вредного влияния концентрационной поляризации необходимо турбулизовать прилегающий к поверхности мембраны слой жидкости, чтобы ускорить перенос растворенного вещества в ядро разделяемого раствора. Этого добиваются применением в лабораторных установках магнитных мешалок и вибрационных устройств, а в промышленных условиях увеличением скорости протекания жидкости вдоль мембраны и использованием различного рода турбулизаторов. [c.18]

    Очистку коллоидных растворов от растворимых примесей осуществляют методом диализа. Он основан на применении мембран, задерживающих крупные коллоидные частицы и пропускающих ионы и молекулы низкомолекулярных веществ. [c.266]

    В химической и нефтехимической промышленности мембранные методы применяют для разделения азеотропных смесей, очистки и концентрирования растворов, очистки или выделения высокомолекулярных соединений из растворов, содержащих низкомолекулярные компоненты, и т.п. в биотехнологии и медицинской промышленности-для выделения и очистки биологически активных веществ, вакцин, ферментов и т.п. в пищевой промышленности-для концентрирования фруктовых и овощных соков, молока, получения высококачественного сахара и т. п. Наиболее широкое применение мембранные процессы находят при обработке воды и водных растворов, очистке сточных вод. [c.313]


    Электродиализ с ионообменными мембранами, в особенности гетерогенными, в настоящее время нашел широкое применение для обессоливания засоленных вод со средним уровнем минерализации. По сравнению с методом ионного обмена этот метод наиболее экономичен, т.к. при ионообменном обессоливании нет необходимости использовать значительное количество химикатов на регенерацию ионитов. менном обессоливании. Делались попытки использовать электродиализ с ионообменными мембранами для деминерализации различных растворов в сахарном производстве. Однако этот процесс не был внедрен из-за загрязнения мембран различными веществами раствора, что нарушало режим электродиализа. [c.215]

    Метод переработки размягченных (пластифицированных) полимеров нашел применение при изготовлении мембран в виде полых волокон [17, 18]. Формование проводят с достаточно высокими скоростям из сформованных мембран удаляют пластификатор. Формование мембран из пластифицированных полимеров без последующего удаления пластификатора пока не получило широкого распространения, хотя принципиальных возражений против этого метода не высказывалось. Более того, метод может представлять интерес в связи с тем, что позволяет, используя один и тот же полимер в комбинации с различными пластификаторами, направленно изменять проницаемость мембран для веществ разного химического состава. [c.80]

    Первый этап очистки воды — предочистка — необходима для улучшения технико-экономических показателей последующих этапов очистки воды, а также потому, что при отсутствии предочистки применение многих методов на последующих ступенях очистки встречает значительные затруднения. Так, наличие в воде органических веществ приводит к изменению технологических свойств анионитов, способствует их старению, а следовательно, и резкому (а 4—8 раз) снижению срока службы. Присутствие в воде ионов железа в концентрации свыше 50 мкг/кг вызывает отравление мембран при очистке воды электродиализом. Неудовлетворительная очистка воды от грубодисперсных и коллоидных примесей является одной из причин образования накипей на поверхностях нагрева и ухудшения качества пара. Поэтому в настоящее время предочистке воды в схемах подготовки добавочной и подпиточной воды придается важное значение. [c.29]

    Гиперфильтрация (обратный осмос). Этот метод в последние годы стал применяться как в нащей стране, так и за рубежом для очистки производственных сточных вод от растворенных примесей во многих отраслях промышленности. Преимущества гиперфильтрации перед другими методами очистки сточных вод заключаются в том, что этот процесс прост в эксплуатации и общие затраты электроэнергии относительно невелики. Установка занимает небольшую площадь, работа ее может быть автоматизирована. Качество очищаемой воды получается настолько высоким, что она без дополнительной обработки может быть направлена в водооборот. Производительность работы гиперфильтрационных установок зависит от разности между рабочим и осмотическим давлением. При высокой концентрации растворенных веществ рабочее давление становится фактором, ограничивающим применение этого метода. Так, рабочее давление при гиперфильтрации 5—10%-ных растворов солей составляет 4600—9800 кПа. Так как в кислой и щелочной средах усиливается гидролиз ацетатцеллюлозы, составляющей активную часть мембран, то процесс следует проводить в интервале pH обрабатываемой воды от 4 до 7. С повышением температуры возрастает и скорость гидролиза мембран, поэтому температура обрабатываемой воды должна быть не выше 35—40° С. Рабочее давление зависит от концентрации примесей в сточной воде. Экономически оправданным считается давление (4600—5000 кПа). Оно должно быть выше осмотического давления образующихся концентрированных растворов. [c.190]

    Области применения мембранных процессов для очистки воды различны. Так, если обратный осмос во избежание применения очень высоких давлений наиболее экономичен в основном для растворов с концентрацией растворенных веществ до 1 г/кг, то электродиализ используется, как правило, для более концентрированных растворов. По сравнению с другими методами мембранные методы имеют следующие пре-120 [c.120]

    Ученые давно стремились познать и обратить на пользу человека замечательные свойства полупроницаемых мембран — пропускать одни вещества и задерживать другие. Однако идея применения мембран для технологических целей стала реальной лишь в последнее время в связи с развитием наших знаний о природе и структуре веществ, с новыми достижениями в науке и производстве синтетических полимерных материалов. Теоретические и экспериментальные исследования, выполненные в последние годы в СССР и за рубежом, привели к разработке ряда мембранных процессов, которые могут быть реализованы в практике. К основным мембранным методам разделения относятся обратный осмос, ультрафильтрация, испарение через мембрану, диализ, электродиализ, диффузионное разделение газов. В любом из этих процессов смесь жидкостей или газов вводится в соприкосновение с полупроницаемой мембраной с одной ее стороны. Вследствие особых свойств полупроницаемых мембран прошедшая через них смесь обогащается одним из компонентов. В ряде случаев процесс проходит настолько полно. [c.5]


    Мембранные методы отличаются типами используемых мембран, движущими силами, поддерживающими процессы разделения, а также областями их применения (табл. 26). Существуют мембранные методы щести типов микрофильтрация процесс мембранного разделения коллоидных растворов и взвесей под действием давления ультрафильтрация — процесс мембранного разделения жидких смесей под действием давления, основанный на различии молекулярных масс или молекулярных размеров компонентов разделяемой смеси обратный осмос — процесс мембранного разделения жидких растворов путем проникновения через полупроницаемую мембрану растворителя под действием приложенного к раствору давления, превышающего его осмотическое давление диализ — процесс мембранного разделения за счет различия скоростей диффузии веществ через мембрану, проходящий при наличии градиента концентрации электродиализ — процесс прохождения ионов растворенного вещества через мембрану под действием электрического поля в виде градиента электрического потенциала разделение газов — процесс мембранного разделения газовых смесей за счет гидростатического давления и градиента концентрации. [c.209]

    В ряду технологических приемов, используемых для разделения смесей по размерам частиц, мембранные методы занимают больщую область. Выбор процесса для применения в заданной области разделения смесей зависит от различных факторов характера разделяемых веществ, требуемой степени разделения, производительности процесса и его экономической оценки. [c.209]

    Золи, полученные любым методом, содержат всегда избыток электролита и других примесей. Для очистки золей от примесей низкомолекулярных веществ пользуются методом диализа и ультрафильтрации. Метод диализа был впервые предложен Грэмом. Он основан на применении мембран, задерживающих крупные коллоидные частицы и пропускающих ионы и молекулы низко-молекулярных веществ. Если коллоидный раствор отделен от растворителя, напри- [c.251]

    Большие возможности совершенствования промышленной биотехнологии заключены в развитии и интенсификации не только основной стадии — ферментации, но и последующих этапов разделения, очистки и получения товарных форм препаратов. Здесь прогресс крупнотоннажного микробиологического синтеза связан с грамотным применением и модификацией известных процессов химической технологии, таких, как разделение суспензий, выпарка, сушка, ионный обмен, кристаллизация, экстракция и особенно мембранные методы ультрафильтрации, обратного осмоса, диализа и т. п. Отметим, однако, что биотехнология должна и уже начала развивать свои специфические методы выделения биологически активных веществ, основанные на биологических взаимодействиях. Например, чрезвычайно перспективна хроматография культуральных жидкостей на носителях, несущих антитела к имеющемуся в растворе антигену, что позволяет выделить чистый биопрепарат из растворов практически любой концентрации и сложности. [c.139]

    В этой главе было описано использование мембранных фильтров в ряде отраслей биомедицины. Мы показали, что мембранные фильтры находят широкое применение в биомедицинских исследованиях как в своей обычной роли в качестве фильтрующих, так и в менее привычных ролях, а именно в качестве подложек при изучении белков и нуклеиновых кислот. Возможно, одна из наиболее широких областей применения мембранных фильтров связана с количественным определением радиоактивных веществ с помощью жидкостного сцинтилляционного счетчика, хотя в некоторых случаях, оказывается, лучше использовать стекловолоконные фильтры. Важным достижением в области молекулярной биологии стало применение мембран из нитроцеллюлозы для гибридизации нуклеиновых кислот. Без разработки методов гибридизации с помощью мембранных фильтров было бы значительно задержано развитие технологии рекомбинантных ДНК. [c.331]

    Диффузионные мембраны обычно применяются для разделения газовых и жидких смесей методом испарения через мембрану [1]. Для разделения растворов под действием градиента давлений эти мембраны практического применения пока еще не находят, так как скорость процесса при использовании известных мембран этого типа очень низка. Она может быть увеличена путем создания ультратонких анизотропных диффузионных мембран (рис. П-2), а также повышением температуры разделяемой смеси. Перенос вещества через непористые мембраны рассмотрен в работах [1, 11]. [c.47]

    Сшгин В.Н. и др. Применение мембранных методов разделения вещества. Обзорная информация. — М. НИИТЭХИМ, 1985, — вып. 10. — 41 с. [c.135]

    Процессы мембранного разделения зависят от свойств мембран, потоков в них и движущихся сил. Движущими силами для процессов мембранного разделения являются разности гидростатического давления, различные концентрации веществ и разность электрического потенциг1ла. Для этих процессов также важен характер потоков к мембране со стороны разделяемых сред и отвода продуктов разделения с противоположной стороны. Мембранные методы отличаются типами используемых мембран, природой движущей силы разделения, а также областями их применения. Мембранные методы подразделяются на следующие типы  [c.74]

    Новые перспективы для применения мембран открывает недавно предложенный хроматомембранный метод разделения органических веществ [113,1141, сочетаюищй преимущества парофазного анализа и мембранного концентрирования. В случае реализации данного метода массообмен между жидкой и газовой фазами происходит в пористом блоке, состоящем из полимерного материала. При этом 0беспечива10тся высокая э(1)фективность и непрерывный режим процесса. [c.227]

    Во многих из перечисленных методов разделения применяются в значительных количествах различные вспомогательные низкомолекулярные вещества — органические растворители, соли и кислоты, создающие нужные значения ионной силы и pH. Перед окончательным выделением очищенного биополимера или перед тем как подвергать частично очищенный материал следующей стадии фракционирования, обычно требуется избавиться от этих вспомогательных соединений. Для этой цели широко используется процедур , называемая диализом. Она основана на применении мембран, проницаемых для воды и низкомолекулярных веществ и непроницаемых для биополимеров. Чаще всего с этой целью используют мембраны (пленки) из целлофана, который представляет собой нитрат целлюлозы с содержанием остатков нитрата порядка одного моля на моль остатков глюкозы. Такой материал обладает необходимой механической прочностью и в то же время достаточно гидрофилен, чтобы через 1гего проходили молекулы воды и гидрофильных низкомолекулярных компонентов. В то же время для полимерных [c.236]

    Метод обратного осмоса на современной начальной стадии своего развития в качестве нового инструмента химической технологии продемонстрировал широкие возможности вьщеления воды высокого качества и концентрирования наиболее разбавленных стоков целлюлозно-бумажиого производства. В обработке сточных вод целлюлозных заводов и бумажных фабрик применение этого метода особенно выгодно при решении трех специфических задач а) выделение из сточных вод компонентов в виде органических веществ древесного происхождения и неорганических варочных и отбеливающих вешеств б) удаление из воды загрязнений в) получение пригодной к повторному использованию воды в технологических процессах производства целлюлозы и бумаги. Вследствие быстрого развития обратноосмотического оборудования и мембран и неполных знаний о сроке эффективной службы модулей и затрат на их замену пока невозможно точно предсказать объемы капитальных вложений на строительство крупной промьпплеиной о -ратноосмотической установки и расходов на ее эксплуатацию. [c.267]

    Абсорбционный и экстракционный методы разделения. В основе этих методов, проводимых с использованием твердых сорбентов, лежит различие в растворимости. Фазовое состояние молекул растворенного вещества изменяется — каждая молекула растворенного вещества окружается плотным слоем молекул сорбента. При этом сохраняются характерные особенности процессов абсорбции и экстракции в первом случае несущая растворенное вещество фаза (субстрат) — газ, во втором — жидкость. Основой этого процесса является пропитывание аморфных полимерных материалов, причем молекулярный перенос идет быстрее в случае применения мембран или пленок. Примерами служат разделение сжиженных газов или легких органических гомологов (СН4, СНзВг) с помощью поливинилхлорида, этилцеллюлозы или силиконового каучука. [c.525]

    Области применения мембранных процессов для очистки воды различны. Так, если обратный осмос во избежание применения очень высоких давлений наиболее экономичен в основном для растворов с концентрацией растворенных веществ до 1 г/кг, то электродиалпз используется, как правило, для более концентрированных растворов. По сравнению с другими методами мембранные методы имеют следующие преимущества 1) отсутствуют фазовые переходы при отделении примесей, что позволяет сводить к минимуму расход энергии на проведение процессов 2) разделение можно проводить при низких температурах воды, которые определяются свойствами мембраны 3) если исключить забивание мембраны, процессы имеют непрерывный характер 4) их можно осуществлять без добавок химических реа-98 [c.98]

    В противоположность миниатюризированной жидкостной хроматографии, которая продолжает медленно развиваться, количество публикаций, посвященных "электро-управляемым" ("ele tro-driven") методам разделения, возрастает экспоненциально, поддерживаемое быстрым развитием рынка приборов. Возможные области применения как капиллярного зонного электрофореза (КЗЭ), так и мембранной электрокинетической хроматографии (МЭКХ) описаны в публикациях, посвященных разделению катионов и анионов, феноксиуксусных кислот, гербицидов и пестицидов, поверхностно-активных веществ, препаратов для дезинфекции, полиядерных ароматических углеводородов, хлорированных фенолов, крезолов, нитрофенолов, нитротолуолов, нитронафталинов и т. д. Только недостаточная чувствительность сдерживает широкое применение упомянутый методов разделения в качестве инструментов для рутинных анализов. Однако уже сейчас усовершенствования отдельных узлов аппаратуры для капиллярного электрофореза приводят к существенному повышению чувствительности, порой обеспечивающему возможность анализа загрязняющих веществ при их концентрациях в воде на уровне ppb и ppt. [c.223]

    Книга, посвященная мембранным методам разделения ясидких систем, выходит в нашей стране впервые. В ней излагаются основы теории обратного осмоса, ультрафиль-гсрации в испарения через мембрану. Рассматривается практическое применение этих методов в химической, нефтеперерабатывающей и нефтехимической, пищевой, медицинской, микробиологической и других отраслях промышленности для разделения и концентрирования растворов, очистки промышленных стоков, опреснения морских и солоноватых вод, разделения азеотропных, близкокипящих ж нетермостойких смесей, смещения равновесия в химических реакторах, обезвоживания фруктовых и овощвых соков, молока при производстве и выделении биологически активных веществ, вакцин, вирусов, ферментов и т. д. [c.2]

    Процессы экстракции в фармацевтической промышленности на растительных и животных веществах, например алкалоидах, гормонах, наркотиках и т. д., часто осложняются цветными веществами, водорастворимыми полимерами и другими примесями, которые, если их не удалить, придают цвет продуктам или затрудняют их кристаллизацию. Во многих случаях простая ультрафильтрация акстракта через мембрану, проницаемую для продукта, но не проницаемую для загрязнений, дает чистый, бесцветный раствор, из которого легко получить высокочистый кристаллический продукт. При получении ферментных препаратов из культур микроорганизмов неотъемлемой стадией технологического процесса является концентрирование ферментных растворов с применением таких методов, как вакуум-выпаривание, сублимационная сушка, сушка распылением, вымораживание, охлаждение органическими растворителями или солями и др. В этих методах концентрирование раствора связано либо с действием температур, либо с глубокими изменениями физико-химических свойств ферментного раствора. [c.17]

    Диффузионные дозаторы с полимерными мембранами. В литературе достаточно полно отражены результаты исследований мембранных методов диффузионного разделения веществ на основе селективной проницаемости мембран к различным газам см., например, 100J. При этом определены наиболее важные области применения мембран 10, с. 125, 12б]. Диффузионное микродозирование через мембрану представляет собой [c.108]

    В методе ДТБГ используется обычная вакуумная установка с весами Мак-Бена в сочетании со специальным устройством [1 ], позволяющим производить запись давления в системе при линейном повышении температуры и постоянной скорости вакуумирования. Так как изменение скорости десорбции веществ вызывает изменение давления в системе, то кривые ДТБ дают возможность фиксировать наличие различных типов связи поглощенных молекул с сорбентом. Метод тензиметрии с применением мембранного нуль-манометра (МНМ) использовался для двух типов работ для исследования кинетики процессов, происходящих в системе сорбент—сорбат при повышенных температурах, и для изучения термодинамики сорбции. [c.116]

    Одним из основных вопросов, которые необходимо решить при разработке метода измерения А Я , является вопрос обеспечения достаточной мощности процесса парообразования. Эта мощность определяет как требуемую чувствительность прибора, так и продолжительность опыта. В [3] показано, что при испарении в вакуум из ячейки Кнудсена веществ с давлением пара до 0,13 Па при диаметре ячейки около 15 мм и применении мембран с диаметром отверстия до 6 мм может быть обеспечена скорость испарения около 1 мг/мин. Однако для получения столь мощного процесса парообразования требуется вакуумная система с низким предельным вакуумом и большой скоростью откачки. Для стандартной модели калориметра Кальве (ячейки диаметром 17 мм) из-за существующей конструкции термостата нельзя изготовить вакуумную систему со скоростью откачки много большей, чем 0,2 л/с при давлениях порядка 0,133 Па. [c.78]

    Мембранная фильтрация представляет собой один из способов концентрирования Salmonella и Shigella из воды или сточных вод. Водная проба, обычно 1—2 л, пропускается под давлением через мембранный фильтр диаметром 142 мм с размером пор 0,45 мкм. Затем мембрану в стерильных условиях разрезают на части, которые добавляют в порции селективного бульона для обогащения и селекции требуемой бактерии. Мембранную фильтрацию имеет смысл проводить для воды с малой мутностью и с низким содержанием органических веществ, когда не происходит забивания мембраны. Если же оно происходит, то следует предварительно отфильтровать пробу через фильтр из стекловолокна с номинальным размером пор 1— 2 мкм. Если же и это не помогает, то от мембранной фильтрации следует отказаться и вместо нее использовать фильтрацию через диатомовую землю [3]. Применение мембранной фильтрации более предпочтительно потому, что при этом задерживаются любые клетки, содержащиеся в водной пробе, но метод с использованием диатомовой земли, хотя он и не является количественным, менее чувствителен к забиванию. [c.288]

    В дальнейшем можно ожидать, что ультрафильтрация найдет применение в такой важной области, как ферментация, для выделения и очистки белков и других продуктов, получаемых с помощью новых биотехнологических процессов (генная инженерия). Лимитирующей стадией в практическом развитии генной инженерии будет, возможно, не сам процесс манипулиро-эания генами, а крупномасштабное и рентабельное производство биологически активных веществ на основе достижений генной инженерии. При этом ультрафильтрация и (в меньшей степени) обратный осмос найдут широкое применение в биотехнологии, что, возможно, послужит стимулом для разработки новых типов мембран и новых процессов, основанных на мембранных методах. [c.378]

    Весьма многообещающе применение ультрафнльтрации для фрак-цпоииропання кровяной плазмы, содержащей альбумни (М — 69 000), глобулины (М 110000—150000) н макроглобулины (М 1000000). Ме.мбраны, задерживающие альбумин, позволяют отделять протеины плазмы от низкомолекулярпых веществ, тогда как мембраны с более крупными порами могут быть использованы для отделения альбумина от глобулинов. Набор таких мембран в соответствующем порядке позволяет создать компактную установку. Такой метод фракционирования может быть с успехом применен для разделения протеинов различного строения. [c.286]

    Исследована [167] возможность применения метода обратного осмоса для разделения растворов различных ПАВ, а также растворов, содержащих смесь поверхностно-активиых веществ с неорганическими солями. ПАВ, присутствующие в различных промышленных стоках, образуют в водных растворах необычные системы, так как в зависимости от концентрации и температуры эти вещества могут присутствовать в растворе или как простые молекулы, или как ионы, или как смесь мономеров и коллоидных агрегатов-мицелл. Поэтому характеристики разделения ПАВ будут в значительной степени определяться структурой растворов. А именно, мономеры, по-видимому, будут задерживаться мембраной в меньшей степени,, в то время как мицеллы задерживаются полностью и затрудняют прохождение мономера через мембрану. [c.320]

    Электрохимическая активность живых тканей представляет значительный интерес в связи с переносом ионов в организме как под действием внешних полей, так и в процессах обмена веществ, изменения проницаемости тканей, их возбуждения, проведения нервных импульсов и др., связанных с биопотенциалами. Так, числа переноса ионов в коже определяют эффективность ионофореза — метода введения лекарственных веществ в организм человека через кожу постоянным током, широко применяемого в медицинской практике. Коллоидно-химическое исследование ионофореза в работах Цыгир и Фридрихсберга позволило установить основы дозировки и повысить эффективность процесса путем применения ионообменных мембран.  [c.239]

    Предложен ряд других процессов выделения ж- или п-ксилола, основанных на проведении химических реакций. При всех этих методах достигается весьма высокая избирательность выделения того или иного изомера. Для выделения о- или ж-ксилола можно использовать избирательность алкилирования смеси ксилолов некоторыми веществами, содерн ащими третичный углерод [29]. Алкилирование ксилольной фракции изобутиленом можно использовать [28] для выделения п-ксилольного концентрата, который в реакцию алкилирования не вступает. Предложено также [15] выделять тг-ксилол при помощи клатратообразующих веществ. В частности, клатратное соединение п-ксилола осаждается при добавке к смеси ксилолов такого реагента, как никельтетра-4-метилииридиндироданат. Эта реакция весьма избирательна. Вполне возможно, что аналогичные возможности даст применение проницаемых мембран и молекулярных сит. [c.268]

    При любом способе получения коллоидные растворы оказываются загрязненными примесями истинно растворенных веществ (примеси в исходных материалах, избыток стабилизаторов, продукты химической конденсации). Примеси электролитов сильно понижают устойчивость золей. Поэтому после получения их очищают. Очистка производится методами диализа, электродиализа, ультрафильтрации. Указанные методы основаны на применении полупроницаемых мембран, легко щюпускающих молекулы и ионы и задерживающих коллоидные частицы. [c.87]

    Весовые, или гравиметрические, методы основаны на определении массы вещества, прошедшего через полимерную мембрану. Определение газопроницаемости по массе прошедшего через мембрану газа обь1чно не производится, так как количество газа в этом случае очень мало и масса его не может быть определена с достаточной степенью точности. Эти методы нашли широкое применение для определения паропроницаемости пленоч-,ных материалов [c.246]

    Применение в определенной последовательности ряда перечисленных методов позволяет получить белок в очищенном состоянии, не лишенный, однако, некоторых примесей солей. Для полного освобождения белков от низкомолекулярных примесей в настоящее время используют методы диализа, гельхроматографии, кристаллизации, ультрафильтрации. При диализе применяют полупроницаемые мембраны (целлофан, коллодийная пленка), диаметр пор которых варьирует в широких пределах. Белки, как правило, не диффундируют через такую мембрану, в то время как низкомолекулярные вещества легко проникают через нее в окружающую среду. [c.32]


Смотреть страницы где упоминается термин Применение мембранных методов веществ: [c.216]    [c.371]    [c.434]    [c.404]    [c.4]    [c.285]    [c.306]    [c.754]   
Мембранные процессы разделения жидких смесей (1975) -- [ c.26 ]




ПОИСК





Смотрите так же термины и статьи:

Мембранные

Метод веществам



© 2025 chem21.info Реклама на сайте