Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Доноры электронов анионы

    В отличие от электрофильных и радикальных реакций, при нуклеофильном ароматическом замещении атакующий агент является донором электронов — анионом или другим основание.м, которое реагирует с ароматическим соединением по схеме  [c.130]

    Если, наоборот, анионы являются слабыми донорами электронов, а катионы обладают значительным поляризующим действием Си + и др.), то взаимодействие обусловлено влиянием на молекулы Н2О катионов, т. е. происходит гидролиз по катиону. Примером служит процесс [c.203]


    Титан имеет довольно высокую (1668 °С) температуру плавления и плотность 4,5 г/см . Благодаря высокой удельной прочности и превосходным противокоррозионным свойствам его широко применяют в авиационной технике. В настоящее время его используют также для изготовления оборудования химических производств. В ряду напряжений титан является активным металлом расчетный стандартный потенциал для реакции Т + + 2ё Л составляет —1,63 В . В активном состоянии он может окисляться с переходом в раствор в виде ионов Т " [1]. Металл легко пассивируется в аэрированных водных растворах, включая разбавленные кислоты и щелочи. В пассивном состоянии титан покрыт нестехиометрической оксидной пленкой усредненный состав пленки соответствует ТЮ . Полупроводниковые свойства пассивирующей пленки обусловлены в основном наличием кислородных анионных вакансий и междоузельных ионов Т , которые выполняют функцию доноров электронов и обеспечивают оксиду проводимость /г-типа. Потенциал титана в морской воде близок к потенциалу нержавеющих сталей. Фладе-потенциал имеет довольно отрицательное значение (Ер = —0,05В) [2, 3], что указывает на устойчивую пассивность металла. Нарушение пассивности происходит только под действием крепких кислот и щелочей и сопровождается значительной коррозией. [c.372]

    Образование катион-радикалов наблюдается только в полярных растворителях типа ацетонитрила, тетрагидрофурана. Наряду с катион-радикалами ароматических углеводородов наблюдается образование анион-радикала акцептора (ТБЦ). При использовании в качестве доноров электрона ароматических аминов, например диэтиланилина (ДЭА), наблюдается образование анион-радикалов ароматических углеводородов и катион-радикалов амина. При этом ароматическая молекула выступает в качестве акцептора электрона. На рис. 63 приведены спектры анион-радикала пирена и катион-радикала ДЭА. [c.177]

    Анионная, или карбанионная, полимеризация протекает с образованием карбаниона - соединения с трехвалентным атомом углерода, несущим отрицательный заряд. Анионная полимеризация протекает в присутствии доноров электронов - катализаторов второго класса  [c.254]

    Подобным образом ведут себя слабые доноры электронных пар — однозарядные анионы (С1 . Вг , 1 , NOj, СЮ ") к этой же группе анионов относятся ионы SiO , SiF " и другие кислотные остатки сильных кислот. [c.240]


Таблица В.10. Энергия внешней орбитали акцепторов и доноров электрона как характеристика жесткости и мягкости катионов и анионов Таблица В.10. <a href="/info/153562">Энергия внешней</a> <a href="/info/1174671">орбитали акцепторов</a> и <a href="/info/20762">доноров электрона</a> как <a href="/info/21515">характеристика жесткости</a> и мягкости катионов и анионов
    В молекуле аммиака атом азота находится в состо.янии sp -гибридизации, причем на одной из его гибридных орбиталей находится неподеленная электронная пара. Поэтому при донорно-акцепторном взаимодействии молекулы NH3 с ионом Н+ образуется ион NHJ, имеющий тетраэдрическую конфигурацию. Аналогично построен комплексный ион здесь донором электронной пары служит анион F , а акцептором — атом бора в молекуле BF3, обладающий незанятой орбиталью внешнего электронного слоя и переходящий при комплексообразовании в состояние sp -гибридизации. [c.360]

    НВ — донор протона с зарядовым числом 2в В — основание, сопряженное донору протона А1 — продукт присоединения электрона и протона к исходному аниону. Если медленной стадией является стадия присоединения первого электрона с одновременным переносом протона от донора к аниону, то скорость реакции в единицах плотности тока определяется уравнением [c.179]

    Экспериментальные данные показывают, что энергии сольватации ионов (катионов и анионов), имеющих одинаковые вакантные орбиты, близки не только в одном растворителе, по и в разных растворителях, если молекулы этих растворителей содержат атомы, являющиеся донорами электронов, находящихся на одинаковых энергетических уровнях. Так, энергии сольватации одних и тех же ионов в кислород- и азотсодержащих растворителях близки, поскольку кислород и азот являются донорами электронов, находящихся на уровне п = 2. [c.179]

    Таким образом, электронная теория Льюиса рассматривает нейтрализацию в водных растворах, взаимодействие аммиака с галогенидами бора, комплексообразование, реакции ангидридов с водой как сходные процессы. Действительно, согласно теории химической связи, во всех этих процессах взаимодействие между частицами имеет одинаковую природу — образуется донорно-акцепторная связь. Вещества, являющиеся донорами электрон] ых пар, часто называют основаниями Льюиса, а акцепторы электронных пар — кислотами Льюиса или L-кислотами. Большинство катионов является L-кислотами, а анионов — льюисовскими основаниями. Соли — типичные кислотно-основные комплексы. Мы видим, что теория Льюиса рассматривает вопрос о кислотах и основаниях более широко, чем другие теории. [c.241]

    В качестве доноров электронной пары могут выступать, например, молекулы СО, ННз, Н О или анионы кислот СЙ, С1 и др. [c.77]

    Анионы бескислородных кислот и их солей (С1, Вг, 1 , 8 ", N" и т. п.) удерживают свои электроны слабее молекул воды. Поэтому при электролизе водных растворов соединений, содержащих указанные анионы, последние будут играть роль доноров электронов они будут окисляться и передавать свои электроны во внешнюю цепь электролизера (пример 1). [c.161]

    Катион тогда называют акцептором, а анион -донором электронной пары. Механизм образования ковалентной связи в этом случае будет донорно-акцепторным, или координационным. [c.43]

    Определение констант тушения триплетных состояний. Изучение констант тушения триплетных состояний удобно проводить в вязких растворах. При температурах, близких к комнатной, могут быть использованы растворы 1-бромнафталина в глицерине или полиэтиленгликоле. При низких температурах выбор растворителя более широкий. В качестве тушителя применяют соединения с тяжелыми атомами, кислород, парамагнитные стабильные радикалы, доноры электронов или атомов водорода. Весьма удобным объектом исследования являются соли уранила, флуоресценция которых тушится аминами, спиртами, анионами галогенов и многими другими соединениями. Чтобы выяснить статический или динамический характер тушения, необходимо провести параллельное исследование кинетики и интенсивности фосфоресценции в одних и тех же растворах и определить константы тушения, представив данные в координатах Штерна — Фольмера <ро/ср—[Q] и to/t—[Q]. [c.115]

    Образование сольватных комплексов происходит за счет делокализации электронов донорных орбиталей электроотрицательных атомов молекул растворителя на акцепторные орбитали катионов. Для анионов сольватация та же, но донором электронов выступает анион, а акцептором — протон молекулы растворителя. Связь между анионом и молекулой растворителя реализуется по типу водородной. Энергетическая равноценность связей в сольватных комплексах предполагает гибридизацию орбиталей катионов и анионов, тип которой в свою очередь определяет геометрическую структуру сольватных комплексов и координационные числа ионов. [c.274]


    Теоретические основы экстракции.- Экстракцией называется извлечение вещества из одной жидкой фазы в другую жидкую фазу. С водой не смешиваются малополярные органические жидкости (с низкой диэлектрической постоянной). Подавляющее большинство неорганических соединений, имея ионную природу, растворяется в них плохо. В водном растворе эти соединения диссоциируют на ионы, которые гидратируются молекулами воды. Переход соединения в органическую фазу становится возможным, если все или часть молекул воды, координированных ионом, будут удалены, и получен нейтральный комплекс. Образование нейтральных соединений и уменьшение степени гидратации наблюдается прн образовании солей с органическими кислотами, аминами (если металл входит в состав аниона), сольватов с нейтральными экстрагентами (спиртами, кетонами, простыми и сложными эфирами). При образовании сольватов молекулы экстрагента замещают молекулы воды в гидратной оболочке катиона либо присоединяются к воде гидратной оболочки. Такого рода взаимодействие возможно, если органические вещества содержат атомы кислорода, азота и других элементов, способных быть донорами электронов, а металлы — акцепторами. [c.332]

    В этой реакции анион СН Г является донором электронной пары, а электрофильная частица Н+—акцептором. [c.302]

    Подобным образом ведут себя слабые доноры электронных пар — однозарядные анионы (С1 , Вг", Г, N0", СЮ ) к этой же группе анио- [c.229]

    При бимолекулярном замещении происходит обращение конфигурации, тогда как для мономолекулярного процесса следует ожидать в большей или меньшей степени рацемизацию. На практике обычно рацемизация сопровождается в некоторой степени и обращением конфигурации, так как отщепляющийся с одной стороны молек улы анион X затрудняет подход входящего аниона У (или донора электронов) с этой стороны. [c.81]

    Если СвНб диссоциирует до СвНб" и Н" , то анион СеНб , являющийся донором электронов, адсорбируется сильнее на окислах р-типа, т. е. на электронных акцепторах, в то время как хиноидный бирадикал. [c.177]

    Понятно, что чем больше отрицательный заряд и меньше размер аниона, тем он более сильный донор электронных пар и тем легче отрывает протон от молекулы воды. Так, по возрастанию прочности водородной связи оксоанионы р-элементов П1 периода располагаются в следующий ряд l07[c.239]

    Каждое основание, которое мы обсуждали до сих пор, будь то ОН , Н О, какой-нибудь амин и ш анион, является донором электронной пары. Любое вещество, обладающее свойствами основания в рамках представлений Бренстеда - Лаури (т.е. акцептор протона), с точки зрения Льюиса, также является основанием (до1юром электронной пары). Однако в теории Льюиса допускается, что основание донируег электронную пару не только ее акцептору Н . Поэтому определение Льюиса значительно расширяет круг веществ, которые могут рассматриваться как кислоты Н представляет собой отнюдь не единственно возможную, с точки зрения Льюиса, кислоту. Рассмотрим, например, реакцию между КН, и ВРз. Эта реакция возможна по той причине, что в валентной оболочке ВРз имеется вакантная орбиталь (см. разд. 7.7, [c.99]

    Соединения трехвалентного бора проявляют склонность к заполнению парой электронов четвертой вакантной орбитали, выступая, таким образом, в роли кислоты Льюиса. В качестве доноров электронов могут выступать анионы и нуклеофильные реагеЕ1ты, обладающие неподеленными парами электронов (щелочи, амины, спирты, простые эфиры и т. д.)  [c.338]

    Реакция потекает по анионно-координационному механизму. Каждый акт присоединения мономера начинается со стадии образования я-комплекса двойной связи мономера (донор электронов) с переходным металлом катализатора (акцептор электронов). Благодаря наличию неспаренных я-электронов переходные элементы акцептируют электроны электронодонорных веществ, образуя комплексные соединения с высоким координационным числом (6—8). Возникновение я-комплекса приводит к ослаблению связи Ме---К, что облегчает внедрение мономера в корень растущей полимерной цепи. Такой механизм позволяет объяснить высокую избирательность катализаторов Циглера — Натта. К образованию я-комплексов Склонны мономеры с повыщенной электронной плотностью у двойной связи, т. е. мономеры, полимеризующиеся по механизму катионной полимеризации. В то же время внедрение очередного мономера по связи Ме—С характерно для реакций анионного роста цепи. [c.28]

    Состав соединений, получаемых при экстракции катионов металлов из водных растворов, зависит от значения pH раствора и от концентрации анионов. Галогениды тяжелых металлов могут переходить в органическую фазу в виде молекулярных галогенидов или в виде галогенометаллатов (комплексных кислот). Если растворитель содержит атом кислорода, являющийся донором электронов, то возможно образование продуктов присоединения с галогенидами или галогенидных ацидо-комплексов. Подобные активные растворители применяют в основном в смеси с инертными растворителями. Комплексоподобные продукты присоединения имеют определенный состав. Образование продуктов присоединения способствует переходу экстрагируе- [c.340]

    Анионная полимеризация. Анионная полимеризация осуществляется через образование иона с отрицательно заряженным углеродным атомом (карбаниона), который находится в поле противоиона, образуя с ним ионную пару. Катализаторы основания, щелочные металлы и их гидриды (ЫН, ЫаН), амид натрия ЫаЫН , металлорганические соединения и другие вещества, являющиеся донорами электронов. [c.451]

    Хелатный эффект повышается с увеличением числа хелатных колец, приходящихся на одну молекулу лиганда. Например, анион ЭДТА образует пятичленные кольца (включающие ион металла) при участии карбоксильной группы и атомов азота. Оба атома азота — доноры электронных пар. Применение полидентатных лигандов повышает устойчивость внутрикомплексного соединения (по сравнению с простыми лигандами, например молекулами аммиака в аммиачных комплексах металлов). ЭДТА действует как гексадентатный лиганд (занимает 6 координационных мест). Шварценбах, кроме комплексонов как титрантов, предложил новый вид индикаторов-металлоиндикато-ров — веществ, реагирующих на изменение активности ионов металлов в растворе, подобно тому, как кислотно-основные индикаторы реагируют на изменение активности водородных ионов. Таким индикатором является, например, мурексид. [c.436]

    Прежде чем продолжить детальное обсуждение реакций р-элиминиро-вания, протекаюш его по механизму Е2, проанализируем общую схему этого процесса. Хотя донор электронной пары (основание) может быть нейтральным (например, вода) или отрицательно заряженным (например, гидроксид-ион), а уходящая группа может отщепляться в виде аниона (например, хлорид-ион) или нейтрального соединения (например, вода), в представленной ниже схеме приведена только одна возможная комбинация (отрицательно заряженное основание и анионная уходящая группа)  [c.218]

    Благодаря способности превращаться в устойчивые анион-радикалы-семихиноны (III) Б. образуют с донорами электронов прочные комплексы с переносом заряда, напр. 1,4-Б.-с бензолом, толуолом, нафталином, антраценом в соотношении I I, с фенолом-1 1 и I 2 (фенохинон), гидрохиноном-1 I (хингидрон). Последний-темно-фиоле-товые кристаллы с металлич. блеском т. пл. 171 °С ц 6,68 10 Кл м (диоксаи 20°С) е 4,12 (17°С) окислит.-восстановит. потенциал 0,699 В (вода 25°С) р-римость в воде 0,35% (20°С), 1,035% (50°С) распадается на компоненты в растворе уксусной кислоты. Действием порошка 2п в уксусном ангидриде Б. превращ. в диацетокси-бензолы. [c.278]

    КООРДИНАЦИСННЫЕ СОЕДИНЁНИЯ (комплексные соед.), содержат катионный, анионный или нейтральный комплекс, состоящий из центр, атома (или иона) и связанных с ним молекул или ионов-лигандов. Центр, атом (комплексообразователь)-обычно акцептор, а лиганды-доноры электронов, и при образовании комплекса между ними возникает донорно-акцепторная, или координационная, связь. Комплекс м. б. электронейтральным, или неэлектролитом, иметь положит, заряд (комплексный катион) или отрицательный (комплексный анион). [c.467]

    Химические свойства. М. обладают низкими значениями первого потенциала ионизации и сродства к электрону. Вследствие этого в хим. р-циях они выступают как доноры электронов (восстановители), а в соед. и их р-рах образуют положительно заряженные ионы (в большинстве случаев аквакатионы). Электроотрицательности атомов М. ниже электроотрицательностей атомов неметаллов. М. могут входить в состав сложных анионов, напр. МПО4, или ацидокомплексов, напр. [Ре(СМ)б] , однако в них атомы М. всегда являются центрами положит, заряда. Только для нек-рых М., находящихся на грашще с неметаллами, таких, как 8п, Ро, 8Ь и т. п., известны соед., напр, гидриды, в к-рых М. имеют формально отрицат. степень окисления. Но во всех этих соед. хим. связь ковалентная. [c.53]


Смотреть страницы где упоминается термин Доноры электронов анионы: [c.540]    [c.52]    [c.152]    [c.507]    [c.141]    [c.141]    [c.97]    [c.304]    [c.43]    [c.303]    [c.82]    [c.1197]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.228 ]




ПОИСК





Смотрите так же термины и статьи:

Донор

Донор электронных пар



© 2025 chem21.info Реклама на сайте