Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Смеситель схемы

    Материальный баланс смесителя, схема потоков для которого дана на рис. У1.6, представлен системой уравнений следующего вида  [c.392]

    Изучение закономерностей приготовления эпоксидных компаундов в статических смесителях с винтовыми элементами осуществляли на заливочной установке (рис. 3.3), основной частью которой являлся статический смеситель с прозрачным корпусом. Киносъемка процесса диспергирования отвер-дителя осуществлялась на прозрачном модельном составе, в котором стандартный отвердитель полиэтиленполиамин заменен на низкореакционный три-этаноламин. Состав содержал эпоксидную смолу ЭД-20 и полиэфирную смолу МГФ-9,6. Дозирующая система обеспечивала движение потоков на скоростях объемной подачи в широком диапазоне. Изучение влияния технологических режимов процесса и конструктивных особенностей оборудования на характер увеличения межфазной поверхности проводили по замерам диаметров капель диспергируемой среды, образующихся из цилиндрических полос ламинарного потока в системе после остановки дозирующей системы. Замеры производили при 50-кратном увеличении изображения канала смесителя. Схема выбора участка канала для проведения измерений показана на рис. 3.4. Для выявления характера поля скоростей движущихся в потоке смешиваемого материала частиц в диспергируемый компонент модельного состава добавляли трассер (просеянные частицы алюминия размером 5—6 мкм) [c.62]


    Впускные патрубки 5 переделаны в смесители. Схема регулирования двигателя заключается в следующем. Рычаг 6 через муфту действует на пружину регулятора. Муфта в свою очередь — через систему тяг и рычагов действует с одной стороны на газовую заслонку < и с другой — на рейку топливных насосов 7. Связь регулятора с топливными насосами осуществляется через ограничитель подачи жидкого топлива. Установкой рукоятки ограничителя в одно из четырех положений можно обеспечить подачу жидкого топлива от 100 до 1%. Это позволяет осуществлять перевод двигателя с жидкого топлива на газообразное, с присадкой жидкого запального топлива и, наоборот, — переход с газожидкого топлива снова полностью на жидкое. [c.281]

    Схемы 1 а 2 соответствуют режимам аэротенков-вытеснителей и аэротенков-смесителей. Схемы 3 и 4 применимы для составления [c.162]

    На рис. VI.4 представлены схемы материального баланса систем биохимической очистки с регенерацией активного ила. Схемы ] и 2 соответствуют режиму двухступенчатой очистки, при этом в качестве II ступени показан биоокислитель-вытеснитель без рециркуляции активного ила. Этим биоокислителем может быть биологический пруд, окислительный канал или песчаный фильтр доочистки. Схемы 3 я4 отличаются от схем 1 и 2 тем, что II ступени очистки имеют отдельную рециркуляцию активного ила. Схемы 5—8 учитывают регенерацию активного ила на каждой из ступеней биохимической очистки как в регенераторах-смесителях (схемы 1— 8), так и в регенераторах-вытеснителях (схемы 5 и 6, II ступень очистки). При этом, как и в первом случае (см. рис. VI.3), вторичные отстойники на схемах не показаны, так как их роль в материальном балансе по растворенным органическим загрязнениям незначительна. [c.163]

    Для неабразивных порошков можно изготовить из органического стекла и других прозрачных полимерных материалов (см. разд. 1.3) малогабаритные смесители, схемы которых приведены на рис. 135. [c.266]

    Амилфенол получают алкилированием большого избытка фенола приблизительно при 140° т /лет-амилсульфатом. При этом образуется главным образом м-трег-амилфенол. В смесях обоих амиленов, образующихся в качестве побочного продукта при производстве амилового спирта, триметилэтилен избирательно превращают с 62%-ной серной кислоты в грет-амилсульфат, в то время как 2-пентен при комнатной температуре остается непревращенным. Схема процесса представлена на рнс. 47. В смесителе 1 разбавлением концентрированной кислоты водой приготовляют 62%-ную серную кислоту. Теплота разбавления отводится циркуляцией слабой кислоты через холодильник 2. [c.225]

Рис. 32. Схема многоступенчатой перекрестной экстракции I — смеситель 2 — сепаратор Рис. 32. Схема <a href="/info/1813373">многоступенчатой перекрестной экстракции</a> I — смеситель 2 — сепаратор

    Изомеризация нормального бутана может быть осуществлена также по схеме, представленной на рис. 13-23. Нормальный бутан поступает в смеситель 1, где смешивается с нижним продуктом из дистилляционной колонны 3, и направляется в изомеризационный реактор 2, где изомеризуется при определенной степени превращения. Продукты реакции поступают в дистилляционную колонну, где разделяются на готовую продукцию (верхний продукт) и возврат (нижний продукт). [c.282]

    Чтобы предупредить аварии при возможных отклонениях от режима, аппараты термоокислительного пиролиза метана снабжают блокирующими устройствами, автоматически прекращающими подачу кислорода в агрегат при повышении против установленной величины перепада давления в реакторе или смесителе, а также температуры в смесителе при снижении расхода природного газа менее расчетного при снижении давления кислорода в коллекторе и уменьшении температуры газов пиролиза после реактора. Кроме того, блокировки автоматически включают подачу азота в агрегат при прекращении подачи кислорода имеются также блокирующие устройства сброса и сжигания некондиционных газов во время пуска агрегата и производственных неполадок. На рис. 3 показана структурная схема блокировок агрегата термоокислительного пиролиза метана. Из схемы видно, что при повышении концентрации кислорода в пирогазе до опасных пределов срабатывает автоблокировка, отключающая реактор и включающая [c.31]

    Технологическая схема процесса. Нагретое исходное сырье (рис. 24) смешивается в потоке в диафрагменном смесителе с 2— 2,5 частями растворителя-разбавителя и поступает в сборный (смесительный) резервуар, оборудованный пропеллерной мешалкой для выравнивания концентрации полученного раствора. [c.175]

    Установка включает следующие секции контактирования (основные аппараты холодный смеситель, трубчатая печь, отпарная колонна) фильтрования (основные аппараты горячий смеситель, дисковые и рамные фильтры. Технологическая схема установки представлена на рис. Х-2. [c.94]

    Цикл в периодической технологической схеме можно сократить за счет совместной подачи реагентов дозировочными насосами (при этом перед реактором устанавливают смеситель), а также снижения времени обезвоживания при подводе дополнительного тепла через теплообменник, который включается в циркуляционную систему реактора. Периодический процесс универсален, позволяет производить на данной установке любые мыльные и углеводородные смазки. Последние получают при работе только первой секции установки после обезвоживания твердых углеводородов (парафина, це- [c.101]

    Сырье — гудрон — из резервуара забирается поршневым насосом 1 и подается в змеевик трубчатой печи 2 для нагрева до температуры 260—270 °С. Затем сырье поступает в сборник 3 (возможен вариант схемы без сборника). Отсюда оно забирается поршневым насосом 4 и подается в смеситель 5. Туда же поршневым насосом 9 подают рециркулирующий окисленный продукт и сжатый до 0,7 — 0,8 МПа воздух от компрессора 8. [c.107]

    Щелочная очистка масляных дистиллятов проводится при температурах 140—160 °С и при давлении 0,6—1,0 МПа во избежание испарения воды. Технологическая схема щелочной очистки масел приведена на рис. ХП1-6. Масляный дистиллят насосом 1 прокачивается через трубное пространство теплообменника 2, змеевики трубчатой печи 3 и с температурой 150—170 С подается в диафрагмовый смеситель 4. Туда же закачивается 1,2—2,5 %-ный раствор гидроксида натрия. Из смесителя реакционная смесь поступает в отстойник 5. Температура в отстойнике 130—140 °С, давление 0,6—1,0 МПа, длительность отстоя 3,5—4 ч. Щелочные отходы, выходящие с низа отстойника, охлаждаются в холодильнике 6 погружного типа до 60 °С и направляются в сборники для отделения нафтеновых кислот. Очищенный масляный дистиллят с верха отстойника 5 поступает в смеситель 7 на промывку водой. Температура подаваемой в смеситель химически очищенной воды 60—65 °С, Отделение промывной воды от дистиллята осуществляется в отстойнике 8. Выходящие с низа отстойника промывные воды охлаждаются в холодильнике 9 погружного типа и направляются в сборник для отделения нафтеновых кислот. Очищенный и промытый продукт с верха отстойника 8 проходит теплообменник 2, где, отдавая свое тепло сырью, охлаждается с 90 до 70 °С, и поступает в сушильную колонну 10 для удаления мельчайших капелек воды за счет продувки его горячим сжатым воздухом. Готовое масло с низа сушильной колонны откачивается в резервуары. [c.117]

    Конвертор шахтного типа—сварной цилиндрический аппарат с конической крышкой. Конвертор имеет огнеупорную футеровку п заполнен катализатором. В схемах одноступенчатой конверсии метана непосредственно к шахтному конвертору присоединен смеситель газов. Шахтный конвертор, предназначенный для каталитической конверсии метана под давлением 2 МПа, имеет водяную рубашку, защищенную теплоизоляцией. Внутреннее пространство конвертора разделено на две части. В верхней части размещен слой никелевого катализатора, нижняя часть представляет собой увлажнитель, куда впрыскивается конденсат. Шахтный конвертор второй ступени не имеет смесителя и увлажнителя, так как тепло конвертированного газа используется в котле-утилизаторе для получения пара. В верхней части этого конвертора между местом ввода парогазовоздушной смеси и слоем катализатора оставлено пространство, в котором протекают эндотермические реакции с участием кислорода воздуха. [c.39]


    Блок-схема окончательной системы регулирования для каждой стадии смешения показана на рис. Х1-9. Сравнение диапазона колебания расходов, пропускаемых большим клапаном на стадии грубого регулирования (после смесителя А), с колебаниями расходов, пропускаемыми малым клапаном на последней стадии (после смесителя В), показывает, что их отношение меняется в пределах 45000 1. [c.145]

    На рис. 1 показаны принципиальные схемы ацетиленовых реакторов для термоокислительного пиролиза метана. Основные части реактора — смеситель, горелка п корпус. В корпусе реактора под горелкой располагается реакционная зона и зона закалки. [c.9]

    На рис. 7 приведена схема процесса получения этилен-пропиленовых каучуков в среде инертного растворителя с отводом основной части тепла через теплопередающую поверхность [50]. По этому способу процесс сополимеризации проводится в нескольких последовательных реакторах I—4, в которые через смесители [c.309]

    Технологическая схема хлорирования метана заключается в следующем (рис. 22). Исходное сырье — метан и хлор — смешивают в смесителе с рециркулирующим газом и подают в первый реактор, в котором поддерживается температура 480—500° [44]. Реактор представляет собой пустотелую колонну, футерованную изнутри кислотоупорным материалом. Продукты реакции, содержащие хлорпроизводные метана, хлористый водород и непрореагировавший метан охлаждаются в теплообменнике и поступают в абсорбер для выделения хлористого водорода и основной части хлорпроизводных метана. Абсорбер орошают охлажденной [c.116]

Рис. 8 3. Схема смесителя с планетарно-шнековой мешалкой Рис. 8 3. <a href="/info/473594">Схема смесителя</a> с <a href="/info/1046078">планетарно-шнековой</a> мешалкой
    Составим математическую модель процесса смешивания в циркуляционных смесителях, позволяющую рассчитывать 4м при любой структурной схеме потоков смешиваемого материала внутри смесителя. С этой целью сделаем следующие допущения процесс смешивания заканчивается в периоде / (см. рис. 8.1), когда преобладает механизм смешивания частиц компонентов их конвективным переносом по рабочему объему смесителя физико-механические свойства смеси ие оказывают существенного влияния на процесс смешивания (ранее отмечено, для для периода / это предположение подтверждено экспериментально) значение предельного коэффициента неоднородности смеси Ven незначительно отличается от значения коэффициента неоднородности смеси 1/ , достигаемого смесью к концу периода / процесса смешивания это позволяет принять с некоторой погрешностью i,t i i M- [c.239]

    Разрабатывают принципиальную схему конструкции оптимизируемого смесителя. [c.243]

    По схеме устанавливают характерные зоны циркуляционного контура смесителя и способ их соединения в контуре. [c.243]

Рис. 8.10. Схема действия сил Т и Р в двухвальном червячно-лопастном смесителе Рис. 8.10. <a href="/info/95149">Схема действия</a> сил Т и Р в <a href="/info/622022">двухвальном червячно</a>-лопастном смесителе
Рис. 8.12. Схема барабанного смесителя непрерывного действия Рис. 8.12. <a href="/info/152330">Схема барабанного</a> <a href="/info/64582">смесителя непрерывного</a> действия
    В промывочный чан 26, промежуточную емкость 25 и формовочную колонну 23 насосом пз резервуара 24 закачивают паровой конденсат, а из мерника 20 насосом в колонну 23 направляют формовочное масло и налаживают циркуляцию формовочной воды (конденсата) по схеме насос — формовочная колонна 23 — промывочный чан 26 — промежуточная емкость 25. Исходные рабочие растворы жидкого стекла и сернокислого алюминия из соответствующих емкостей 5 п 10 насосами закачивают в напорные бачки 6, из которых под определенным давлением через холодильники 7 и ротаметры 8 подают в смеситель-распылитель 9. Образовавшийся в смесителе гидрозоль воздухом распыляется в формовочное масло. В холодильниках 7 рабочие растворы охлаждаются рассолом, поступающим нз аммиачно-холодильной установки. [c.79]

    Технологическая схема формовочно-промывочного отделения заключается в следующем. Первый поток — раствор жидкого стекла — из емкости подают насосом в холодильник предварительного охлаждения и далее в напорный бачок. Из напорного бачка, пройдя рассольный холодильник, раствор через ротаметры поступает к боковым ниппелям смесителей инжекторного типа под давлением 3—3,2 ат. [c.84]

    Что касается очистки сжиженных углеводородов, то в литературе имеются очень скудные сведения но технологическим показателям процесса. Существуют указания [4], что сероводород может быть удален из жидкостей легче, чем из газов, благодаря тому, что при одной и той же температуре и давлении коэффициент распределения для сероводорода значительно больше для жидкостей, чем для газов. Кроме того, для жидкости можно создать лучшие условия перемешивания с растворами ТКФ, чем для газов. Поэтому предлагается другой способ двухступенчатой очистки жидких углеводородов с двумя смесителями, схема которого представлена на рис. 2. Сжиженную ППФ, содержащую сероводород, вначале обрабатывают частично отработанным раствором К3РО4 в смесителе. Затем обе жидкости разделяют, обрабатывают [c.219]

    Недостатком рассмотренной выше схемы смесителя является также наличие в нем двух параллельно работающих клапанов 4 и 12. Лишен этих недостатков усовершенствованный смеситель, схема которого представлена на рис. 6.23. При использовании этого смесителя процесс топливоподачи осуществляется следующим образом. Штатный ТНВД (на рис.6.23 не показан) подает дизельное топливо под высоким давлением к каналу 2, выполненному в корпусе 1 смесителя. Давление тогшива воздействует на левую торцевую плоскость плунжера 3 и смещает его вправо, деформируя пружину 5. При этом смесь дизельного тогшива [c.291]

Рис. 60. Схема лабораторной установки для пиролиза i — сборник с дистиллированной водой 2 — бюретки для реактивов с воронками для заполнения 3 — фильтры 4 — расходомеры жидкости 5 — подогреватель 6 — подогревательная труба из нержавеющей стали, заполненная стружкой из нержавеющей стали 7 — смеситель 8 — реактор 9 — тигельная печь ю — холодильник Либиха (максимальная температура 70 С) II — медная трубка, обмотанная нагревательной проволокой i2 — газопровод, обмотанный нагревательной лентой 13 — водоотделитель (темперагура 40 °С) 14 — сушильная башня с ВаО (температура 40 С) 15 — водосборник 16 — буферная емкость 17 — ртутный затвор 18 — баллон для проб газа 19 — восьмиходовой кран с трубкой для проб газа в термостате при 40 °С 20 — колонка для газо-жидкостной хроматографии 21 — катарометр в термостате при 40 °С 22 — впрыск жидкости 23 — сигнал катарометра на измерительный щит и регистрирующий прибор 24 — кран прецезионной регулировки 25 — осушитель 2в — открытый жидкостной манометр 27 — счетчик пузырей 2 — подогреватель для нагревания азота-разбавителя. (В подогревателе, смесителей в реакторе имеются термоэлементы платина/ Рис. 60. <a href="/info/1582644">Схема лабораторной установки</a> для пиролиза i — сборник с <a href="/info/1011794">дистиллированной</a> водой 2 — бюретки для реактивов с воронками для заполнения 3 — фильтры 4 — <a href="/info/1666755">расходомеры жидкости</a> 5 — подогреватель 6 — подогревательная труба из <a href="/info/17132">нержавеющей стали</a>, заполненная стружкой из <a href="/info/17132">нержавеющей стали</a> 7 — смеситель 8 — реактор 9 — <a href="/info/21377">тигельная печь</a> ю — <a href="/info/49070">холодильник Либиха</a> (<a href="/info/14241">максимальная температура</a> 70 С) II — <a href="/info/1273990">медная трубка</a>, обмотанная нагревательной проволокой i2 — газопровод, обмотанный нагревательной лентой 13 — водоотделитель (темперагура 40 °С) 14 — <a href="/info/537224">сушильная башня</a> с ВаО (температура 40 С) 15 — <a href="/info/1059632">водосборник</a> 16 — <a href="/info/5981">буферная емкость</a> 17 — <a href="/info/48819">ртутный затвор</a> 18 — баллон для <a href="/info/18573">проб газа</a> 19 — восьмиходовой кран с трубкой для <a href="/info/18573">проб газа</a> в термостате при 40 °С 20 — колонка для <a href="/info/12790">газо-жидкостной хроматографии</a> 21 — катарометр в термостате при 40 °С 22 — <a href="/info/1782550">впрыск жидкости</a> 23 — <a href="/info/426385">сигнал катарометра</a> на измерительный щит и <a href="/info/14106">регистрирующий прибор</a> 24 — кран прецезионной регулировки 25 — осушитель 2в — открытый <a href="/info/21709">жидкостной манометр</a> 27 — счетчик пузырей 2 — подогреватель для нагревания <a href="/info/410022">азота-разбавителя</a>. (В подогревателе, смесителей в реакторе имеются термоэлементы платина/
Рис. 7.12. Принципиальная технологическая схема установки получения окисленного битума с реакторами колонного и змеевикового типа. 1— печь 2— смеситель 3— змеевиковый реактор 4— испаритель 5— сепаратор 6— окислительная колонна 7— сепаратор смешения I— сырье II— сжатый компрессором воздух II— возсгух на охлаждение змеевикового реактора IV— битум V— черный соляр VI— газы в печь VII— водяной пар, VIII— вода Рис. 7.12. <a href="/info/1480765">Принципиальная технологическая схема</a> <a href="/info/129840">установки получения</a> <a href="/info/62718">окисленного битума</a> с <a href="/info/63153">реакторами колонного</a> и <a href="/info/1482067">змеевикового типа</a>. 1— печь 2— смеситель 3— <a href="/info/63223">змеевиковый реактор</a> 4— испаритель 5— сепаратор 6— <a href="/info/63202">окислительная колонна</a> 7— сепаратор смешения I— сырье II— <a href="/info/750444">сжатый компрессором воздух</a> II— возсгух на охлаждение <a href="/info/63223">змеевикового реактора</a> IV— битум V— черный соляр VI— газы в печь VII— водяной пар, VIII— вода
    Технологическая схема процесса следующая (рис. 32). Сырье, изопропиловый спирт и бензин, из емкостей 1, 2, 3 направляют через поточный смеситель 4 и аппарат 5 в реактор комплексообра-зованпя 6. Аппарат 5 работает как нагреватель или охладитель в зависимости от температуры поступающего в него раствора. Два установленных реактора 6 работают попеременно. [c.209]

    Установка состоит из следующих секций подготовки сырья (компрессор, подогреватель, аппараты для очистки сырья от соединений серы, пароперегреватель и инжекторный смеситель) паровой конверсии (печь паровой конверсии и паровой котел-утилизатор) конверсии оксида углерода в диоксид (реакторы средне- и низкотемпературной конверсии) очистки технологического газа от диоксида углерода (абсорбция горячим водным раствором карбоната калия, регенерация и др.) и секции метаниро-вания. Технологическая схема установки представлена на рис. VI-4. [c.62]

    Основные секции установки следующие экстракции сырья растворителями, регенерации растворителей из рас инатного раствора, регенерации растворителей из экстрактного раствора и регенерации растворителей из водных растворов. Очистка парными растворителями осуществляется в горизонтальных аппаратах — экстракторах. Экстракционное отделение состоит из семи секций, каждая из которых включает смеситель и отстойник. Технологическая схема установки представлена на рис. VII1-3, [c.77]

    Технологическая схема процесса сополимеризации бутадиена со стиролом /—емкость для бутадиена 2—емкость для стирола 3—аппарат для приготовления угле-водородной фазы 4—аппарат для приготовления водной фазы 5 —смеситель углеводородной и вояноА фаз 6-1,..., —полимеризаторы 7, Д—отгонные колонны 5—емкость для [c.253]

    Схема установки приведена на рис. 19. Метан поступает в са-турационную башню, где насыщается водой, нагретой за счет тепла отходящих, газов, после чего к нему добавляется острый пар. Смесь метана с паром подогревается в теплообменнике и поступает в смеситель. Там к ней примешивается кислород или обогащенный кислородом воздух. Нагретая газо-паро-кислородная смесь [c.105]

    Любой непрерывно действующий смеситель с входными и выходными потоками, которые часто называют сигналами, упрощенно можно изобразить в виде условной схемы (рис. 8.2). На этой схеме за регулируемый параметр принято мгновенное значение концентрации ключевого компонента с ( )и во входном потоке, а за выходной параметр — мгновенное значение концентрации ключевого компонента с (Опых в готовой смеси. [c.230]

    На рис. 8.9 приведена схема червячно-лопастного смесителя типа ЗЛ-400.По ОСТ 26-01-73—78 он называется смесителем с зетобраз-ными лопастями. Он состоит из следующих основных частей смесительной камеры 1, имеющей рубашку для обогрева или охлаждения [c.245]

Рис. 8.11. Схема прямоточного центробежного смесителя конструкции А. М. Ластовцева Рис. 8.11. <a href="/info/107078">Схема прямоточного</a> <a href="/info/535810">центробежного смесителя</a> конструкции А. М. Ластовцева
    Активация шариков. Схема циркуляции раствора сернокислого алюминия в процессе активации шариков представлена на рис. 10. Процесс протекает одновременно в пяти промывочных чанах в течение 20 ч при температуре, примерно равной температуре термообработки. Промывную воду из промежуточной емкости насосом подают через диафрагмовый смеситель 1 в количестве 19—20 в распределительный коллектор промывочного чана 2, стоящего на пятой (последней) ступени процесса. К насосу из емкости самотеком поступает активируюпщй раствор сернокислого алюминия (непод-кисленный) концентрацией 1,15—1,20 н. Вместе с промывной водой он проходит через диафрагмовый смеситель, перемешивается и разбавляется до концентрации 0,10—0,15 н. Из распределительного коллектора по боковому трубопроводу раствор поступает в паукообразно расположенные коробы. Сверху через боковой штуцер он самотеком переходит в чан 4, стоящий на четвертой (предпоследней) [c.59]

    Формование цеолитсодержащего катализатора отличается от процесса формования алюмосиликатного катализатора тем, что в смесь гелеобразующих растворов жидкого стекла и подкисленного сернокислого алюминия вводят водный раствор суспензии цеолита. Из рамных мешалок 6 суспензию насосом подают через ротаметр в трех-струйнып смеситель инжекторного типа. В отличие от гелеобразующих растворов, суспензию не охлаждают, давление ее потока регулируют датчиком, установленным после центробежного насоса. Формование протекает в колонне 7. Синерезис шариков проводится по схеме, принятой в производстве алюмосиликатного шарикового катализатора, в чанах 22, 23 и 24 продолжительность процесса 12 ч. [c.106]


Смотреть страницы где упоминается термин Смеситель схемы: [c.137]    [c.168]    [c.154]    [c.60]    [c.116]    [c.11]    [c.125]    [c.125]   
Реакционная аппаратура и машины заводов (1975) -- [ c.92 ]




ПОИСК







© 2025 chem21.info Реклама на сайте