Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы, анодное растворение механизм

    Электрохимическое полирование представляет собой анодную обработку металла для создания ровной и блестящей поверхности. Изделие, имеющее микро- и макронеровности, является анодом электролизера. Катодом служит металл, химически не растворимый в растворе электролита. В качестве растворов электролитов используют растворы фосфорной, хромовой, серной, уксусной, плавиковой кислот и др. В процессе электрополировки происходит анодное растворение металла на макро- и микровыступах, в результате чего поверхность становится гладкой и блестящей. На катоде выделяется водород. Механизм электрополировки окончательно не выяснен. Эффект электрополирования обычно связывается с действием вязкой пленки, образующейся в прианодном слое, затрудняющем растворение металла в углублениях по сравнению с растворением на выступах, а также поочередным пассивированием и активированием металла. [c.373]


    При потенциостатических измерениях изучают зависимость тока от времени при постоянном потенциале электрода, поддерживаемом при помощи потенциостата. В определенной области потенциалов ток анодного растворения металла по прошествии некоторого промежутка времени резко падает, что свидетельствует о наступлении пассивного состояния. При помощи потенциостатического метода измеряют также зависимость тока от потенциала электрода. Типичная поляризационная кривая при пассивации металла приведена на рис. 191. На этой кривой можно выделить область увеличения тока с ростом анодного потенциала (I) (активная область) область перехода от активного состояния к пассивному (II) область пассивации (III), в которой ток растворения металла мал и часто практически не зависит от потенциала, и, наконец, область анодного выделения кислорода (IV). Если раньше анодного выделения кислорода наступает вновь растворение металла, то область IV называется областью перепассивации или транс-пассивности. Механизмы растворения металла в активной области [c.380]

    Иногда при достижении определенной скорости растворения ингибирующее действие органического вещества на анодное растворение металла исчезает. Это связано с тем, что при значительных анодных токах адсорбированные частицы удаляются с поверхности вместе с атомами растворяющегося металла настолько быстро, что адсорбция ингибитора не успевает происходить. Механизм влияния поверхностно-активных органических веществ на скорость электрохимических реакций в значительной мере зависит от природы лимитирующей стадии. В условиях диффузионной кинетики поверхностно-активные вещества не влияют на электрохимическую кинетику. Исключение составляют системы, в которых снижение предельного диффузионного тока в присутствии поверхностно-активного вещества может быть обусловлено уменьшением числа участвующих в реакции электронов. В условиях возникновения полярографических максимумов 3-го рода неравномерная адсорбция некоторых поверхностно-активных веществ на поверхности ртутного капельного электрода вызывает перемешивание раствора и, следовательно, увеличение скорости электрохимической реакции (см. 38). Снижение тока ниже вызванное добавками поверхностно-активных веществ, означает, что стадия разряда-ионизации замедляется в такой степени, что становится лимитирующей стадией всего процесса. Ингибирование стадии разряда — ионизации [c.376]


    Схема возникновения и механизма действия блуждающих токов была приведена на рис. 260. Блуждающие токи обусловлены утечками тягового тока с рельсов электротранспорта, работающего на постоянном токе. Почва является при этом шунтирующим проводником и в зависимости от величины электросопротивления рельсов и грунта ток, иногда весьма значительной силы (до десятков и сотен ампер) проходит по земле. Встречая на своем пути подземное металлическое сооружение (например, трубопровод или кабель) ток входит в него (в этой зоне имеет место катодный процесс, который приводит к подщелачиванию грунта, а иногда и выделению водорода) и течет по нему, пока не встретятся благоприятные условия его возвращения на рельсы. В месте стенания тока с сооружения происходит усиленное анодное растворение металла, прямо пропорциональное величине тока. Блуждающие токи имеют радиус действия до десятков километров в сторону от токонесущих конструкций, например, рельсовых путей. [c.390]

    Представление о стадийном механизме растворения металлов может быть применено для истолкования закономерностей анодного растворения других многовалентных металлов. [c.230]

    Согласно современным представлениям о механизме коррозионно-усталостного разрушения, это явление обусловлено возникновением и развитием трещин, тесно связанных с полосами скольжения, появлением гальванических элементов между основанием концентратора напряжений и периферией с последующей депассивацией металла в точках растрескивания, что влечет за собой возникновение новых анодных участков. Одновременное действие циклических растягивающих нагрузок и анодного растворения металла у основания трещин приводит к дальнейшему распространению транскристаллитной трещины в глубь металла с уменьшением полезной площади его поперечного сечения. После достижения трещиной длины трещины Гриффитса дальнейший ее рост становится самопроизвольным под действием нормальных напряжений, имеющихся в теле, и происходит хрупкое разрущение металла. [c.121]

    Вязкая пленка продуктов анодного растворения, которой во многих работах приписывается главная роль в механизме полирования металлов, в данном случае рассматривается как возможный регулятор скорости растворения пассивирующего окисного слоя. [c.459]

    Для защиты от коррозии широко используют ингибиторы — вещества, снижающие скорости анодного растворения металла, выделения водорода или скорости обоих этих процессов. Механизм действия ингибиторов показан на рис. IX. 5. В соответствии с тем, скорости каких процессов — анодного, катодного пли обоих — замедляются, ингибиторы подразделяют на анодные, катодные и смешанного типа. Анодные ингибиторы смещают ста- [c.257]

    Полируемая деталь служит анодом в электролитической ванне. Механизм процесса сводится к образованию и растворению оксидной пленки на аноде. Выравнивание поверхности анода происходит за счет более быстрого растворения металла на микровыступах, чем в микровпадинах. Разница в скорости растворения обусловлена разной толщиной оксидной пленки на поверхности металла и вязкой пленки, образуемой у поверхности продуктами анодного растворения металла и средой. Так как обе пленки обладают плохой проводимостью, а толщина их во впадинах большая, то плотность тока на выступах оказывается максимальной, и металл на них растворяется быстрее. Это и обусловливает сглаживание неровностей и улучшение оптических свойств поверхности. [c.216]

    МЕХАНИЗМ АНОДНОГО РАСТВОРЕНИЯ МЕТАЛЛОВ В АКТИВНОМ СОСТОЯНИИ [c.197]

    Пленочной теории пассивности противоречит обнаруженное резкое торможение скорости растворения платины в соляной кислоте, обусловленное адсорбцией таких количеств кислорода, которых явно недостаточно для образования одного монослоя. Действие адсорбированного кислорода в этом случае аналогично действию малейших следов яда, отравляющего поверхность катализатора. Согласно электрохимической теории пассивности, замедление скорости анодного процесса на пассивном металле объясняется не тем, что его поверхность изолируется от раствора окисной пленкой. Наступление пассивного состояния в рамках этой теории связывается с изменением энергетического состояния поверхностных атомов металла. При обсуждении механизма анодного растворения металлов в активном состоянии было показано, что этот процесс протекает преимущественно на наименее прочно связанных атомах дислоцированных в дефектных местах кристаллической решетки. Именно такие атомы в первую очередь вступают в адсорбционное взаимодействие с кислородом воды, в определенной степени теряя свойственный им избыток энергии. Такой атом, связанный с кислородом, переходит иа более глубокий уровень энергии, что влечет за собой повышение энергии активации ионизации и, в конечном счете, торможение скорости ионизации металла. [c.203]

    Для совершенствования и создания новых энерго- и ресурсосберегающих, высокопроизводительных, малоотходных и экологически приемлемых электрохимических технологий наиболее перспективны электролиты-коллоиды. Однако механизм анодных и катодных процессов в них изучен недостаточно. В связи со сложностью процессов и многочисленностью факторов, влияющих на их скорости и механизмы, были использованы методы математического моделирования. Разработаны математические модели массопереноса компонентов в диффузионном слое электрода в электролитах-коллоидах для процессов анодного растворения и электроосаждения цветных металлов. Для описания процесса транспортировки ионов в диффузионном слое использованы уравнения Нернста-Планка, химического равновесия и электронейтральности. Величина потока электрофореза коллоидов вычислена из уравнения Смолуховского. Граничные условия рассчитывали, решая систему уравнений, включающую уравнения материального баланса и химического равновесия. На основании выявленных закономерностей в электролитах-моделях с известными концентрациями компонентов и результатов расчета состава диффузионного слоя показано, что механизм увеличения предельных скоростей анодного растворения и электроосаждения металлов в электролитах-коллоидах обусловлен преимущественно электрофоретическим переносом присутствующих в растворе или образующихся в диффузионном слое вследствие вторичных реакций коллоидных соединений металлов. Определены оптимальные условия реализации процессов. [c.63]


    Значительное снижение поверхностного натяжения, однако, должно, стимулировать коррозию, о чем свидетельствует ускорение анодного растворения металла при воздействии ряда поверхностно активных веществ [92]. По-видимому, имеет значение конкретный механизм адсорбции тех или иных компонентов среды. [c.137]

    Неоднозначность влияния адсорбционных процессов на коррозию связана с многостадийностью анодного растворения металла. Каталитический характер анодной реакции растворения железа обусловлен образованием промежуточного поверхностно-активного соединения (РеОН)ад(.. Введение в раствор поверх- ностно-активных добавок (например, ионов хлора или ингиби- торов), способных конкурировать с ионами ОН и вытеснять их с поверхности металла, приводит к подавлению каталитического механизма и замедлению коррозии. [c.143]

    Различие механизмов растворения железа и никеля, с одной стороны, и хрома, с другой, может быть связано с повыщенным сродством хрома к кислороду. Возможно, что хемосорбция ионов ОН на этом металле приводит к более полному заполнению ими поверхности с образованием более прочной связи. Имеются основания предполагать, что такие хемосорбционные слои могут не только ускорять, но и замедлять анодный процесс. Это следует прежде всего из результатов измерений скорости анодного растворения в условиях непрерывной механической зачистки поверхности. Было установлено [49], что такая зачистка приводит к значительному снижению перенапряжения анодного растворения железа, никеля и хрома в серной и соляной кислотах в активном состоянии (рис. 2), причем для никеля и железа при некоторой предельной скорости зачистки исчезает зависимость скорости растворения от содержания [c.11]

    Если в системе протекают составные процессы, то они могут быть последовательными (действующими по очереди) или же одновременными (т. е. независимыми и, возможно, аддитивными). Это существенное различие, если скорости составляющих процессов заметно различаются. Действительно, скорость последовательного процесса при этом будет определяться самым медленным, а одновременного процесса — самым быстрым составляющим процессом. Возможность 2) подразумевает, что при данных условиях (температура, напряжение, скорость деформации и т. д.), когда относительные вклады составляющих процессов сравнимы, происходит либо последовательный, либо одновременные процессы. В настоящее время нет данных, позволяющих определить тип составного процесса при индуцированном водородом КР. Один из возможных способов состоит в измерении энергий, активации растрескивания в нескольких узких температурных интервалах. При этом энергия активации будет расти с температурой в случае независимых процессов и уменьшаться — в случае последовательных [326], при условии, что область исследованных температур включает переход от условий доминирования одного процесса к условиям преобладания другого. Необходимо также, чтобы в этой температурной области механизм, определяющий скорость каждого процесса, оставался неизменным (например, перенос массы в растворе при анодном растворении или поглощение водорода металлом при водородном растрескивании. [c.134]

    Однако уже давно было замечено, что скорость электроосаждения, а также электрорастворения металлов группы железа зависит от pH раствора и присутствия в нем примесей. Р. X. Бурштейн, Б. Н. Кабанов и А. Н. Фрумкин (1947) высказали предположение о непосредственном участии ионов 0Н в кинетике этих процессов. По их мнению, ионы 0Н играют роль своеобразных катализаторов. Механизм реакций катодного осаждения и анодного растворения железа, кобальта и никеля с образованием промежуточных частиц типа РеОН, РеОН+ или Ре-Ре0Н+ рассматривался затем Хейслером, Бокрисом, Фишером и Лоренцом и многими другими авторами. Было предложено несколько схем, объясняющих такие экспериментальные данные, как характер зависимости скорости реакции от pH, небольшой наклон тгфелевской прямой в чистых растворах серной кислоты, его повыщение при переходе к растворам соляной кислоты и при введении добавок поверхностно-активных веществ и т. д. В качестве иллюстрации можно привести схему Бокриса [c.473]

    Таким образом, имевшийся ранее на металле ионггый скачок потенциала (рис. 24) заменяется сложным адсорбцион-но-иониым скачком потенциала. В результате происходит сдвиг пбше1о. электродного потенциала в положительную сторону и ионизация металла уменьшается. Количество кислорода по этому варианту пассивации меньше, чем требуется по расчету для создания мономолекулярного слоя. Характерным примером зависимости пассивности от количества кислорода, адсорбированного поверхностью металла по вышеупомянутому механизму, являются данные Б. В. Эршлера, согласно которым при покрытии только 6% поверхности илатииы адсорбированным кислородом ее потенциал в растворе НС1 изменяется и положительную сторону на 0,12 в и одновременно скорость анодного растворения уменьшается в 10 раз. [c.65]

    По механизму защиты различают металлические покрыти5( анодные и катодные. Металл анодных покрытий имеет электродный потенциал более отрицательный, чем потенциал защищаемого металла. В случае применения анодных покрытий ие обязательно, чтобы оно было сплошным. При действии растворов электролитов в возникающем коррозионном элементе осноиной металл — покрытие основной металл является катодом и поэтому при достаточно большой площади покрытия не разрушается, а защищается электрохимически за счет растворения металла покрытия. Примерами анодных покрытий являются покрытия железа цинком и кадмием. Анодные покрытия на железе, как правило, обладают сравнительно низкой коррозионной стойко- [c.318]

    Раствореиие металлов обычно включает, кроме электрохимических (ЭХ), химические стадии (X). Предложены следующие механизмы анодного растворения железа  [c.306]

    Растворение металла по химическому механизму необходимо учитывать не только при разложении амальгам щелочных и щелочноземельных металлов. Растворение железа, хрома и хромистых сталей, марганца в кислых растворах частично протекает по химическому механизму, особенно при повышенных температурах (Я. М. Колотыр-кин и сотр.). Необходимым условием химического механизма является хемосорбция окислительного компонента раствора, при которой в определенных условиях реакция растворения металла может происходить и без освобождения электронов непосредственно в одном акте с реакцией восстановления. При растворении металла по химическому механизму можно в первом приближении ожидать отсутствия зависимости между скоростью растворения и потенциалом. Кроме того, важным признаком химического механизма является несоответствие между скоростью растворения и величиной анодного тока, пропускаемого через электрод скорость растворения, найденная, например, аналитическим методом, оказывается больше,чем соответствующая пропускаемому току. На рис. 186 показаны поляризационные кривые, измеренные на стали в растворе серной кислоты, и полученная аналитически зависимость скорости растворения той же стали от потенциала. Скорость растворения стали значительно превосходит ожидаемую из величин анодного тока и не зависит от потенциала. Это указывает на химический механизм растворения хромистой стали в серной кислоте при повышенных температурах. [c.353]

    Для защиты от коррозии широко используют ингибиторы — вещества, снижающие скорости анодного растворения металла, выделения водорода или скорости обоих этих процессов. Механизм действия ингибиторов показан на рис. 95. В соответствии с тем, скорости каких процессов — анодного, катодного или обоих — замедляются, ингибиторы подразделяют на анодные, катодные и ингибиторы смешанного типа. Анодные ингибиторы смещают стационарный потенциал в анодную, а катодные — в катодную сторону. Ингибиторы смешанного типа могут смещать Е в анодную или катодную сторону или не изменять его в зависимости от степени торможения соответствующих процессов. Ингибиторы смешанного типа оказываются наиболее эффективными. В качестве ингибиторов кислотной коррозии применяют разнообразные органические вещества, молекулы которых содержат амино-, ИМИНО-, тио- и другие группы. Необходимым условием ингибирующего действия этих веществ является их адсорбция на по-нерхности металла. [c.214]

    Природа пассивности металлов до конца не выяснена. Ясно, однако, что это явление вызвано образованием хемосорбционных и фазовых оксидных или солевых пленок, возникающих при растворении металлов. Образование оксидных пленок — причина устойчивости многих металлов, например алюминия. Из рис. IX. 6 видно, что скорость коррозии можно уменьшить, если сдвинуть потенциал металла в область пассивности, т. е. при помощи анодной защиты металлов. Для этого прибегают к анодной поляризации металла от внешнего источника тока. Анодную защиту осуществляют также, напыляя более благородный металл на защищаемый, используя благородные металлы в качестве легирующих добавок или протекторов. В результате основной металл поляризуется анодно и переходит в пассивное состояние. Переход в пассивное состояние может вызвать присутствие в растворе окислителей, например кислорода и др. (рис. IX. 6). Так, пассивацию железа вызывают концентрированные HNOa и H2SO4, что позволяет использовать железную тару для перевозки серной и азотной кислот. Образование оксидных слоев сильно влияет не только на анодное растворение металлов, но приводит к ингибрированию и многих других электродных процессов. Поэтому изучение механизма пассивации, процессов образования, роста и свойств оксидных слоев на металлических электродах — важная задача современной электрохимии. [c.258]

    В табл. 5 приложения приведены кинетические характеристики и критерии определения механизма простейщего (когда v=l, отсутствуют диффузионные затруднения, специфическая адсорбция, реагируют простые катионы металла) стадийного анодного растворения и катодного осаждения металла с двумя одноэлектронными стадиями [15]. [c.61]

    В работе [81 ] стадийный механизм анодного растворения связывают с субструктурой металла. Влияние уменьшения плотности границ субзерен при повышении температуры отпуска железа на его электрохимическое поведение авторы связывают с уменьшением числа активных участков на поверхности, что, по их мнению, определяет переход от механизма Хойслера к механизму Бокриса. Однако смена механизмов характеризуется изменением наклона тафелевского участка анодной поляризационной кривой, чего в действительности не наблюдалось при нарастании пластической деформации железа [60], а также в наших опытах. По-видимому, с повышением температуры термической обработки механизм анодного растворения может изменяться при переходе от полигонизации к укрупнению субзерен вследствие качественного изменения структурных факторов. Простое же уменьшение числа искажений решетки при полигонизации не влияет на механизм растворения, хотя оба процесса идут с ум ень-шением избыточной энергии и потому скорость растворения должна в обоих случаях уменьшаться. [c.107]

    Имеющиеся экспериментальные данные позволяют сделать вывод, что механизм инициирования питтингов сводится к адсорбционному вытеснению активирующими анионами пассивирующих частиц на отдельных наиболее активных участках поверхности пассивного металла, в то время как развитие питтингов шляется типичным электрохимическим процессом, заметно осложненным процессами миграции и диффузии активирующих анионов и гидролизом первичных продуктов анодного растворения металла С131). [c.31]

    Таким образом, при двухстадийном механизме процесса анодного растворения металла и достаточно высоком анодном перенапряжении между его величиной и логарифмом плотности тока устанавлйвается линейная зависимость. Предлогарифмический коэффициент [c.115]


Смотреть страницы где упоминается термин Металлы, анодное растворение механизм: [c.226]    [c.327]    [c.213]    [c.216]    [c.256]    [c.427]    [c.85]    [c.85]    [c.126]    [c.136]    [c.47]    [c.120]   
Ингибиторы кислотной коррозии металлов (1986) -- [ c.14 ]




ПОИСК





Смотрите так же термины и статьи:

Анодное растворение

Анодное растворение металлов

Металлы растворение

Растворение механизмы

Ток анодный



© 2025 chem21.info Реклама на сайте