Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Избирательность суммарная

    Приборы для определения токсичных газов должны обладать высокой чувствительностью и избирательностью, так как существующие санитарные нормы не учитывают суммарного воздействия на человека различных вредных веществ. Большинство стационарных автоматических приборов, выпускаемых для измерения предельно допустимой концентрации токсичных веществ в воздухе производственных помещений, основано на фотоколориметрических методах измерения. [c.262]


    Комплексные соли органических кислот и аминов тормозят в основном анодный процесс (рис. 6.12) и, обладая высокой смачивающей способностью, оказывают заметное влияние прежде всего на начальных стадиях защиты в системе нефтепродукт+вода. Соединения такого типа легко гидролизуются, и в присутствии воды органическая кислота и амин действуют как отдельные составляющие. Обладая различным по знаку суммарным электронным эффектом (табл. 6.2), группы ЫН и СООН избирательно сорбируются на поверхностях металла с неоднородным распределением электронной плотности и поэтому по-разному будут взаимодействовать с черными и цветными металлами. Ингибиторы такого типа, эффективно защищая черные металлы, усиливают коррозию некоторых цветных металлов. [c.296]

    Поскольку в уравнение (37) входят только константы скорости развития цепей, оно не предусматривает изменений состава сополимера с изменением суммарной скорости сополимеризации или в зависимости от источника радикалов, применяемых для начала реакции. Экспериментальным путем обнаружено, что значения отношений реакционных способностей мономеров остаются практически постоянными в широких пределах изменений реакционной среды даже при переходе от сополимеризации в массе мономера к эмульсионной или суспензионной сополимеризации. В последнем случае, однако, иногда нужно вводить поправки на различную растворимость в воде двух мономеров, вследствие чего один из мономеров может избирательно выводиться из зоды реакции [50, 51, [c.139]

    В результате проведенных исследований установлено, что максимальной окислительной активностью, оцененной по суммарному выходу кислорода с газообразными и остаточными жидкими продуктами, обладает катализатор, содержащий оксиды Си и Сг. Минимальная окислительная активность наблюдается для гранулированного железоокисного катализатора, который в то же время обладает максимальной избирательностью по образованию жидких продуктов окисления. Для него наблюдается самый высокий относительный и абсолютный выход кислорода (табл. 2.3) с остаточной фракцией. [c.48]

    Изменение выходов бутена (/), избирательности (2) и количества кислорода в СО2 (3), СО [4), НзО (5) и суммарного (б) в течение 8-минутного цикла. [c.656]

    Избирательность (селективность) действия катализатора в отношении определенного направления превращения равна скорости образования целевого продукта, деленной на суммарную скорость превращения основного реагирующего вещества но всем направлениям [1, 17] [c.24]


    Во всех случаях суммарное содержание серы в гидрогенизатах соответствовало содержанию ее в навеске дибензтиофена в исходной смеси. Для доказательства, что носителем остаточной серы в гидрогенизатах искусственных смесей сераорганических соединений является дибензтиофен, он был выделен из раствора гидрогенизата хроматографированием на силикагеле. При этом было получено кристаллическое вещество, которое после перекристаллизации из спирта образовало игольчатые кристаллы, имевшие температуру плавления 98—98,5° С. Препарат дибензтиофена, взятый для приготовления исходной смеси, плавился при 98—99° С. Таким образом, методом избирательного каталитического гидрирования смесей сульфидов и дибензтиофена удается полностью осуществить гидрогенолиз сульфидов дибензтиофен же остается в неизменном состоянии. [c.407]

    Дифференциальная избирательность, или селективность, катализатора равна скорости образования соответствующего продукта, деленной на суммарную скорость превращения реагирующего вещества по всем направлениям. Например, если исходное вещество А испытывает превращения по различным параллельным и последовательным направлениям, причем по одному из этих направлений образуется требуемый продукт В, то дифференциальная избирательность катализатора в отношении продукта В равна [c.409]

    Такая же скорость дегидрирования была найдена для аллилово-го спирта, но для вторичных спиртов она оказалась гораздо больше. Это доказывает, что спирты адсорбируются ориентированно в результате прикрепления СН,ОН-групп на поверхности катализатора. Скорость реакции зависит только от деформации функциональной группы, но не от соединенной с нею углеродной г.епи. Началом дегидрирования является увеличение расстояния между кислородом и водородом в ОН-группе вследствие деформирующего воздействия активных центров меди. Один атом водорода отрывается, и неустойчивый радикал R H,0 стабилизируется в F HO, выделяя еще один атом Н. Суммарно процесс идет в три стадии 1) избирательная адсорбция молекул спирта, ориентирующихся полярной группой на активных центрах катализатора, 2) активация или ослабление связей О—Н и отрыв атома Н, 3) десорбция альдегида и водорода. [c.284]

    Избирательность процесса по отношению к целевому продукту определим как отношение скорости целевой реакции к суммарной скорости реакций, реализуемых в процессе  [c.213]

    В США сернокислотная очистка смазочных масел почти полностью вытеснена процессами очистки избирательными растворителями. С 1950 г. — момента окончания послевоенного периода широкого. строительства нефтеперерабатывающих заводов и установок — на долю процессов очистки избирательными растворителями приходится около 90% суммарной мощности США по производству смазочных масел [8]. Суммарная мощность установок очистки растворителями для производства смазочных масел в послевоенные годы быстро росла, а затем стабилизировалась в связи с ростом мощностей в других странах. Динамика этого роста в США и Канаде представлена на рис. 1. [c.229]

    На рис. 11 показана зависимость избирательности реакции от температуры и интенсивности облучения. В области низких температур избирательность (весовое содержание изопентена в суммарном продукте реакции) составляла около 50%. По данным анализа изопентен состоял исключительно из З-метил-1-бутена. Хотя образования этого изомера в результате цепного присоединения пропана к ацетилену следовало ожидать, полное отсутствие других изомерных пентенов в продукте реакции явилось неожиданностью. Возможно, что, кроме З-метил-1-бутена, образовались также очень малые количества других пентенов, которые не удалось обнаружить аналитически. [c.138]

    Материальные балансы (суммарный и по товарным продуктам) при работе с получением максимального выхода бутадиена приведены в табл.З. Эти данные типичны для большей части общего срока службы катализатора. На протяжении этого периода для компенсации падения активности катализатора температуру слоя в реакторах постепенно повышают. При этом материальный баланс реактора остается практически неизменным и избирательность образования бутадиена из свежего к-бутана равна около 64% мол. Избирательность, оцениваемая по выходу товарного бутадиена (в продуктовых резервуарах), равна около 62% мол. [c.288]

    Избирательный (селективный) катализ — это катализ, при котором катализатор из нескольких возможных реакций ускоряет только одну целевую. Он важен для промышленности, особенно в производстве органических продуктов, когда селективность некоторых катализаторов позволяет сильно ускорять одну полезную реакцию, проводить процесс при пониженной температуре, подавляя другие реакции. Избирательность (селективность) действия катализатора / ат можно выразить отношением скорости образования целевого продукта к суммарной скорости превращения основного исходного вещества по всем направлениям  [c.219]


    На рис. 15,17 представлены кривые адсорбционного равновесия в системе водяной пар — к-гек-сан на силикагеле при объемном соотношении компонентов в газовой фазе 1 1 и суммарной концентрации извлекаемых компонентов 0,5% (об.) [27]. Избирательность адсорбции влаги значительна, но уменьшается прн повышении температуры. Коэффициент разделения составляет при 20 С — 32 при 40 °С — 16 прн 60 °С — 7. Присутствие углеводорода при обычных температурах снижает адсорбционную емкость силикагеля по воде на 10— 20%. Повышение температуры приводит к резкому снижению влагоемкости силикагеля. В этих условиях освобождается значительное число вакантных [c.314]

    Рассмотрим влияние изменения растворимости от температуры на адсорбцию. Поскольку адсорбция — экзотермический процесс, повышение температуры должно вызывать уменьшение адсорбции. Это действительно всегда наблюдается при адсорбции газов и паров. При адсорбции из растворов, однако, не меньшую роль играет и то, как температура влияет на растворимость вещества. Если растворимость адсорбтива с повышением температуры увеличивается, адсорбция должна уменьшаться. При падении растворимости с нагреванием раствора адсорбция будет увеличиваться. Наложение этих двух факторов (экзотермичности процесса адсорбции и изменения химического потенциала раствора с изменением растворимости избирательно адсорбирующегося компонента) определяет суммарное влияние температуры на равновесие при адсорбции из растворов. [c.87]

    Мягкие парафины. Образцы вьщелены из озексуатской нефти с помощью избирательных растворителей [2]. Суммарное содержание в одном из образцов нормальных гомологов — 60.5 мае. %, а ароматических углеводородов—2.0 мае. %. По данным хроматографии, мягкие парафины также характеризуются близким к нормальному распределением гомологов разной длины [2]. [c.114]

    Избирательность процесса в плотной, разреженной фазе и суммарная определяются соотношениями [c.288]

    Пламенно-ионизационный метод газового анализа для контроля углеводородов. Задача контроля концентрации углеводородов избирательными методами анализа представляется весьма сложной, так как в воздухе одновременно может присутствовать большое число углеводородов различных классов. Это особенно актуально для предприятий по переработке углеводородных систем. По этой причине распространение получил пламенно-ионизацион-ный метод, с помощью которого измеряется суммарная концентрация углеводородных паров и газов. [c.215]

    Избирательное осаждение запасных белков функциональных белков всего Суммарный изолят [c.472]

    При сравнении показателей различных схем подготовки вакуумного газойля как сырья для пиролиза сотрудниками ВНИИ НП и ВНИИОС [157, 160, 170] показано, что предпочтительной является схема глубокого гидрирования первой ступени гидрокрекинга при 15 МПа. При этом происходит избирательное удаление полициклических углеводородов, а роль реакций крекинга незначительна. Содержание ароматических углеводородов в суммарном гидрогенизате составляет 6—8% против 55—60% в исходном вакуумном газойле. Существенно снижается и содержание би- и полициклических углеводородов (с 36 до 7%). Одновременно возрастает концентрация нафтенов и алканов с 23 до 65 и с 15 до 27% соответственно. Еще более направленное изменение структуры углеводородов при глубоком гидрировании вакуумного газойля характерно для фракции, выкипающей >340 °С, выделенной из суммарного гидрогенизата. Содержание в ней нафтеновых углеводородов и алканов, характеризующихся высоким олефиновым потенциалом, достигает 98%. Данные по пиролизу суммарного гидрогенизата и фракции, выкипающей >340 С (табл. 17), подтвердили благоприятное влияние изменения структуры сырья при его селективной предварительной подготовке на характер распределения продуктов. Приведенные в таблице данные по пиролизу суммарного гидрогенизата и фракции этого гидрогенизата, выкипающей >340 °С, относятся к следующим параметрам процесса температура 820°С, время контакта 0,56 с, разбавление сырья водяным паром 60%. Сравнительный пиролиз исходного вакуумного газойля (I) осуществлялся при температуре 800°С, времени контакта 0,4 с и разбавлении сырья водяным паром 90%. [c.57]

    Особую роль водорода как астехиометрического компонента ряда реакций (конфигурационная изомеризация, миграция двойной связи в олефинах и др.) обсуждает Я. Т. Эйдус [41]. Влияние астехиометрического компонента выражается в инициировании реакции, в изменении ее кинетики, избирательности, механизма и пр. Атомы астехиометрического компонента в отличие от атомов реагентов не входят в молекулы конечных продуктов реакции или входят без соблюдения стехиометрических отношений. Таким образом, эти вещества не входят в стехиометрию реакции, не фигурируют в ее суммарном химическом уравнении и являются как бы посторонними компонентами реакционной системы, почему и получили название астехиометрических. [c.77]

    Отличительной особенностью реакций каталитического дегидрирования углеводородов является сравнительно низкая конверсия в условиях, при которых крекинг не является заметной реакцией. Так, в осуществленном в промышленности у нас в стране двухстадийном процессе дегидрирования бутана суммарный выход бутадиена составляет около 107о при избирательности менее 70% в одностадийном процессе дегидрирования бутана, широко применяемом за рубежом, выход бутадиена — около 12% при избирательности процесса 50—54%- [c.681]

    Отклонение зависимости относительного содержания компонентов зафязнений от экспоненциального характера обусловлено тем, что в ходе сорбционного процесса сорбируются не только загрязнения, но и некоторое количество парафино-нафтеновых соединений, так как используемый адсорбент - куганакская глина не является достаточно избирательным по загрязняющим компонентам. Поэтому величина относительного содержания компонентов загрязнений в начальный момент адсорбции является завышенной из-за суммарно меньшего содержания парафино-нафтеновых компонентов. Затем, когда процесс сорбции-десорбции приходит в равновесие, что происходит через 50-60 мин ведения процесса, наблюдается истинное снижение от юсительного содержания загрязнений. [c.115]

    Благородные металлы Аи, Р1 и другие в силу высокой энергии сублимации и энергии ионизации не создают разности потенциала за счет выхода положительных ионов в раствор. В возникновении скачка потенциала на границе благородный металл — раствор в случае, если последний не содержит катионов данного металла, важную роль играет избирательная адсорбция молекул, атомов или ионов среды. Например, платиновый электрод, покрытый тонким слоем рыхлой платины для увеличения его поверхности, энергично поглощает атомарный водород. При насыщеи1 и платины водородом в поверхностном слое металла устанавливается равновесие Н2ч 2Н. Если такой водородный электрод находится в растворе, содержащем ионы водорода, то на границе раздела фаз устанавливается новое равновесие Нч Н++ а суммарный процесс выразится уравнением [c.239]

    Фтористый водород в качестве катализатора алкилирования обладает определенными преимуществами, важнейшими из которых являются его стабильность, позволяющая простой перегонкой катализаторного слоя регенерировать активный фтористый водород, и высокая избирательность при изменяющихся в широких пределах температурах, что позволяет использовать фтористый водород для получения целой гаммы продуктов приемлемого качества с применением лишь водяного охлаждения и устраняет необходимость в специальном цикле охлаждения, требуемом при серпокислотном алкилировании. Потребность в добавках катализатора ограничивается восполнением механических и весьма незначительных технологических потерь. Суммарно эти потери составляют менее 0,7 кг па 1 л алкилата против 57—228 кг серной кислоты при сернокислотном процессе. К другим преимуществам фтористоводородного процесса относится высокая растворимость изобутана легкость выделения фтористого водорода из углеводородных продуктов перегонкой уменьшение затрат па транспорт, перекачку и ликвидацию побочных продуктов уменьшение расхода мощности на перемешивание быстрое отстаивание кислоты из углеводородного слоя. [c.177]

    Ббльшая часть активных центров катализатора расположена внутри пор, в порах число центров во много сот раз больше, чем на внешней поверхности. При быстро протекающих реакциях суммарная скорость определяется диффузией реагирующих веществ в поры и продуктов реакции из пор и изменяется пропорционально диаметру нор в этом случае сопротивление диффузии в основном ядре потока ничтожно мало по сравнению с сопротивлением пор. Если диаметр пор гораздо больше, чем средний свободный пробег молекул реагирующих веществ, то определяющей стадией является диффузия в основном ядре потока и скорость процесса практически не зависит от диаметра пор. Поэтому при чрезвьгаайно быстро протекающих реакциях активность, избирательность и порядок реакции фактически лишь количественно отражают скорость диффузии следовательно, важное значение приобретает диаметр пор, объем пор и удельная поверхность таблетки катализатора. Для известных в настоящее время катализаторов эти свойства изменяются в весьма широких пределах, а именно удельная поверхность от < 1 до [c.147]

    Ббльшая часть суммарной мощности промышленных установок гидрогенизационной очистки используется для предварительной очистки прямогонных бензиновых фракций, подвергаемых затем рпформингу на платиновых катализаторах. Назначение этой очистки заключается в облагораживании низкокачественных дистиллятов для возможности их последующего риформинга без уменьшения срока службы платинового катализатора или Лез снижения его избирательности. При этом процессе происходит -насыщение алкенов и разложение сернистых, азотистых, кислородных и металлорганических примесей, содержащихся в сырье. При одинаковой жесткости риформинга (т. е. при одинаковом октановом числе получаемого продукта) присутствие сернистых соединений вызывает усиление реакций гидрокрекинга, что ведет к снижению выхода риформинг-бензина. Поэтому желательно снизить содержание серы до предельной концентрации, ниже которой падения активности почти незаметно. [c.154]

    Суммарную ядерную РНК растворяли в 0,5—1 мл 0,01 М Na-ацетатного буфера (pH 6), содержащего 0,5% ДДС-Na, и прогревали 5 мин при 100° для разрушения агрегатов и диссоциации возможных двунитевых структур РНК и остаточных РНК—ДНК-гибридов. Затем раствор вносили на термостатированную при 50° колонку тиопропил-сефарозы 6В размером 5 х 1 см, уравновешенную тем же раствором, и выдерживали при этой температуре 30 мин. Повышенная температура (но не выше 50° ) увеличивает эффективность связывания на сорбенте новосинтезированной меркурированной РНК. Затем температуру снижали до 20° и промывали колонку последовательно избытком того же буфера, водой, 50%-ным водным раствором диметилсульфоксида (ДМСО) и снова водой. Отмечено, что промывка ДМСО существенно улучшала избирательность связывания Hg-PHK. Элюцию последней вели 50 мМ раствором -меркаптоэтанола в 0,01 М Na-ацетатном буфере (pH 6). Для отбора фракций, содержащих РНК, ее в ходе синтеза одновременно с меркурированием метили тритием с помощью H-UTP. [c.437]

    Характеризуют И. спец. параметрами, количественно описывающими способность к обмену и селективность при обмене в многокомпонентном р-ре. Важнейшей количеств, характеристикой И. является обменная емкость-суммарное кол-во противоионов, приходящихся на единицу массы или объема И., в мг-экв/г(мл) или ммоль/г(мл). В зависимости от условий определения различают статич. и динамич. емкость. Коэф. распределения Р характеризует способность И. концентрировать извлекаемый компонент Л-, Р-отношение концентрации этого компонента в И. (с ) к его равновесному содержанию в р-ре (с ) Р = j . Для характеристики сродства (избирательности) И. к определенному иону или компоненту р-ра используют предельный коэф. распределения Р при с -> 0. См. также Ионный обмен. Избирательность зависит от структуры И., хим. строения ионогенных групп и от того, в какой форме извлекаемый ион находится в р-ре (напр., от степени его гидратации, размера, степени сольватации ионогенными и функц. группами). Макс. сольватация сорбируемого иона в фазе И. обеспечивает высокое сродство И. к этому иону. При сорбции крупных и сильно гидратир. ионов избирательность может определяться кол-вом и размером пор И., к-рые для синтетич. орг. И. зависят от типа и кол-ва сшивающего агента и инертного р-рителя, использованных при синтезе (см., напр.. Макропористые ионообменные смолы). [c.256]

    Эффективность адсорбционного разделения двух илп нескольких веществ и потерн очищаемого колшо-нента вследствие совместной адсорбции с примесями определяются избирательными свойствами адсорбента, количественно оцениваемыми кривыми адсорбционного равновесия. Каждому соотношению компонентов в газовой фазе соответствует определенный состав адсорбированной фазы. Кривые адсорбционного равновесия отражают мольный состав адсорбированной фазы в зависимости от мольного состава газовой фазы при постоянном суммарном давлении двух адсорбирующихся компонентов. В качестве меры избирательности адсорбции предложено [1—41 применять коэффициент разделения [c.148]

    Следовательно, суммарный эффект от изменения размера радикала на избирательную способность растворителя будет зависеть ст влияния этих слагаемых. Если снижение избирательности за счет роста дисперсионных сил будет компенсироваться эффектом от снижения теплового движения молекул, то при увеличении радикала избирательная способность растворителя будет повышаться. Наоборот, если последний эффект будет менее значительным, будет наблюдаться падение избирательности рстворителя. [c.248]

    Определенная избирательность фенола в отношении ароматических компонентов масла различной структуры подтверждается данными группового состава экстрактов соответствующих опытов очистки. Так, из табл. 3 видно, что основным компонентом этих экстрактов является третья фракция, количество которой колеблется от 66,8 до 56,2% (считая на экстракт) в зависимости от глубины очистки. Содержание второй фракции остается почти на одном уровне (8—9%), а первой фракции незначительно повышается от 6,1% в экстракте при очистке 200% фенола до 8,6% для экстракта при очистке 300% фенола. При этом суммарное содержание ароматических компонентов в экстракте ностепенпо понижается по мере увеличения кратности фенола, а метано- [c.72]


Смотреть страницы где упоминается термин Избирательность суммарная: [c.483]    [c.125]    [c.239]    [c.171]    [c.77]    [c.173]    [c.487]    [c.194]    [c.6]    [c.497]    [c.29]    [c.81]    [c.335]    [c.489]    [c.289]    [c.154]   
Основы химической технологии (1986) -- [ c.40 , c.41 ]




ПОИСК







© 2024 chem21.info Реклама на сайте