Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозия физические процессы

    Коррозия является процессом химического или электрохимического взаимодействия металлов с коррозионной средой. Для установления механизма и общих закономерностей этого взаимодействия и разработки методов борьбы с ним необходимо знание свойств металлов и коррозионных сред, а также основных закономерностей химических и электрохимических процессов. Поэтому научной базой для учения о коррозии и защите металлов являются металловедение и физическая химия, в первую очередь такие ее разделы, как термодинамика и кинетика гетерогенных химических и электрохимических процессов. [c.10]


    Углеводороды (СН). Сами углеводороды (кроме бензола и некоторых олефинов), как уже говорилось ранее, не представляют существенной опасности для человека и окружающей среды. Но они опасны прежде всего как промежуточные продукты физических процессов, приводящие к образованию стойких аэрозолей, получивших название смог . Это особый тип загрязнения атмосферы, впервые отмеченный около 50 лет назад в Лос-Анджелесе. Главный источник этих загрязнителей — отработавшие газы двигателей внутреннего сгорания. При неблагоприятном состоянии атмосферы (отсутствие ветра, повышенная влажность, фотохимическое воздействие света, запыленность и т. д.) возникают характерная голубоватая дымка и ухудшение видимости. При этом наблюдается сильное раздражение слизистой оболочки дыхательных путей, глаз. Длительное воздействие смога ведет к повышению заболеваемости среди населения, повреждению растительности, усилению коррозии металлов. Именно из-за смога во многих городах мира полицейские были вынуждены находиться на посту в противогазах. [c.331]

    Почвенная коррозия. Этот процесс определяется химическими и физическими свойствами почвы. Повышенной агрессивностью отличаются кислые почвы (в особенности торфянистые и болотистые). Наименее активны песчаные (сухие) почвы. Большое значение имеет структура почвы, ее аэрация (доступ кислорода [c.193]

    Почвенная коррозия. Этот процесс определяется химическими и физическими свойствами почвы. Повышенной агрессивностью отличаются кислые почвы (в особенности торфянистые и болотистые). Наименее активны песчаные (сухие) почвы. Большое значение имеют структура почвы, ее аэрация (доступ кислорода воздуха к металлическим конструкциям, находящимся в почве), присутствие агрессивно действующих веществ и т. д. [c.227]

    Коррозией называют процесс самопроизвольного разрушения цементных или бетонных изделий в результате действия физических или химических факторов как извне (внешние причины коррозии), так и изнутри (внутренние причины коррозии). [c.366]

    Свойства веществ. Свойства (характерные ка- чества) проявляются главным образом в изменениях веществ. Например, характерным качеством эфира является летучесть, а железа — склонность к коррозии. Свойства веществ делятся на физические и химические,, К физическим свойствам относятся плотность, твердость, цвет, агрегатное состояние, температуры кипения и замерзания и т. д. Процессы, связанные с изменением физических свойств, например, плавление льда или изменение твердости при нагревании или охлаждении веществ, являются физическими процессами. При физических изменениях молекулы веществ остаются неизменными. [c.10]


    Некоторые закономерности формирования непрерывной акустической эмиссии. Как уже отмечалось, при протекании практически любого физического процесса возникает АЭ. Поэтому необходимо исследовать основные закономерности формирования акустического излучения в виде непрерывного случайного процесса, который имеет место при пластическом деформировании материала, в том числе в вершине растущей трещины, при коррозии металла и других процессах. Хотя единичный импульс АЭ, порождаемый элементарным физическим актом, обычно не обнаруживается, может быть зарегистрирован случайный поток элементарных импульсов АЭ. Флуктуации средних величин параметров такого потока уже могут быть обнаружены как непрерывная АЭ. [c.182]

    Если протекание физического процесса обусловлено потоком некоторых элементарных событий, то среднее значение интенсивности потока определяет скорость изменения некоторого микроскопического параметра. Например, при пластической деформации таким параметром являются размеры образца, а элементарным событием может быть, например, отрыв дислокации от точек закрепления. Однако количество событий в единицу времени не является строго постоянным, что приводит к флуктуациям интенсивности потока событий. Например, при некоторых видах пластической деформации установлено, что последняя происходит не непрерывно, а микроскопически малыми приращениями. В таком случае естественно предположить, что среднее значение интенсивности потока событий определяет скорость соответствующего макроскопического явления - пластической деформации, диффузионной ползучести, коррозии, а величина флуктуаций - среднеквадратическое значение шумовой ком -поненты процесса. [c.182]

    Осадки в топливах образуются в результате коллоидно-химических и физических процессов взаимодействия органических продуктов окислительного уплотнения сернистых, азотистых и кислородных соединений и неорганической части, к которой относятся вода, почвенная и атмосферная пыль, продукты коррозии и износа металлов. [c.262]

    Неоднозначно влияние температуры на скорость коррозионных процессов, каждый из которых представляет собой совокупность различных химических, физико-химических и чисто физических процессов. Скорости отдельных ступеней изменяются с температурой в неодинаковой степени. Когда интенсивность коррозии определяется скоростями электродных или электрохимических реакций либо скоростью диффузии, общая коррозия ускоряется с ростом температуры по логарифмическому закону (рис. 1.8).  [c.41]

    Демон, о котором мы сейчас рассказали, потребуется нам для рассказа о возможности применения марковских цепей при математическом описании одного весьма сложного физического процесса, называемого диффузией. Изучение процесса диффузии имеет большое научное и практическое значение. Дыхание и питание живых организмов, обменные процессы в растениях, сохранение чистоты окружающей среды — все это основано на явлении диффузии. Получение многих веществ в химии, новых сплавов в металлургии, коррозия и средства защиты от нее, упрочнение поверхностей деталей в машиностроении, крашение и дубление кожи, изготовление многих продуктов питания — вот далеко не полный перечень технических приложений явления диффузии. Для изучения явления диффузии сделано многое, и тем не менее здесь очень нужна математическая модель, дающая возможность количественной оценки характеристик процесса. [c.145]

    Когда в конце XIX века поняли, что свинцовые белила являются продуктом коррозии свинца, происходящей в результате совместного протекания процессов окисления, гидратации и карбонизации, стали предлагать много новых методов их получения. Вскоре было установлено, что строение продукта и его химические и физические свойства (морфология) зависят от способа его получения. Путем тщательного регулирования химических и физических процессов удалось получить ряд сортов пигмента в соответствии с его назначением. [c.173]

    Электрохимическая коррозия, физические и фи зико-химичеокие процессы (трение, адсорбция, электрические явления и пр.) [c.16]

    Органические вещества, применяемые для защиты от коррозии, могут образовывать пленки либо в результате физического процесса высыхания растворителя, либо вследствие химических процессов (полимеризация, окисление). Например, пленки, образуемые авто- и аэролаками, возникают при высыхании, а пленки краски на основе олифы, искусственных и естественных смол — в результате химического процесса. [c.182]

    Опыты с образцами, погруженными в растворы на глубину в 1,5 сдг в атмосфере воздуха или кислорода, показали, что возникшие при действии воздуха пленки на обработанной углеродистой стали, даже при длительном действии воздуха, проницаемы в громадном количестве точек, для многих из самых обычных анионов, и эти пленки не имеют определенного влияния на распределение электродов. Хотя на образцах, тонко отшлифованных наждаком, количество начальных центров уменьшается в течение первых немногих часов, но позднейшее распределение не изменяется. Таким образом точки, где металл сначала переходит в раствор многих электролитов, оцределяются главным образом физическим процессом, применяемым при обработке поверхности. Высокая степень чистоты металла может уменьшить количество точек, но ни разу не было установлено, что оно снижается до нуля и не влияет заметно спустя один или два дня на скорость коррозии. Таким образом при данном подводе кислорода и данном образце количество и распределение атомов, достаточно реакционноспособных, чтобы начать процесс коррозии, определяются физической природой и чистотой поверхности, а также природой и концентрацией ионов, имеющихся в растворе. [c.287]


    Повышение сопротивления стали 45 общей коррозии и СР после воздействия МИП с плотностью тока 120 А/см объясняется следующими физическими процессами. Малая длительность модифицированного сильноточного ускорителя определяет характер физических процессов, происходящих при взаимодействии МИП со сталью. Диапазон этих процессов включает в себя плавление, испарение, сублимацию материала изделия, образование поверхностной плазмы, ее газодинамический разлет и, как следствие, передачу мишени импульса отдачи, возбуждение в ней интенсивных зон сжатия — разряжение ударных и акустических. Термическая [c.335]

    Коррозионный процесс представляет замкнутую цепь физико-химических и химических реакций и чисто физических процессов, причем кине- / 7 тика каждого из них может иметь различную зависимость от температуры (различную энергию активации). Рассмотрим характерные слу- 50 чаи влияния температуры на ско-рость коррозии. [c.281]

    Синтетические алюмосиликатные катализаторы более устойчивы при переработке сернистого сырья. Как правило, процессы формирования структуры этих катализаторов проводят при температуре прокаливания 700—800° С. Вследствие этого при регенерации катализатора при температурах, не превышающих 650° С, заметной дегидратации поверхности не происходит. Однако при переработке сернистого сырья происходит так называемое вторичное отравление катализатора продуктами коррозии аппаратуры. В процессе каталитического крекинга при переработке сернистого сырья или сырья, содержащего минеральные соли, в связи с большой подачей пара происходит интенсивная коррозия стенок аппаратов (реакторов и регенераторов). Продукты коррозии в виде сернистого железа, окислов железа и других соединений в мелкодисперсном состоянии захватываются потоком паров или газов и переносятся на катализатор. Они прочно удерживаются на внешней поверхности гранул катализатора, проникают в его поры и препятствуют доступу паров и газов к внутренней новерхности катализатора, т. е. снижают его дегидрирующую активность. Происходит необратимая потеря активности катализатора, так как простыми физическими методами эти отложения не удается удалить. [c.19]

    Одной из основных задач, стоящих перед коррозионистами, является развитие научных исследований процессов коррозии и разработка на их основе более эффективных методов противокоррозионной защиты металлов. Для этого необходимо использование последних достижений в области экспериментальной физики, физической химии и металлографии, в частности более точных и удобных ускоренных методов определения коррозионной стойкости металлов, сплавов и их заменителей. [c.426]

    Ингибиторная защита от АСПО, как правило, совмещается с процессом борьбы с устойчивыми водонефтяными эмульсиями. Поэтому в скважину подают растворы, которые одновременно являются и хорошими деэмульгаторами. Выбор типа реагента зависит от свойств пластовой продукции, геолого-физических и термодинамических условий в скважине и коммуникациях. Например, в Татарии на определенной стадии разработки успешно применяли реагент 4411, подача которого на прием погружных электроцентробежных насосов наряду с резким замедлением процесса эмульгирования предотвращала отложение парафина в обрабатываемых скважинах. При этом одновременно увеличивался дебит скважины и повышался к. п. д. погружного насоса. Применяли также реагент 4422. Для более эффективного использования химических веществ в скважину следует подавать либо многоцелевые реагенты, либо их смеси, которые на данной стадии разработки обеспечивают комплексное решение задач борьбы с эмульгированием нефти, защиты оборудования и труб от органических и неорганических отложений и коррозии. [c.29]

    К этому аргументу можно и не прибегать, так как логарифмический член можно разложить в ряд и оперировать далее только первым членом ряда. Он отвечает линейной зависимости скорости окисления или адсорбции газа от времени. Линейная зависимость скорости адсорбции газа указывает, что количество кислорода, присутствующее на чистой металлической поверхности в виде физически адсорбированного газа, можно реально контролировать, в отличие от процесса перехода атомов кислорода в хемосорбированное состояние. Это под-. тверждается наблюдаемым увеличением массовых потерь при фреттинг-коррозии с понижением температуры, что соответствует увеличению скорости и степени физической адсорбции при понижении температуры. Скорость же хемосорбции обычно уменьшается с понижением температуры. [c.413]

    Аналогичные по физической природе процессы происходят ири сульфидной коррозии. [c.127]

    Как известно, защита от коррозии стального трубопровода возможна также посредством увеличения расхода электроэнергии. В. связи с этим в отечественной и зарубежной литературе не раз высказывалось мнение, что ремонт изоляционного покрытия следует проводить тогда, когда стоимость электроэнергии на защиту будет равна стоимости ремонта изоляции. Несмотря на экономическую обоснованность такой постановки вопроса, конкретная разработка методики сопоставления разных видов затрат может быть осуществлена при условии рассмотрения физических явлений, сопутствующих процессу старения изоляции на протяжении всего периода эксплуатации. [c.217]

    Оба эти металла применяются в атомных реакторах. Цирконий отличается высоким сопротивлением коррозии и действию нейтронов и не подвергается изменениям во время облучения. Поэтому цирконий применяется для защиты топлива в атомных реакторах и накладывается в виде рубашки на пруты металлического урана, которые вводятся внутрь реактора. Совершенно противоположные свойства у гафния, который хороига абсорбирует нейтроны и поэтому является хорошим замедлителем. Так как оба металла, как правило, в природе встречаются вместе, то их приходится разделять. При этом возникают затруднения, связанные с большим сходством этих металлов по свойствам. Разделение их обычными химическими методами практически невозможно. Промышленное решение этого вопроса основывается на физических процессах, главным образом на экстракции органическими жидкостями из водных солянокислых или азотнокислых растворов [468, 471, 485]. [c.445]

    Под воздействием внешних факторов в топливах и маслах протекают физические и химические процессы. Основными физическими процессами являются испарение, расслоение, загрязнение механическими примесями и водой, выпадение высокоплавких компонентов при охлаждении, а также случайное смешение в резервуарах и при последовательной перекачке по трубопроводам нефтепродуктов различного сорта, например реактивного топлива и бензина. Большая часть этих процессов приводит к необратимому изменению качества нефтепродуктов. Основные химические процессы следующие окисление, разложение, полимеризация и конденсация, коррозия, взаимодействие между отдельными компонентами, которое, однако, для нефтепродуктов не характерно. Обобщенная схема влияния разл<1чных факторов на изменение качества нефтепродуктов представлена на рис. 1. [c.8]

    При выборе материалов, используемых для электромембранных пакетов, насосов, трубопроводов, резервуаров и другого связанного с электромембранными процессами оборудования, обычно руководствуются следующими требованиями устойчивость к коррозии, физическая прочность, устойчивость к электрохимическому воздействию обрабатываемых растворов. Коррозионные характеристики многих материалов, которые можно использовать в электромембран— ных процессах, опубликованы в журнале hemi al Engineering. [c.54]

    Экранирующие ингибиторы коррозии наименее полярны из всех рассматриваемых соединений. Вследствие этого взаимодействие их с металлом связано с физическим процессом адсорбции и определяется в основном ван-дер-ваальоовским взаимодействием. Эти ингибиторы образуют на поверхности металла пленки, которые легко удаляются растворителем и не выдерживают температур выше 80°С из-за тепловой десорбции. Однако преимуществом экранирующих ингибиторов перед ингибиторами хемосорбционного типа является их способность вытеснять воду и агрессивные электролиты. [c.19]

    Много споров было относительно того, является ли кавитационная эрозия чисто механической проблемой пли химической (п, следовательно, может рассматриваться, как один нз видов коррозии), или же, наконец, это есть результат одновременного действия обоих факторов. По этому вопросу имеется обширная литература. В 1912 г. Рамзей [27] предположил, что кавитационная эрозия является формой электролитической коррозии участков металлической поверхности, имеющих закалочное напряжение, на которых происходит разрушение образующихся кавитационных пузырьков. По мнению Фиттенгера [28], доминирующим в этом случае является механическое разрущение, в то время как электрохимические эффекты играют незначительную роль. В теории, предложенной Новотным [11] постулируется, что разрушение под действием кавитации является по своей природе чисто физическим процессом. В общепринятой теории, развитой в более поздний период, принимается, что в первоначальной своей стадии кавитация является чисто физическим процессом. Однако в результате этого процесса поверхность оказывается в значительной мере разрушенной и менее прочной. Поэтому она чрезвычайно легко подвергается коррозии, особенно на тех участках, где разрушение кавитационного пузырька приводит к возникновению питтингообразного углубления. После этого наблюдается быстрое развитие коррозионного процесса питтингового характера. Участки металла, подвергающиеся коррозии, делаются еще менее прочными и становятся все более восприимчивыми к кавитационному разрушению. В конце концов ситуация становится катастрофической, так как кавитация и коррозия взаимно ускоряют друг друга, что приводит к развитию питтинговой коррозии по всей толщине футеровки. [c.141]

    Многочисленные лабораторные, стендовые и натурные испытания подтверждают, что трение и другие физические процессы в сочетании с химической и электрохимической коррозией приводят к наибольшему износу машин и механизмов, причем электрохимические факторы часто имеют превалирующее значение. На специальном стенде, обеспечивающем возвратно-поступательное движение ползуна в контакте с калиброванным цилиндром, были проведены исследования механического и коррозионно-механического износа стали [35] . Показано, что факторами электрохимической коррозии могут определяться общие закономерности и интенсивность износа трущейся пары. Изучая коррозионный износ в смазочных маслах на специальном трибометре (медный цилиндрический вращающийся образец в контакте со стальным диском), Б. Дмитров пришел к выводу, что трибомеханические нагрузки усиливают процесс коррозии в результате активации металла и разрушения защитного слоя [99]. При правильно выбранных композициях присадок к маслам развитие трибохимических реакций, наоборот, способствует уменьшению износа трущейся пары в результате интенсивного образования хемосорбционных защитных пленок. [c.111]

    Исследованию физических процессов в литом металле сварного шва и установлению их связи с коррозионной стойкостью сварного соединения в отечественной и зарубежной литературе посвящено много работ. Однако вопрос о процессах, протекающих в металле околошовной зоны, рассматривался недостаточно. Между тем, при правильном выборе присадочных материалов, обеспечивающих гарантированную коррозионную стойкость наплавленного металла, ответственной за работоспособность сварного соединения в агрессивных средах, особенно в сильноокислительных, зачастую оказывается именно околошовная зона, охватывающая участок металла, прилегающий ко шву. В настоящей главе основное внимание уделено изучению явлений в металле околошовной зоны некоторых типичных кислотостойких сталей. Этот участок в результате сложного термомеханического воздействия в эксплуатационных условиях часто бывает склонен к ножевой коррозии, коррозионному, а в некоторых условиях, так называемому локальному (тепловому) растрескиванию. Наибольший интерес при этом вызывают участки границ зерен, которые принято считать ответственными за межкристал-литный характер разрушения металла, в том числе в окислительных средах. [c.80]

    Директор no научным исследованиям E. A. G. Liddiard Направление научных исследований физическая химия коррозия металлургические процессы физика кристаллография электролиз керамика и эмалирование исследования на полузаводских установках консультации специалистов. [c.247]

    Для химии поверхности и материаловедения важными примерами фракталов являются частицы некоторых порошков, поверхности пористых носителей, дендриты. Кристаллизация, коагуляция, коррозия, травление и химическое модифицирование поверхности часто протекают с образованием фрактальных структур. Фрактальность поверхности также оставляет заметный отпечаток на физических процессах, протекающих на носителях. Так, фракталы по сравнению с планарными носителями иначе адсорбируют и смачиваются, иначе растворяются и проводят электричество, по фракталам иначе происходит диффузия вещества. [c.33]

    В большинстве практических случаев протекание электрохимической коррозии обычно характеризуется локализацией анодного и катодного процессов на различных (более или менее постоянных) участках корродирующей поверхности металла, что приводит к неравномерному или местному характеру (см. с. 15) коррозионного разрушения. Эти отличающиеся по своим физическим и химическим свойствам участки корродирующей поверхности металла, на которых происходят анодный или катодный процессы, являются в зависимости от их размеров короткозамкну- [c.186]

    Неоднородность металлической фазы, жидкой коррозионной средй и физических условий (см. с. 188), а также конструкционные особенности металлических сооружений (их полиметаллич-ность, наличие узких зазоров и др.) делают поверхность металл-электролит электрохимически гетерогенной, что часто оказывает влияние на скорость электрохимической коррЬзии металлов и ее распределение, изменяя характер коррозионного разрушения. Даже сплошная коррозия металлов бывает по этим причинам неравномерной или избирательной. Кроме того, встречается местная коррозия различных видов, опасность которой обычно тем больше, чем больше локализовано коррозионное разрушение. Местная коррозия не определяется общей скоростью коррозионного процесса. [c.414]

    На рис. 172 показана припципиальпая технологическая схема процесса абсорбционной очистки природпьтх газов от HoS и СО. с помощью аминов. В этом процессе HjS извлекается из газа за счет химической реакции, которая становится обратимой при нагревании, а Oj удаляется в основном за счет физической абсорбции раствором. Схема процесса подобна схеме гликолевой осушки газа, и даже многие проблемы, возникающие при сероочистке (папример, вспенивание, коррозия), аналогичны проблемам гликолевой осушки. Однако эксплуатировать установки сероочистки гораздо труднее, чем установки гликолевой осушки. [c.268]

    Последнее уравнение есть уравнение прямой зависимости потенциала от плотности тока и изображается на рис. 3.5 штрихпунктирной линией. Эти линии, характеризующие кинетику электрохимической коррозии металлов, получили название поляризационных кривых, соответственно анодной (1Д,) и катодной (и ). Степень наклона этих кривых характеризует большую (крутая прямая или кривая) или малую (пологая прямая или кривая) затрудненность (скорость) протекания электродного процесса. Количественно это выражается истинной й С/к/с// = а (dUJdI = р) или средней (на данном интервале А/) поляризуемостью процесса. Таким образом, чем меньше угол наклона, тем больше скорость электродной реакции, так как снижается сопротивление электрода протеканию на нем реакции. Отсюда и физический [c.38]


Смотреть страницы где упоминается термин Коррозия физические процессы: [c.179]    [c.85]    [c.51]    [c.50]    [c.150]    [c.143]    [c.182]    [c.24]    [c.190]    [c.175]   
Рабоче-консервационные смазочные материалы (1979) -- [ c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Процессы коррозии



© 2025 chem21.info Реклама на сайте