Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уксусная основаниями

    Наоборот, в жидком аммиаке — более сильном основании, чем вода,— даже кислоты, например уксусная, оказываются практически нацело диссоциированными  [c.71]

    Константы ионизации кислот и оснований. Применим закон действующих масс к ионизации кислоты в водном растворе. Например, для ионизации уксусной кислоты [c.182]


    После введения сенсибилизатора при температуре парафина около 140° С в основание башни через перфорированную крестовину из керамики или алюминия подавался воздух со скоростью от 40 до 60 м 1т парафина в час. После инициирования окисления температура понижалась до 100— 115° С посредством охлаждения башни циркулирующей снаружи водой. Чистые твердые парафины с прямой цепью окислялись с удовлетворительной скоростью при l0O° С в случае сильно разветвленных или содержащих примеси парафинов окисление проводилось при 115° С. Время окисления менялось от 20 до 30 часов за этот период в кислоты превращалась одна треть твердого парафина. Скорость окисления определялась путем измерения кислотного числа и числа омыления окисление считалось законченным, когда 1 ислотное число достигало 70, а число омыления 120— 150. Поток газа, выходящи через верх башни, проходил через холодильник и промывался водой, подаваемой по принципу противотока, в результате получалась двухслойная смесь маслянистый слой рециркулировался, а водный конденсат, содержащий около 10% муравьиной кислоты, 10% уксусной кислоты, 10% кислот Сд—С5, 2% лактонов и остальное — воду, отбирался как товарный продукт. [c.280]

    Расчет производили на основании данных Рамзая и Юнга [12] о зависимости давления паров уксусной кислоты от объема. Приведенные в табл. 1 данные уже исправлены на частичную ассоциацию паров уксусной кислоты. [c.364]

    При этом основания равной силы, но с более высоким молекулярным весом могут не попасть в экстракт, так как растворимость их в нефтяной фазе гораздо больше, чем в водной. Общее распространение получил метод, по которому азотистые соединения делятся на основные и неосновные в зависимости от того, титруются ли они хлорной кислотой в растворе бензола и ледяной уксусной кислотой в соотношении 50 50 [135]. [c.44]

    Распад кислоты на протон и сопряженное основание, как и всякая другая реакция, стремится к равновесию. Для распада уксусной кислоты, например [c.474]

    Зная Ка, можно найти термодинамическую константу диссоциации уксусной кислоты в водном растворе /Сд, сн-соон- Эту константу можно определить на основании опытных данных. [c.475]

    Буферные растворы обычно состоят из слабой кислоты и сО пряженного с ней основания, например из уксусной кислоты и [c.491]

    СОЛИ уксусной КИСЛОТЫ И сильного основания. Подобные соли хорошо диссоциируют, и следовательно, в растворе имеется сопряженная пара [c.492]


    При недостаточно резких перегибах кривых титрования смесей близких по силе кислот и оснований можно заменить воду соответственно подобранным более протогенным растворителем, например уксусной кислотой. При этом сила кислот уменьшается, но неодинаково, так что разница в силе кислот возрастает и при их совместном титровании на кривой изменения pH наблюдаются более резкие перегибы. Поэтому окраска [c.508]

    Нейтрализация слабой кислоты (уксусной) с и л ь ным основанием (гидроксидом натрия)  [c.248]

    Нейтрализация слабой кислоты (уксусной) слабым основанием (гидроксидом аммония)  [c.249]

    При строго эквивалентных количествах основания и кислоты 1 первая система имеет слабощелочную, вторая — слабокислую, / а третья — нейтральную реакции. В последнем случае нейтрально ность системы не означает, что эта реакция протекает необратимо, а является следствием равенства констант диссоциации гидроксида аммония и уксусной кислоты. [c.127]

    В одном из патентов указывается, что при окислении бутана в растворе уксусной кислоты в присутствии солей кобальта применение замедлителей, например соли сильного основания и слабой кислоты (ацетат натрия и др.), увеличивает выход альдегидов и кетонов [223]. [c.97]

    В табл. 5-3 указаны константы ионизации ряда кислот в водных растворах там же приведены оценки для сильных кислот, маскируемые растворителем в водном растворе. Диссоциация протонированного растворителя Н3О на гидратированные протоны и HjO представляет собой просто миграцию протонов от одних молекул воды к другим и должна характеризоваться константой равновесия = 1,00. Если в качестве растворителя используется аммиак, все кислоты, сопряженные основания которых слабее, чем NHj, вследствие выравнивающего действия растворителя окажутся полностью ионизованными сильными кислотами. Таким образом, как фтористоводородная, так и уксусная кислоты в жидком аммиаке являются сильными кислотами. [c.217]

    Раствор хлорида натрия нейтрален и имеет pH = 7,0. Это понятно, поскольку хлорид натрия-соль сильного основания (гидроксида натрия) и сильной (хлористоводородной) кислоты, а когда такие вещества взяты в равных количествах, они должны полностью нейтрализовать друг друга. В отличие от этого ацетат натрия представляет собой соль сильного основания и слабой кислоты. Интуитивно можно ожидать, что раствор ацетата натрия окажется несколько основным, и это действительно так. Часть ацетатных ионов, образованных этой солью, соединяется с водой, образуя недиссоциированную уксусную кислоту и гидроксидные ионы [c.242]

Рис. 21-11. Органические кислоты и основания и их производные. а -уксусная кислота, показанная с ионизованной карбоксигруппой б-ме-тилацетат с характерным для сложных Рис. 21-11. <a href="/info/7731">Органические кислоты</a> и основания и их производные. а -<a href="/info/1357">уксусная кислота</a>, показанная с ионизованной карбоксигруппой б-ме-тилацетат с характерным для сложных
Рис. 1. Кривая титрования типичной слабой кислоты сильным основанием на примере титрования уксусной кислоты гидроксидом натрия. График построен по данным табл. 1. Сравните этот график с приведенным на рис. 5-5. В данном случае pH повышается после добавления первых же порций основания, потому что даже после частичной нейтрализации ацетатный ион продолжает подавлять диссоциацию оставшейся уксусной кислоты. Нейтрализация некоторой части уксусной кислоты гидроксидом Рис. 1. <a href="/info/426742">Кривая титрования типичной</a> <a href="/info/609742">слабой кислоты сильным основанием</a> на примере <a href="/info/136266">титрования уксусной кислоты</a> <a href="/info/7292">гидроксидом натрия</a>. <a href="/info/376716">График построен</a> по данным табл. 1. Сравните этот график с приведенным на рис. 5-5. В данном случае pH повышается после добавления первых же порций основания, потому что даже после частичной нейтрализации ацетатный ион продолжает подавлять диссоциацию оставшейся <a href="/info/1357">уксусной кислоты</a>. Нейтрализация <a href="/info/1469432">некоторой части</a> <a href="/info/1357">уксусной кислоты</a> гидроксидом
    Но если растворить СНзСООН в абсолютной азотной кислоте, то... Обращаю внимание на известную стилистическую несимметричность последней фразы. Одного из партнеров я обозначил словами, другого — химической формулой. А что остается делать, если вещество СНзСООН, образующее с азотной кислотой нитрат ацилония HNOs-f СНзСООН = СНзСООН2 NOr ==СНзСООН2-NOr, на этот раз выступает в роли основания Называть его уксусным основанием  [c.9]

    Все ЭТИ растворители содержат сольватированные протоны обычно в виде катионов растворителя, и именно этим в значительной степени определяются особенности химических процессов в их растворах. Брёнстедовские кислоты обычно характеризуются своей кислотной силой в воде, т. е. константой кислотности в этом растворителе. Так, уксусная и фтористоводородная кислоты при комнатной температуре в воде являются сравнительно слабыми кислотами с К 10 . Но если уксусную кислоту растворить в жидком фтористом водороде, то она в этой среде становится основанием уксусное основание), так как сродство фтористого водорода к протону больше, чем уксусной кислоты. То же самое справедливо и для азотной кислоты  [c.53]


    Другой способ, разработанный Кнапзаком, основан па окисленпп ацетальдегида пеносредственно в уксуснокислый ангидрид с примерно 70— 75%-ным выходом. Одновременно образуется уксусная кислота. [c.158]

    Уксусная кислота является дифференцирующим, а аммиак, так же как и вода, нивелирующим растворителем ио отношению к кислотам. Их действие на диссоциацию оснований будет обратным. В ап-ротных растворителях, не сиособны отдавать или воспринимать протон, например в бензоле, кислоты и основания будут находиться в недиссоциированном состоянии. Если, одиако, оии присутствуют совместно, то между ними возможно кислотно-основное взаимодействие. [c.71]

    Аустенитно-ферритные стали обладают повышенным сопротивлением всем видам коррозии. Сопротивляемость коррозии в морской воде и в условиях воздействия сероводорода послужила основанием для применения этих сталей при изготовлении конструкций морских платформ для добычи нефти и газа, магистральных и технологических тр убопроводов. Они имею повышенную стойкость против межкри-сталгшгной корро.зии хорошо работают в агрессивных средах фосфорной, муравьиной, молочной, уксусной и других кислотах, а также в условиях синтеза мочевины. [c.258]

    Стеси и Манделькорну [72] удалось масс-спектрометрически идентифицировать и количественно проследить за образованием метилэтилкетона. Те же авторы [78] масс-спектрометрически идентифицировали при высоких температурах С2Н4. Им не удалось идентифицировать кетен при добавлении паров Н2О к реакционной смеси (предполагалось, что в этом случае кетен, реагируя с водой, образует уксусную кислоту). Однако нет оснований считать, что в этих условиях газофазная реакция СН2СО Н2О —СНдСООН будет достаточно быстрой и будет успешно конкурировать с другими реакциями кетена Со свободными радикалами. [c.324]

    Аргументы в пользу такой схемы достаточно убедительны, но сложны и основаны на ряде дополнительных данных, кинетических, термодинамических и структурно-химических. Сильное влияние активности на ионы и константы Кцон слабых электролитов в средах с низкими диэлектрическими постоянными было рассмотрено количественно оказалось, что активными частицами в растворах являются не ионы, а скорее ионные пары. Это же можно сказать и о некоторых других реакциях, проведенных в ледяной уксусной кислоте, которые, вероятно, без достаточных оснований интерпретировались как ионные. [c.479]

    Константа а рассматривается как мора чувствительности реакции (катализа) к кислотности (или основности) катализатора. С точки зрения изменения свободной энергии мон но сказать, что а есть мера той доли изменения свободной энергии ионизации, которое происходит при образовании активированного комплекса. Соотношение Бренстеда нельзя использовать в виде уравнения (XVI.3.1). Б величины Ацл и К а должны быть внесены поправки, которые возникают из-за изменений симметрии и не влияют на внутренние химические и.шенения, происходящие в системе. Поскольку К я к выражены в моль/л, можно ожидать, что двухосповпые кислоты, н которых две карбоксильные группы удалены друг от друга на значительное расстояние, будут в 2 раза более эффективными (на 1 моль), чем одноосновные кислоты, такие, как уксусная кислота. Наоборот, сравнив каталитическую активность оснований, можно прийти к выводу, что формиат-ион H O в 2 раза эффективнее в реакцип присоединения протона, чем этокси-ион С2Н5О, так как первый может присоединять Н к любому из двух ато- [c.485]

    Методы химической очистки, основанные на циркуляции раствора щелочи, находят применение в производстве нитрилакрило-вой кислоты для очисгки абсорберов и другой аппаратуры от полимерных осадков. Для очистки аппаратов от продуктов полимерит зации применяют также различные органические растворители избирательного действия. В качестве растворителя полимеров бутадиена применяют смесь уксусной кислоты с этиловым спиртом, имеются также растворители для очистки от полимеров в производстве стирола. [c.298]

    Хотя н приведенном выше уравнении реакция десульфирования представлена как простой гидроли,з, Беддлей с сотрудниками [6] на основании изучения кинетики этой реакции пришел к выводу, что се нельзя так рассматривать, поскольку анион (скорее, чем сульфокислота) является реагирующей частицей. В результате изучения реакции десульфирования, проведенной в 90%-ной уксусной кислоте в присутствии минеральной кислоты в качестве катализаторов (НВг, Н2304), они пришли к выводу, что скорость реакции не зависит от концентрации сульфокислоты, от природы неорганического аниона, подчиняется уравнению первого порядка и пропорциональна активности иона водорода раствора. Они показали обратимую зависимость между сульфированием и десульфированием [c.522]

    Стойкость к набуханию в жидкостях зависит от типа полисилоксана и от содержания наполнителя. Обычные силоксановые вулканизаты, как правило, сильно набухают в неполярных жидкостях и слабо в полярных, а бензомаслостойкие (фтор- и нитрилсилоксановые)—наоборот [3, с. 154—156 33 72, с. 176]. Меньше набухают твердые (более наполненные) вулканизаты. Набухание увеличивается с повышением температуры и сопровождается ухудшением механических показателей, не всегда обратимым, так как некоторые жидкости разрушают сетку вулканизата. Примерами жидкостей, в которых обычные вулканизаты набухают на 100—275%, а бензомаслостойкие на 5—30%, являются ССЦ, хлороформ, толуол, ксилол, циклогексан, фреон-114, керосин, силиконовые масла. В ацетоне, наоборот, первые набухают на 15—25%, вторые на 150—200%. Фторсилоксановые резины разрушаются фреоном-22 и этаноламином. Оба типа вулканизатов стойки к водным растворам солей, кислот и оснований, слабо (на 5—25%) набухают в спиртах, ацетонитриле, ледяной уксусной кислоте, средне (на 40—50%) в дихлорэтане и дибутилфталате, сильно (больше 150%) в бутилацетате. [c.495]

    Если растворитель присоединяет протон, т, е. обладает свойствами основания, то он называется протофильным. Растворитель, отдающий протон, т, е. обладающий кислотными свойствами, называется протогенным. К первым относятся вода, спирты, ацетон, эфиры, жидкий аммиак, амины и до некоторой степенн муравьиная и уксусная кислоты. Ко вторым — тоже вода и спирты, ио наиболее типичными являются чистые кислоты (ук усная, серная, муравьиная), а также жидкие хлористый и фтористый водород. Растворители, способные как отдавать, так и присоединять протон, называются амфипротонными. Раство-ритзли, ие способные ни отдавать, ни присоединять протон (например, бензол), называются апротонными. [c.469]

    Величина /(снзСоон называется истинной термодинамической константой диссоциации указанной кислоты на свободный протон и основание, или константой кислотности ее ни в коем случае нельзя смешивать с термодинамической константой рав-нэвесия уксусной кислоты с гидроксонием и основанием. [c.474]

    Рассмотрим соль слабой кислоты и сильного основания, например Ha OONa. Если раствор этой соли достаточно разбавлен, то можно считать, что соль полностью диссоциирована. Но ион СНзСОО", именно вследствие того, что уксусная кислота является слабой, проявляет основные свойства, т. е. способен [c.479]

    Если к раствору слабой кислоты добавлена соль этой кислоты и сильного основания, которая хорошо диссоциирует на ионы, то диссоциация кислоты подавляется и концентрацию молекул СН3СООН можно считать в первом приближении равной концентрации всей находящейся в растворе уксусной кислоты. С другой стороны, поскольку соль СНдСООЫа является сильным электролитом, концентрацию ионов СНзСОО можно считать равной концентрации всей растворенной соли. На основа НИИ сказанного получаем  [c.492]

    Катионы сильных оснований N3+, a +, Ва + и анионы сильных кислот С1, 505 не принимают участия в этих реакциях, поскольку не могут образовать с ионами воды и ОН малодиссоциированных соединений. Таким образом, водные растворы уксуснокислых солей (ацетатов), образованных сильными основаниями, имеют щелочную реакцию, а растворы аммониевых солей сильных кис лот — кислую реакцию. В случае ацетата аммония и катион, и анион принимают участие в реакции гидролиза, однако раствор сохраняет нейтральную реакцию, так как образующиеся уксусная кислота и гидроксид аммония — электролиты равной силы (с. 127), В других случаях, например при гидролизе NH4 N, для определе ния характера раствора необходимо сопоставить константы диссоциации слабого основания и слабой кислоты, образующихся при гидролизе соли. [c.130]

    Что произойдет со слабой кислотой, например уксусной, если добавить к ней немного ацетата натрия (NaA ), представляющего собой соль сильного основания (NaOH) и уксусной кислоты Эта соль растворится и полностью диссоциирует на ионы натрия и ацетат-ионы. Пользуясь принципом Ле Шателье, можно ожидать, что добавленные ацетатные ионы [c.236]

    М раствором сильного основания, NaOH, и требуется вычислить зависимость pH смеси от объема добавляемого основания. Добавление гидроксида натрия приводит к превращению части уксусной кислоты в ацетат натрия в результате реакции нейтрализации [c.476]

    Аминосоединенжя можно дифференцировать в соответствии со степенью их замещенности, проводя три титрования хлорной кислотой в уксуснокислой среде титруя исходный образец (определение суммы оснований) и аликвотные части образца после их обработки фталевым (перевод первичных аминов в нейтральные фталимиды и определение суммы вторичных и третичных аминов) или уксусным ангидридом (перевод первичных и вторичных аминов в ацетамиды и определение третичных аминов) [184, 195]. Такой подход в сочетании с восстановлением LiAlH использован для группового анализа нефтяных амидов и нитрилов карбоновых кислот [196], при этом амиды, в зависимости от их строения, восстанавливаются в первичные, вторичные или третичные, а нитрилы — только в первичные амины [197, 198). [c.25]


Смотреть страницы где упоминается термин Уксусная основаниями: [c.112]    [c.148]    [c.42]    [c.71]    [c.486]    [c.516]    [c.492]    [c.147]    [c.255]    [c.192]    [c.309]    [c.61]    [c.161]    [c.25]   
Титриметрические методы анализа органических соединений (1968) -- [ c.218 ]




ПОИСК





Смотрите так же термины и статьи:

Амиды кислот как основания, определени титрование в уксусном ангидриде

Основания азотистые органические, определение уксусного ангидрида

Основания в смеси нитрометан уксусный

Основания в уксусном ангидриде

Потенциометрическое титрование слабого основания (кофеина) в ледяной уксусной кислоте

Работа 10.8. Определение слабых оснований в среде ледяной уксусной кислоты

Сила оснований в уксусной кислоте

Сила оснований в уксусном ангидриде

Титрование основании в уксусном ангидриде

Уксусная кислота оснований

Уксусная кислота титрование аминами и гетероциклическими основаниями



© 2025 chem21.info Реклама на сайте