Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт со спиртами

    По-видимому, переход к анионному механизму происходит и при экстракции кобальта спиртами, когда при высоких концентрациях высаливателей (соляной кислоты и хлористого кальция) коэффициент разделения Ni — Со резко возрастает [67]. Между тем, коэффициенты активности Ni при высоких концентрациях [c.82]

    Спирты, получаемые методом оксосинтеза на родиевых катализаторах, содержат 70—80 % против 20—50 % (на карбонилах кобальта) спиртов с неразветвленной углеродной цепью и поэтому широко могут использоваться для производства различных ПАВ. [c.391]


    Получение бутадиена из этилового спирта разработано С. В. Лебедевым [2] и осуществлено в Советском Союзе в больших масштабах. Пары спирта пропускают над катализатором, представляющим собой комбинацию окиси алюминия и окиси цинка, при 400° и пониженном давлении (0,25 ат). Катализатор обладает одновременно дегидрирующим и дегидратирующим действием. Выход бутадиена составляет около 60% вес. от спирта. Может применяться также катализатор окись магния — окись хрома или окись кобальта — окись магния. [c.84]

    Выходящая из реактора реакционная смесь обрабатывается в сепараторе для кобальта водяным паром при 180 °С и 21 кгс/см после выделения окиси углерода и водорода, направляемых в рецикл. Освобожденные от окиси углерода продукты реакции гидрируются в спирты в гидрогенизаторе и затем направляются на ректификацию. [c.172]

    В заводской практике оксосинтез обычно осуществляется в виде двухступенчатого процесса первая ступень состоит в синтезе альдегида, во второй стадии н идкий продукт освобождается от карбонилов кобальта, а затем гидрируется над неподвижным слоем твердого катализатора гидрогенизации. Полученные спирты затем фракционируются. Для эффективной гидрогенизации альдегидов во второй стадии процесса необходимо, обеспечить удаление окиси углерода, так как в ее присутствии катализаторы гидрогенизации отравляются. [c.291]

    Суспензия катализатора, поступающая из отделения фильтрации, направляется на сепараторы. Полученная при этом твердая фаза отмывается от высших спиртов метанолом и после подсушки обрабатывается 54%-ной азотной кислотой. При этом металлический кобальт растворяется. [c.70]

    Как показали исследовательские и проектные работы, при производстве бутиловых спиртов методом оксосинтеза с точки зрения технологического оформления наиболее приемлемой является солевая схема с применением в качестве катализатора нафтенатов кобальта. Эта схема характеризуется также некоторыми технико-экономическими преимуществами. [c.71]

    Схема с применением солей кобальта. Выше были подробно описаны схемы получения спиртов по солевой схеме оксосинтеза. Получение спиртов С,—Сд характеризуется некоторыми особенностями (рис. 19). Фракция бензина термического крекинга (содержание 8 до 0,2%, содержание олефинов 40—45%) из сырье- [c.116]


    Определение кобальта. Кобальт определяют роданид-ным методом в ацетоне или этиловом спирте. [c.121]

    В коническую колбу емкостью 100 мл переносят 5 мл раствора Б, добавляют к нему 1 г роданида калия, 5 мл воды и 10 мл ацетона (или 5 мл раствора, приготовленного из 1 г роданида калия, 3 мл воды и 12 мл спирта). Колбу охлаждают, поместив на 5 мин в лед или снег и колориметрируют раствор на приборе типа ФЭК-М с красным светофильтром в кювете с толщиной слоя 30 мм. В качестве раствора сравнения используют раствор из 2 г роданида калия, 20 мл воды я 20 мл ацетона (или из 2г роданида калия, 16 мл воды и 24 мл спирта). Его охлаждают одновременно с анализируемым раствором. Содержание кобальта находят по калибровочному графику. [c.121]

    Каталитический обрыв цепей в окисляющихся спиртах вызывают катионы кобальта, марганца, железа, меди [218]. Ароматические амины могут обрывать большое, но не бесконечное число цепей, вследствие параллельного протекания двух реакций— регенерации 1пН и необратимого превращения 1п- [168] [c.118]

    Такими ионами, как ионы кобальта П1, марганца П1, церия IV спирты окисляются в две стадии [306] вначале спирт входит во внутреннюю коорди- [c.195]

    Исследование растворимости закисных хлоридов этих металлов [505, 5061 показало хорошую растворимость соединения кобальта в высших спиртах, худшую—в кетонах, органических кислотах и альдегидах. В системе хлориды металлов—вода—каприловая кислота растворимость хлоридов, однако, очень мала. Добавление электро- [c.456]

    Триизобутилфосфат экстрагирует кобальт хуже, чем ТБФ [182]. Экстрагировали кобальт 1 %-ным раствором ТБФО в толуоле [984], 5%-ным раствором ТОФО в том же разбавителе [57], раствором ТОФО в GI4 [985]. Метилизобутилкетон экстрагирует кобальт довольно слабо [221, 299, 507, 508] по-видимому, это относится и к ЦГН [221, 299]. С довольно низкими коэффициентами распределения извлекают кобальт спирты [419,420,479, 509] экстракция увеличивается при введении высаливателей, в частности a lj. Плохо экстрагируют кобальт и простые эфиры — ДЭЭ [12], ДХДЭЭ [503, 504]. [c.167]

    Уэндер, Левине и Орчин [8] также установили, что при 160—180° и давлении 211—281 ат в присутствии ацетата кобальта спирт реагирует с газом 1иО- -1Н2 и образует спирт, имеющий на один углеродный атом больше, чем исходный спирт. При увеличении времени контактирования до нескольких часов образовывалось большое количество спиртов-гомологов с ббльшим числом углеродных атомов. [c.383]

    Гидрирование альдегидов в первичные спирты в известной мере может протекать в сочетании с реакцией Ройлена. Оно идет как гомогенная каталитическая реакция само но себе и основано на том, что карбонилгидрид кобальта при определенной температуре и определенном соотношении окиси углерода и водорода может функционировать как восстанавливающий агент [43]. [c.214]

    Карбонилгидрид кобальта, как показано исследованиями Ренне с сотрудниками [45], представляет собой сильную кислоту, способную подобно хлористому водороду присоединяться по месту двойной связи с образованием аддуктов, способных расщепляться па альдегид и кобальткарбониловый радикал. В ходе гидроформилирования всегда в определенном размере происходит изомеризация двойных связей, так что даже если исходят из строго определенных олефинов с двойной связью у конечного атома, альдегиды и соответственно спирты получаются со спиртовой группой, расположенной ближе к центру молекулы. В присутствии карбонилгидрида кобальта направленне изомеризации связей изменяется на обратное. Равным образом при использовании олефинов с двойными связями, располоя енными иа некотором расстоянии от конца молекулы, получаются первичные спирты с гидроксильной группой, стоящей у концевого углеродного атома, так как двойные связи в течение реакции Ройлена передвигаются от центра к периферии молекулы. [c.215]

    На базе этого метода построено в настоящее время получение изоок-танола из изопентена. Отделение кобальта от продуктов гидроформилирования возможно простым нагреванием до 150—160° под давлением 7 — 10 ат водорода. Кобальт затем отфильтровывается в виде осадка. Для восстановления альдегидов в спирты можно, кроме никеля, использовать также хромит меди или устойчивый против действия серы катализатор, состоящий из сульфида никеля и сульфида вольфрама. В этом случае восстановление ведут при 200° и 200 ат давления водорода. [c.218]

    Реакции основаны на действии водяного газа на спирты при условиях гидроформилирования. Температура реакции здесь, однако, около 200°. В результате реакции образуется следующий высший гомолог спирта. Из трет-бутилового спирта получают изоамиловый, из втор-пропилового — изобутиловый. Сущность реакции, вероятно, заключается в том, что в присутствии карбонилгидрида кобальта, представляющего собой очень сильную кислоту, спирт дегидратируется с образованием олефина. который затещ [c.220]


    Модифицировав оксосинтез [20—23], можно получать из низко-мо.текулярных олефинов высокомолекулярные спирты. В данном случае образующиеся прп оксосинтезе промежуточные альдегиды превращаются в высшие спирты путем ди-, тримеризации и т. д. Для этого метода применяется обычный для оксосинтеза катализатор кобальта. В случае димеризации добавляют небольшое количество цинксодержащего соединения. [c.172]

    Стеарат кобальта Сравнительно сильно ускоряет разложение, образуется в больших количествах а-кумиловый спирт [164J [194, 206] [c.275]

    Вследствие нежелательной конденсации фенола с а-метилстиро-лом и а-кумиловым спиртом при разложении КМГП образуются смолы, для удаления которых проводят а) реакцию остатка с концентрированной серной кислотой и гидрирующее расщепление при 350 °С и давлении 50 кгс/см на кобальт-молибденовом катализаторе (носитель А12О3) с образованием фенола и различных углеводородов [364—365] б) сульфирование остатка серной кислотой и связывание формальдегида катиопобмеиными соединениями [366] в) термическое расщепление остатка при 240—400 °С с получением добавочного количества фенола [367]. [c.283]

    В СССР в промышленном масштабе освоены три технологические схемы производства бутиловых спиртов гидроформилированием триадная, кизельгурная и испарительная. Во всех схемах в качестве катализатора используют карбонилы кобальта, однако по условиям проведения процесса и приемам отделения катализатора от продуктов реакции эти схемы существенно различаются. [c.163]

    Наряду с жидкими и газообразными окислителями для очистки сточных вод применяются и твердые оксиды и гидроксиды металлов переменной валентности (никеля, кобальта, меди, железа, марганца). Гидроксид никеля высшей валентности легко окисляет тидразингидрат, спирты, альдегиды, алифатические и ароматические амины. Продуктами окисления являются в основном карбонаты, азот и вода. Метод рекомендуется для обезвреживания сточных вод с концентрацией токсичных соединений до 0,5 г/л, что является его недостатком. [c.494]

    Исследования в области каталитического гидрирования окиси углерода в течение первой половины XX в. развивались все более и более быстрыми темпами. Первыми вехами на пути этих исследований двились работы Сабатье и Сандерана [24] по синтезу метана на никелевых катализаторах и открытие Баденской анилиновой и содовой фабрикой [4] реакции между водородом и окисью углерода. В результате этой реакции образовывался жидкий продукт, содержавший спирты, альдегиды, кстоны, жирные кислоты и некоторое количество насыш енных и ненасыщенных алифатических углеводородов. Она протекала при давлениях 100—200 ат и температурах 300—400° в присутствии окисей кобальта и осмия, активированных щелочью и нанесенных на асбест . Последующие исследования привели к разработке в 1923—1925 гг. промышленного синтеза метанола. Начиная с 1923 г. и до настоящего времени, проводятся обширные работы по изучению процесса Фишера-Тропша в лабораторном и полузаводском масштабах. [c.519]

    Гидрирование окиси углерода с образованием спиртов и углеводородов выше Gj представляет собой относительно медленную каталитическую реакцию. Андерсон [27с] рассчитал, что молекула окиси углерода живет на поверхности кобальтового катализатора около 5 мин., прежде чем она прореагирует. Все активные катализаторы синтеза содерн ат железо, иикель, кобальт или рутений в качестве основного гидрирующего компонента. Эти четыре металла в условиях синтеза медленно, но с измеримой скоростью образуют карбонилы металлов, что, по-видимому, имеет определенное значение. Оптимальная температура синтеза для никеля и кобальта находится в пределах 170—205°, для железа 200—325° и для рутения 160—225°. Допустимое максимальное давление для синтеза на никелевых катализаторах составляет примерно 1 ат, на кобальтовых — около 20 ат. При более высоком давлении активность этих катализаторов резко падает (по мере повышения давления). Железные катализаторы, приготовляемые плавлением магнетита, проявляют активность под давлением 20—100 ат i, в то время как осажденные железные катализаторы выше 20 ат ослабевают I27d]. Рутениевые катализаторы относительно неактивны при давлении ниже 100 ат, но их активность быстро растет по мере его повышения до 300 ат [27е]. При оптимальных давлениях (О—1 ат для Ni 1—20 ат для Go, 1—20 ат для осажденных Fe-катализаторов, 20—100 ат для плавленых Fe-катализаторов и 100—300 ат для Ьи) коэффициент давления (показатель п в уравнении скорость = коистат та х давление") составляет около 0—0,5 для Ni и Go и близок к единице для Fe и Ru. [c.521]

    Эта температура обычно лежит в пределах 110—140°, при этих условиях следует вносить кобальт в виде дикобальтоктакарбонила. По мере повышения рабочей температуры возрастает тенденция к восстановлению альдегидов в спирты при 185°, достаточно продолжительном времени контакта, и при наличии достаточного количества синтез-газа все альдегиды будут полностью восстановлены. Следует, конечно, помнить, что скорость рсех реакций сильно растет с ростом температуры, это относится также [c.292]

    Естественно, что у каждого структурного изомера могут быть изомеры по положению двойной связи. Наличие двойной связи делает также возможной цис-транс-шгожерто. Сырьевая смесь, взятая даже в довольно узких температурных пределах кипения, очень сложна, о составе ее сообщений не имеется. Свежее сырье смешивается с рециркулирующим продуктом и добавляется нафтенат кобальта в таком количестве, чтобы приходилось около 0,2% кобальта на общую загрузку сырья. Раствор прокачивается через подогреватель в реактор, где жидкость движется вверх в прямотоке с синтез-газом. Реактор наполняется инертным материалом типа колец Рашига и др. В реакторе поддерживаются температура около 175° и давление синтез-газа (IHj I O) 200 am. По выходе продукта из реактора давление снижается до атмосферного, затем продукт нагревается до 150° в присутствии отпаривающего газа (обычно водорода) для разрушения всего карбонила. Освобождаемый от кобальта продукт затем гидрогенизуется, в результате получается смесь октиловых спиртов. Этот процесс мало отличается от известного, но фактически он не нашел заводского использования в Германии [17]. Смесь спиртов g очень полезна в производстве пластификаторов. Окисление спиртов дает смесь кислот С 8, называемых изооктиловыми кислотами, которые представляют интерес для применения в военном деле. Состав смеси g пока точно неизвестен. Возможно, в ней содержится до двенадцати изомерных спиртов. Видимо, значительную часть составляет 3,5-диметилгексанол, получаемый из 2,4-диметилпентена-1. Другие спирты, присутствующие в относительно больших количествах — 4,5-диметил- и 3,4-диметилгек-санолы, 3- и 4-метилгентанолы. Очень возможно, что удастся найти условия превращения олефинов в спирты реакцией в одну ступень. [c.296]

    Гетероциклические соединения. В условиях оксосинтеза тиофен очень медленно восстанавливается в тиоциклопентан. Алкилзамещенные тиофены восстанавливаются легче тиофена. Фуран реагирует подобно диенам с сопряженными двойными связями, а именно одна двойная связь гидрируется, а вторая гидроформилируется, в результате получается 2-тетрагидрофурфуриловый спирт. Реакция с азотистыми соединениями очень усложняется, так как эти вещества взаимодействуют с карбонилами кобальта. [c.297]

    Возможно, более строгим доказательством того, что гидрокарбонил может быть катализатором, является тот факт, что гидроформилирование олефинов идет при атмосферных условиях в присутствии 1 моля гидрокарбонила кобальта [31]. В одном опыте было собрано 4,0 г (0,023 моля) гидрокарбонила кобальта в ловушке, охлаждаемой жидким азотом, содержащей 7,0 г (0,085 моля) циклогексена. При нагревании гидрокарбонил кобальта растворяется в олефине без заметного разложения. При температуре около 15 раствор начинает темнеть, выделяется небольшое количество газа и смесь разогревается. Добавление 2,4-динитрофенилгидра-зина дало 2,4-динитрофенилгидразон циклогексанкарбоксальдегида. Таким образом была установлена возможность проведения оксосинтеза при комнатных условиях (предсказанная на основе термодинамических соображении, хотя и с другими реагентами). При обработке подобным же образом избытка гексена-1 чистым гидрокарбонилом были получены альдегиды С,, а не вступивший в реакцию гексеп-1 полностью изомеризовался в термодинамически более устойчивые гексены-2 и -3. Не только приведенные выше реакции гидроформилирования были успешно осуществлены при атмосферном давлеиии в присутствии чистого гидрокарбонила кобальта, но и реакции гидрогенолиза, которые, как известно, тоже идут в обычных условиях оксосинтеза, можно с успехом осуществить при атмосферном давлении. Так, например, при обработке трифенил-карбинола, бензгидрола и бензилового спирта гидрокарбонилом кобальта были получены соответственно трифенилметан, дифенилметан и толуол, т. е. те же продукты, которые образовались при обработке соответствующих исходных веществ при обычных для реакции оксосинтеза высоких температурах и давлениях. [c.300]

    Обра.зование гидрокарбонила может также служить движущей силой в реакциях переноса водорода, которые, как уже было показано, имеют место в присутствии вторичных спиртов в системе, содержащей кобальт, олефин и окись углерода. Так, например, при обработке 68 г циклогексена, [c.301]

    Газ, выделяющийся в сепараторе высокого давления, вместе с газом, йдущим из сепаратора кобальтизации проходит промывку от следов карбонилов кобальта в промывателе 10. Промывка осуществляется сырыми спиртами. Освобожденный от карбонилов газ направляется на вход циркуляционного компрессора. [c.112]

    Оксо-синтез—реакция между олефинами, водородом и окисью углерода, проводимая с целью получения окисленных соединений, главным образом альдегидов, которые впоследствии можно гидрировать в спирты. При этом применяются температура 150—205 °С и давление 150—300 ат катализатором служит кобальт (в первоначальном процессе использовали твердый катализатор Фишера— Тропша). Активным агентом является дикобальтоктакарбонил [Со(С04) з. в установке с неподвижным слоем твердого катализатора сырьем может Служить жидкий гептен, который подается с объемной скоростью 0,4 ч . В случае применения пасты ее прокачивают через реактор с объемной скоростью 1,3—3 тогда как объемная скорость газа составляет 250 Катализатором является 2,5%-ный нафтенат кобальта на носителе. Порядок величины константы скорости реакции в жидкой фазе к= =0,02—0,07 мин при температуре 110 °С и давлении около 200 ат. В настоящее время опубликованы обзоры по оксо-синте- [c.330]

    Для получения высших спиртов существует, однако, несколько методов один из них — метод альдольной конденсации, другой — так называемая реакция оксосинтеза. Последняя заключается в непосредственном присоединении окиси углерода и атома водорода по месту двойно1 1 связи олефина, в результате чего образуется альдегид, который затем восстанавливается в спирт. Гидро-формилирование (оксосинтез) осуществляется путем контактирования олефина в смеси с синтез-газом (окись углерода — водород в соотношении 1 1) при температуре 75—200° С и давлении 100— 300 атм над металлическим катализатором (обычно кобальтом). Активной формой катализатора, но-видимому, является гидрокарбонил кобальта НСо(СО)4, образующийся в результате воздействия водорода на дикобальтокарбонил. Более детальное описание процесса оксосинтеза см. [252—257]. [c.579]

    Из металлов наиболее характерными каталитическими свой-стнами обладают элементы VUl группы периодической системы элементов Д. И. Менделеева. Для ряда процессов катализаторами являются железо (синтез аммиака) кобальт, никель, иридий, платина, палладий (гидрирование и для последних — окисление двуокиси серы). Кроме того, металлы VUl группы являются катализаторами и других процессов разложени.я перекиси водорода, получения гремучего газа, окислеиия аммиака, метанола, метана, окиси углерода, дегидрирования спиртов и т. д. Каталитической активностью обладают и соседние (в периодической системе) элементы медь, серебро, отчасти золото, возможно цинк и кадмий. [c.363]

    Первичные и вторичные спирты окисляются быстрее третичных, а при замене а-С—Н-связи на а-С—0-связь реакция замедляется, что доказывает участие а-С—Н-связи в окислительно-восстановительном акте. Окисление спиртов соединениями металлов в углеводородных растворах протекает медленно. Аце-тилацетонат трехвалентного кобальта окисляет вторичные спирты в соответствии со стехиометрическим уравнением [307] [c.196]

    Хорошее разделение получили Ригамонти и Спаккамела [507) при экстракции изоамиловым спиртом солей кислот уксусной и трехвалентных цианистой этих металлов из водного раствора. Применяя 7-ступенчатую фракционированную экстракцию, они получили 90%-ное разделение. По расчетам при применении 19 ступеней надо ожидать чистоту продуктов 99,9%. Шарп и Вилькинсон [5081 экстрагировали гексоном кобальт из водного раствора трехвалентных цианистых солей кобальта и никеля. [c.457]

    Получаемый продукт используют в качестве катализатора демеркап-танизации под названием Окмер . Этот катализатор представляет собой натриевую соль полифталоцианина кобальта с примесью гидроксида натрия. Выпускается он в виде порошка с фиолетовым оттенком и в виде пасты влажностью 65...80%. Катализатор в виде порошка растворим в растворах щелочей, плохо растворим в воде и не растворим в эфире, ацетоне и низших спиртах. Он относится к малотоксичным соединениям (3 класс опасности) [26]. [c.147]


Смотреть страницы где упоминается термин Кобальт со спиртами: [c.59]    [c.215]    [c.221]    [c.270]    [c.72]    [c.196]    [c.164]    [c.301]    [c.219]    [c.20]    [c.403]    [c.405]   
Термохимия комплексных соединений (1951) -- [ c.216 ]




ПОИСК





Смотрите так же термины и статьи:

Диссоциация хлористого кобальта в спирте и воде

Метиловый спирт трифторидом кобальта

Обнаружение кобальта спиртами и органическими кислотами

Опыт 58. Экстракция роданида кобальта изоамиловым спиртом



© 2025 chem21.info Реклама на сайте