Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окись углерода взаимодействие молекул

    Гарнер с сотрудниками [60—62, 66] детально изучил каталитическое окисление окиси углерода на закиси меди, использовав для исследования поверхностных процессов методы измерения электропроводности и теплот адсорбции. Было показано, что электропроводность пленки закиси меди в процессе окисления примерно такая же, как и в случае пленки, насыщенной окисью углерода, и отличается от электропроводности пленки СнгО, обработанной кислородом. Более того, как показали Гарнер с сотрудниками, стационарная электропроводность в случае предварительной адсорбции кислорода устанавливается в течение значительно более долгого времени, чем на свободной поверхности. Это показывает, что во время реакции поверхностная концентрация окиси углерода высокая, а кислорода — низкая. Было сделано предположение, что кислород и окись углерода взаимодействуют на поверхности с образованием карбонатного комплекса, который в свою очередь реагирует со следующей молекулой окиси углерода, образуя двуокись углерода  [c.43]


    С, а при достижении температур свыше 1 600° С выход окиси углерода превышает выход углекислоты в 2 раза. Таким образом, раскаленный углерод, взаимодействуя с кислородом при высоких температурах, не столько горит , сколько газифицируется . Это понятно, если вспомнить, что молекула углекислоты (СОо) обладает устойчивостью только при сравнительно умеренных температурах и охотно теряет ее в присутствии раскаленного углерода, захватывая лишний атом этого углерода и раскисляясь в окись углерода по уже приводившейся схеме [c.169]

    Как показывает уравнение (8.37), коэффициент селективности связан с разностью теплот адсорбции компонентов бинарной смеси газов. Теплота адсорбции отражает общую энергию взаимодействия между адсорбентом и адсорбатом, которая сама является суммой нескольких видов энергии взаимодействия (см. разд. Г). Роль различных типов энергии взаимодействия отчетливо проявляется в характере адсорбции смесей, содержащих молекулы, отличающиеся по свойствам. В смеси метана и окиси углерода величины дисперсионного и поляризационного взаимодействия больше для метана. Однако в энергию адсорбции окиси углерода значительный вклад вносят дипольное и квадрупольное взаимодействие. В результате окись углерода селективно адсорбируется из смеси с метаном (рис. 8.42). [c.711]

    Разложение ацетальдегида температура 320—350°, давление 100— 170 мм. Молекула ацетальдегида взаимодействует с молекулой брома, давая бромистый метил, бромистый водород и окись углерода, выделены летучие бромистые соединения более тяжелые, чем бромистый метил и бромистый водород [c.91]

    Авторы работы [28] исследовали взаимодействие окиси углерода с натриевыми и кальциевыми формами цеолитов А и X при давлениях около 10 мм рт. ст. Используя молекулы СО с мечеными атомами углерода и сопоставляя контуры полос поглощения адсорбированной СО со спектрами газообразных и жидких молекул окиси углерода, эти авторы пришли к выводу, что в Ка-цеолитах молекулы СО сравнительно свободно вращаются в больших полостях. Вращение молекул СО, адсорбированных на Са-формах цеолитов, более заторможено. Такая интерпретация вполне обоснована, так как окись углерода, селективно адсорбируясь на многозарядных катионах, удерживается ими более прочно, чем однозарядными катионами. [c.236]

    В отличие от водорода окись углерода восстанавливает Си в цеолите Y до Си" ". Поскольку в процессе обработки цеолита окисью углерода вид спектров в области валентных колебаний гидроксильных групп не меняется, механизм восстановления меди должен быть иным, чем при взаимодействии с водородом. На восстановленных образцах u Y не удалось обнаружить бренстедовских кислотных центров, хотя в спектрах адсорбированного пиридина присутствовала полоса при 1451 см , - обусловленная адсорбцией молекул пиридина на льюисовских центрах или на катионах. Показано, что добавление воды способствует образованию льюисовских центров. Восстановление меди можно изобразить следующей реакцией  [c.326]


    Для окиси углерода, не несущей электрического заряда, принимается резонансная форма С О . Химия молекулы окиси углерода частично может быть хорошо объяснена этой формой, эквивалент которой с точки зрения теории молекулярных орбит здесь не рассматривается. В этой структуре углерод имеет изолированную пару электронов и одну незаполненную орбиту, так как ядро углерода окружено лишь секстетом электронов вместо обычного октета. Исходя из этих соображений, можно он идать, что окись углерода способна взаимодействовать также с нуклеофильными группами, например основаниями, которые могут явиться источником электронов для заполнения октета. Действительно, подобные реакции окиси углерода известны некоторые их них также будут рассмотрены ниже. [c.9]

    Промежуточный поверхностный комплекс может разлагаться, так же как при реакции С + О2, под действием температуры и молекул водяного пара из газового объема. Чуханов считает, что поверхностный комплекс, разлагаясь, дает окись углерода, которая, видимо, и является первичным окислом углерода реакции взаимодействия углерода с водяным паром  [c.85]

    Предполагается, что карбонильные соединения и окись углерода могут образовываться по реакциям с СНзСО- радикалами. Положительный полярон, очевидно, взаимодействует с молекулами кислоты. [c.251]

    Среди широкого круга проблем химии элементоорганических соединений особый интерес исследователей вызывают строение и свойства большого класса я-комплексов переходных металлов. Значительное число этих молекул, весьма своеобразных по характеру взаимодействия между атомами металла и лигандов и стереохимии, было синтезировано и, по-видимому, могло бы быть получено в присутствии в молекуле такого лиганда, как окись углерода, который связывается в комплексе с атомом переходного металла и образует карбонильную группу. [c.148]

    Метиловый спирт, взаимодействуя с атомным кислородом, может дать молекулу формальдегида и воду. Окись углерода образуется в результате реакции между атомами кислорода и формальдегидом  [c.141]

    В обоих случаях заместитель в кислой группе эфира Н влияет на энергию активации в одном и том же направлении [ ], что указывает на одинаковую роль заряда атома углерода в карбонильной группе в обоих типах гидролиза. В щелочном гидролизе, где эффект меньше, этот атом углерода взаимодействует с заряженным ионом. При кислом гидролизе карбонильный атом углерода взаимодействует с незаряженной молекулой воды, а протон присоединяется к атому. кислорода группы ОК. Отталкивание в обоих случаях, несомненно, различное, и поэтому энергия активации тоже различается на величину около 5—7 ккал, несмотря на то, что в обоих случаях образуются одинаковые связи. Принимая во внимание, что притяжение и отталкивание иона ОН будет заметно больше, чем молекулы воды, можно составить следующую таблицу, показывающую изменение энергии активации, которое следует ожидать при введении в радикал К [c.431]

    Еще меньше ясности имеется в отношении механизма паровой конверсии высших углеводородов. Установлено лишь, что в процессе паровой конверсии гомологов метана происходит преобразование их в метан, т. е. протекает процесс частичной конверсии. Цредпола-гается [44], что углеводород на поверхности катализатора диссоциирует с образованием радикалов СН , которые реагируют с водяным паром и водородом. В результате взаимодействия радикалов с молекулами воды, адсорбированными на поверхности катализатора,, образуются окись углерода и водород, а с водородом — метан и углерод. Последний реагирует с водяным паром с образованием СО и На-Таким образом, рассмотренный механизм конверсии включает крекинг углеводородов, гидрирование продуктов крекинга й газификацию, а образование углерода является неизбежной промежуточной - тадией конверсии. [c.87]

    Помимо горения природного газа и окиси углерода, непосредственно при. взаимодействии с кислородом в ряде случаев окись углерода и метан подвергаются действию кислорода, связанного в молекуле воды и двуокиси углерода. Реакции подобного типа получили название реакций конверсии. Процессы конверсии углеводородных газов и окиси углерода широко распространены в химической промышленности для получения дешевых восстановительных газов. [c.104]

    Однако совокупность реальных процессов, происходящих при диффузионном горении, значительно сложнее той, которая рассматривается при построении физической модели. Реальный процесс отличается от физической модели тем, что молекулы углеводорода на своем пути из центральных частей пламени к фронту горения взаимодействуют с продуктами полного сгорания и подвергаются термическому разложению. В результате образуется водород, окись углерода и сажа. [c.21]


    Анализ структуры окнси углерода с позиций теории молекулярных орбит облегчает понимание химических различий между молекулой окиси углерода и молекулой азота, сходство которых рассматривалось выше. В противоположность изолированной паре электронов в молекуле азота, которые находятся на негибридной х-орбите вблизи ядра азота, изолированная пара электронов атома углерода в молекуле окиси углерода находится на хр-орбите [33], направленной в противоположную от связи С — О сторону. Высокая реакционная способность окиси углерода по сравнению с азотом и способность СО являться донором электронов легко объяснимы с позиций теории молекулярных орбит. Логично ожидать, что электрофильные группы, например, кар-боний-иопы, будут взаимодействовать с молекулой окиси углерода. Поскольку образование карбоний-ионов катализируется кислотами, вполне естественно, что в кислой среде окись углерода взаимодействует с различными веществами. Некоторые реакции этого типа рассмотрены ниже. [c.9]

    Часто при адсорбции металлами таких реакционноспособных газов, как водород, кислород, окись углерода и другие, происходит как физическая адсорбция, так и хемосорбция, которая приводит к образованию новых поверхностных соединений. В этом случае адсорбированная молекула или продукты ее превращения локализуются на поверхности с большой энергией связи с поверхностными атомами металла [270], так что значительно более слабыми межмолекулярными взаимодействиями хемосорбированных молекул друг с другом можно пренебречь. Однако в случае благородных газов, особенно таких, как криптон и ксенон, и некоторых других химически инертных молекул, таких, например, как перфторметан, наблюдается только молекулярная (физическая) адсорбция на поверхности металла. Исследование молекулярной адсорбции на чистой поверхности металла представляет значительный интерес для развития молекулярной теории адсорбции. Большинство металлов обладает простой кристаллической решеткой, например, медь и же- [c.56]

    Предкарительное изучение других реакций обнаружило большое разнообразие возможных реакций (см., в особенности, е i, стр. 2273). Молибден и окись углерода взаимодейство али совершенно так же, как вольфрам и азот. На поверхности раскалённых нитей происходят многие реакции разложения например, вольфрам разлагает аммиак, углекислоту и циан. Продукты разложения иногда вступают в дальнейшие реакции например, углекислота окисляет вольфрам в трёхокись, но поверхность металла при этом не покрывается устойчивым адсорбционным слоем атомов кислорода. При разложении водяного пара, однако, образуется адсорбционный слой кислорода. Окись углерода разрушает вольфрамовые нити, причём, когда молекулы газа находятся при достаточно низкой температуре, эта оки ь образует на поверхности, повидимому, мономолекулярную плёнку, возгоняющуюся в виде соединения W O, причём каждая молекула окиси углерода отрывает от нити по одному атому вольфрама. Если же газ достаточно нагрет (выше комнатной температуры), то эта плёнка либо весьма далека от сплошной, либо вовсе не образуется, и реакция между газ эм и нитью идёт гораздо медленнее. [c.371]

    При изучении контактных материалов важным фактором является величина поверхности, которая может быть доступна для газовой фазы. Ленгмюр [3] вывел уравнение для расчета величины поверхности, покрытой адсорбированным мономолекуляр-ным слоем, исходя из предположения, согласно которому такие молекулы удерживаются на фиксированных участках. Проблема определения размера поверхности при многослойной адсорбции была разрешена Брунауером, Эмметтом и Теллером [6]. Предложенная ими методика позволяет определять величину активной поверхности, участвующей в катализе в форме общей доступной поверхности. На основании изменения теплоты адсорбции в зависимости от степени заполнения поверхности можно получить сведения о гетерогенности адсорбентов и о взаимодействиях между адсорбированными молекулами. Кроме того, зная энтропию адсорбции, можно определить, подвижен ли адсорбат или он связан с поверхностью более прочной связью и поэтому не обладает свободой перемещения. Дамкёлер и Эдсе [10] из расчета энтропии нашли, что окись углерода, хемосорбированная на окиси меди, вполне подвижна при 650° К. В этом заключении нет ничего удивительного, если принять во внимание известные каталитические свойства окиси меди. [c.292]

    Структурные формулы в основном возникли в органической химии и хорошо описывают органические молекулы. Для неорганических молекул штрих хуже передает многообразие атомного взаимодействия. В молекуле СО существует так назьшаемая семиполярная связь. Атом кислорода передает электрон углероду, после чего электронные оболочки обоих атомов делаются подобными электронным оболочкам азота. Поэтому Л. Полинг описывает окись углерода формулой С = О . Связь в молекуле Не трактуется как трехэлектронная, возникающая в результате обмена места электрона иона гелия с электронной парой гелия. Высказывалось предположение, что подобная связь имеется и в О2. [c.484]

    В последнее десятилетие проводятся исследования по применению плазмы для химических реакций возникла фактически но- вая отрасль химии — плаэмохимия. Особенно интенсивно исследования ведутся в Институте нефтехимического синтеза АН СССР. Сущность плазмохимического процесса заключается в том, что смесь, например метана и кислорода, поступает в плазменную струю, где температуры достигают нескольких тысяч градусов. В плазменной струе происходит распад (диссоциация) молекул исходного вещества на атомы, простейшие молекулы, ионы, такие, как СНз, СНа, СН, С, Са, Са, СО, О, 0 +, обладающие очень высокой реакционной способностью. Взаимодействуя между собой, они образуют самые различные соединения, папример формальдегид, окись углерода, воду.  [c.291]

    Взаимодействие с парами воды. Опытами ряда исследователей (Мейер, Мартин и Мейер, Сивонен, Дольх) в 1932—1938 гг. установлено, что в результате реакции Н2О с твердым углеродом образуются только СО и На и притом в эквимолекулярных количествах. Дольх пришел к выводу о том, что первичное взаимодей-йтвие углерода с паром протекает по уравнению С- -Н20 = = С0-1-Н2. Возникающая окись углерода подвергается гомогенной реакции конверсии С0+ Н20 = С02 + Н2. При достаточно высоких парциальных давлениях Нг и НгО и низких температурах образуется метан С + 2Н2=СН4. При этом, согласно [122], на угле сначала адсорбируется водород, а затем возникший комплекс раа-рушается молекулой воды  [c.213]

    Каталитическое окисление углеводородов — сложный химический процесс, в результате которого образуются несколько продуктов реакции (альдегиды, органические кислоты, окись углерода, углекислый газ). В науке прочно утвердилось мнение, что образующиеся во время оки слепня углеводородов кислородсодержащие соединения являются промежуточными продуктами реакций образования окиси углерода и углекислого газа [1]. Стадийные схемы окисления углеводородов на различных катализаторах строились на взаимодействии молекул углеводорода с атомарным кислородом, появляющимся на поверхности катализатора прн адсорбции [2]. В последнее время в литературе начали появляться работы, в которых приводятся стад1п 1ные схемы окисления углеводородов, где в качестве промежуточных активных продуктов фигурируют радикалы [3]. Все эти схемы имеют существенные недостатки, так как в них механически перенесены радикальные механизмы гохмогенного окисления без учета влияния, которое оказывает твердое тело на протекание таких реакций. Ряд активных промежуточных форм, ведущих процессы в объеме, не может существовать на поверхности твердого тела. [c.410]

    Семиполярная связь электровалентность и ковалентность. Особый вид наложения гомео- и гетерополярной связей представляет семиполярная связь. В качестве простого примера такой связи может быть использована окись углерода (СО), строение которой, правда, еще Гнельзя считать вполне доказанным. Вследствие необычайного сходства физических свойств СО и N2 уже Лангмюр в 1919 г. сделал предположение, что в молекулах этих веществ имеются совершенно подобные конфигурации электронов ( изо-стеризм , см. стр. 154), т. е. С О и соответственно N1. Это возможно только в том случае, если атом О отдал атому С один электрон, следовательно, если С заряжен отрицательно, а О положительно. Но тогда в соединении СО оба атома связаны как в результате взаимодействия противоположных зарядов, так и вследствие взаимодействия шести спаренных электронов. Итак, здесь именно тот случай, который изображен на рис. 29 (справа), если предположить, что в системе на обеих проволоках не только возникают стоячие электрические волны, но проволоки, кроме того, еще заряжены, причем противоположными зарядами. Тогда обе проволоки притягивались бы как под действием постоянных противоположных зарядов, так и вследствие сип, образуемых осциллирующими зарядами. [c.161]

    Наблюдавшиеся спектры (рис. 64) лучше всего могут быть объяснены на основе теории, предложенной Блайхолдером (19646). Согласно этой теории, центры на ребрах и углах граней поликри-сталлической поверхности металла — наиболее активные центры хемосорбции окиси углерода. Атомы металла в этих положениях имеют меньше соседей, чем атомы металла в плоскости граней кристаллитов. Б результате атомы мета.тла на углах криста.тлитов имеют больше -электронов, доступных для образования я-связи с адсорбированными молекулами окиси углерода, и поэтому л-характер и прочность связи металл — углерод возрастали. ] анее было показано, что частота валентного колебания связи углерод — кислород у карбонилов металла смещается к более низким значениям по мере увеличения вклада л-связи во взаимодействие между атомами металла и углерода. Окись углерода, ответственную за появление полосы поглощения карбонильной грунны нри самых низких частотах, считали поэтому адсорби- [c.259]

    Важной стороной экспериментальных исследований в области катализа в последние два десятилетия является измерение теплоты адсорбции, которое производится с целью помочь выяснению смысла результатов адсорбщюнных измерений. Количество теплоты, выделяющейся при адсорбции, обычно показывает, является ли связь с поверхностью физической или химической. В первом случае теплота адсорбции такая же, как теплота испарения адсорбированного вещества, или превышает ее в 2—3 раза, тогда как во втором случае (при хемосорбции) выделяемая энергия значительно больше, что указывает на избирательность действия адсорбента. Исследование изменения теплоты адсорбции по мере покрытия поверхности позволяет узнать характер неоднородности поверхности и взаимодействия между адсорбированными молекулами. Обзор этой области можно найти в книгах Адама [1] и Брунауэра [2]. Наши знания об энтропии адсорбции продвинулись в гораздо меньшей степени число проведенных определений и теоретических исследований еще сравнительно невелико. Главная задача подобных исследований заключается б том, чтобы установить, подвижно ли адсорбированное вещество на новерхности или нет. Работа Баррера [3] показывает, что вещества, адсорбированные на цеолитах, неопособны к поступательному движению, а Форстер [4], применив способ расчета Баррера, нашел, что то же самое справедливо для многих веществ, адсорбированных на окиси железа и на силикагелях. С другой стороны, Дамкелер и Эдзе [5] находят, что окись углерода, адсорбированная на окнсп меди, подвижна при 650° К. Эти заключения противоречат ожиданиям, так как можно было бы думать, что свобода молекул будет больше при физической адсорбции, как в опытах Баррера и Фостера, чем при хемосорбции. Хилл [6] при помощи статистических расчетов показал, что следует ожидать свободы поступательного движения в большинстве случаев вандерваальсовой адсорбции в более поздней работе [7] он нашел, каким образом константы в уравнении БЭТ для многослойной адсорбции зависят от способности двухатомной молекулы вра- [c.256]

    При добавлении уксусной или муравьиной кислоты, а также углекислого газа выход и молекулярный вес полимера уменьшаются. Зависимости ilDP и 1/а от концентрации примеси в степени имеют линейный характер. Авторы предполагают, что механизм действия кислых добавок заключается в обрыве молекулярных цепей путем взаимодействия с протоном, возникаюпщм в результате диссоциации молекулы кислоты. Предполагается, что в этом случае в присутствии следов воды из углекислого газа образуется угольная кислота. Относительные эффективности для ряда СОа СН3СООН НСООН выражаются как 1 3 14. Окись углерода не оказывала никакого действия на кинетику полимеризации формальдегида. Кинетика полимеризации формальдегида в присутствии стеарата кальция изучалась также в работе [84]. Авторы исследовали относительные эффективности действия воды, метанола и муравьиной кислоты при комнатной температуре на молекулярный вес полимера и получили следующие результаты  [c.52]

    Изучавшееся нами ранее взаимодействие активированной глины с олеиновой) кислотой показало, что в результате вместе с другими процессами протекает образование неомыляемых соединений. Так как механизм действия глин на жирные кислоты представляет интерес с точки зрения проблем нефтеобразования, то было решено проследить реакцию образования неомыляемых соединений из кислот на примере масляной кислоты, продукты превращения которой, нам казалось, должны были быть проще, чем в случав олеиновой кислоты. Превращение масляной кислоты при высоких температурах над металлами или окислами металлов изучалось рядом исследователей [29—31]. При этом, наряду с дипропилке-тоном —, продуктом отщепления СОг от двух молекул кислоты, могло происходить образование непредельных и предельных углеводородов. Работы Сабатье и Мэля по пропусканию масляной кислоты над углекислым кальцием при 450—500° [32], окисью марганца при 400—450° [33], закисью или окисью железа при 430—490° [34] указывают на образование дипропилкетона с хорошим выходом. Сендерен показал, что при пропускании паров масляной кислоты над животным углем при 360— 380° образуются углеводороды, углекислота, окись углерода, водород, вода и другие продукты [35] в присутствии окиси алюминия при 400° масляная кислота распадается с образованием водорода, окиси углерода, углекислоты и этиленовых углеводородов [36]. Эти исследования, а равно и ряд других, не отвечают природным условиям нефтеобразования, так как последнее могло иметь место, как это было показано выше, лишь в области температур, ограниченной 200—250°. [c.262]

    Взаимодействие аренкарбоннльных комплексов хрома и молибдена с кислородом сопровождается выделением из молекулы исходного МОС арепового лиганда (практически полностью) и значительного количества окиси углерода (табл. 2). Другими продуктами реакции являются СО2, окись металла и, в случае окисления ЭОС молибдена,— гексакарбонил. Далее установлено, что окись углерода, введенная в реакционную смесь в процессе автоокисления аренкарбонильного комплекса хрома (молибдена), ие подвергается окислению, следовательно, образование СО2 осуществляется непосредстветю е процесс окислительной деструкции. [c.11]

    Диссоциация пентакарбонила железа приводит к образованию коненса Ре (С0)4. Окись углерода —лиганд сильного поля, и соответственно коненс Ре (С0)4 является низкоспиновым и должен иметь в основном состоянии свободную орбиталь, близкую по энергии полностью занятой орбитали. Наличие вакантной орбитали обусловливает возможность образования как я-комплекса при взаимодействии с мягким основанием (молекулой олефина)  [c.47]

    В системе также образуется окись углерода, но со сравнительно низким выходом. По-видиыому, СО возникает при взаимодействии небольшой части радикалов СООН с молекулами Н2О2  [c.255]

    При прямом синтезе на поверхности твердого исходного материала сначала происходит адсорбция газообразных молекул окиси углерода [1,2]. Физическая адсорбция молекул газа сопровождается относительно небольшим тепловым эффектом. Поглощенный газ может быть десорбирован без особого труда. Для активированной адсорбции характерны все черты химического взаимодействия, т. е. наличие значительной энергии активации, большого теплового эффекта (по определению Сотодзаки [3] энергия активации окиси углерода на поверхности никеля достигает 26,88 ккал1моль), больших затруднений в десорбции. Десорбировать окись углерода с поверхности металлического никеля можно только разрушив ее, например, окислением кислородом до углекислоты или разложив карбонильное соединение на составные части нагреванием. Скорость хемосорбции возрастает с повышением температуры. Внутренние связи адсорбированных молекул деформируются, и возникают поверхностные соединения. [c.23]

    При температурах ниже 1000° С окись углерода является нестойким соединением и разлагается на углекислоту и твердый сажистый углерод последний отлагается в порах глинистого материала. При температурах выше 1000° С, наоборот, в присутствии. углерода нестойкими являются углекислота и пары воды. Раскаленный мелкодисперсный углерод при этом, с одной стороны, реагирует с углекислотой и парами воды, образуя активные газообразные восстановители СО и Нг, а с другой стороны, вступает в непосредственное взаимодействие с окислами железа как прямой восстановитель. Однако твердый сажистый углерод лишь в небольшой степени участвует в процессе как прямой восстановитель, так как реакции между углеродом и окислами железа в твердых фазах протекают значительно медленнее, чем в газовых, и проходят с поглощением большого количества тепла. При переходе углерода из твердого состояния в газообразное на одну молекулу углерода затрачивается 92 080 кал. Можно предположить, что восстановление окислов железа твердым углеродом происходит также через окись углерода, которая, реагируя с окислами железа, дает углекислоту, а последняя при взаимодействии с раскаленным углеродом по реакции -f O2 = 2 O образует двойной объем окиси углерода. Раскаленный углерод реагирует также с парами воды по [c.53]

    Необходимость получения соответствующего соотношения катализатора и промотора доказана на многих примерах. Медсфорт [198] установил, что добавление 0,5% окиси церия к никелевому катализатору повышает скорость реакции в 10 раз в этом катализаторе 1 молекула окиси церия приходится на ИЗО атомов никеля. При разложении перекиси водорода в присутствии соли железа, активированной в качестве промотора солью меди, максимальная скорость реакции достигается при добавлении 1 ашллимоля соли меди на 1 л максимальная концентрация промотора, повидимому, не зависит от концентрации катализатора [55]. Хэст и Райдил [126] изучили влияние концентрации промотора при селективном сжигании окиси углерода на медном катализаторе (фиг. 27а). Окись меди получалась взаимодействием меди и кислорода при низких температурах. [c.360]


Смотреть страницы где упоминается термин Окись углерода взаимодействие молекул: [c.537]    [c.99]    [c.45]    [c.380]    [c.135]    [c.26]    [c.117]    [c.71]    [c.60]    [c.287]    [c.129]    [c.275]    [c.27]    [c.471]    [c.185]    [c.155]   
Инфракрасные спектры адсорбированных молекул (1969) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Молекула взаимодействие

Углерод молекула



© 2025 chem21.info Реклама на сайте