Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Интенсивность линий рентгеновского излучения

    Интенсивность линий рентгеновского излучения в значительной степени зависит от химического состава, геометрии и физических свойств пробы. В зависимости от вида и химического состава пробы ее готовят для анализа различными методами. Эта могут быть прессованные с какой-либо основой таблетки, пропитанная анализируемым вепдеством фильтровальная бумага, сплавы и т. д. [c.46]

    Изучение переходов разл. серий во всех атомах, образующих исследуемое соед., позволяет детально определить структуру валентных уровней (или зон). Особенно ценную информацию получают при рассмотрении угловой зависимости интенсивности линий в эмиссионных спектрах монокристаллов, т.к. использование при этом поляризованного рентгеновского излучения существенно облегчает интерпретацию спектров. Интенсивности линий рентгеновского эмиссионного спектра пропорциональны заселенностям уровней, с к-рых совершается переход, и, следовательно, квадратам коэф. линейной комбинации атомных орбиталей (см. Молекулярных орбиталей методы). На этом основаны способы определения этих коэффициентов.  [c.240]


    Подробное изучение свойств характеристического рентгеновского излучения не входит в рассмотрение данной книги, и интересующийся читатель может найти это, например, в [50]. Ниже мы коснемся лишь некоторых фундаментальных для рентгеновского микроанализа понятий, таких, как энергетические уровни атома, критическая энергия ионизации, серии линий рентгеновского излучения и интенсивность рентгеновского излучения. [c.70]

    Теоретическая форма линии имеет симметричный вид относительно максимума интенсивности. Однако для ряда элементов форма линии несимметрична. Особенно сильна асимметрия у элементов переходной группы железа. Такая асимметрия линии объясняется спин-спино-вым взаимодействием 2р-электронов с электронами незаполненной Зй-оболочки [3]. Это взаимодействие приводит к расщеплению 2р-уровня, несимметричному относительно начального положения 2р-уровня. Так как расщепление меньше полной ширины каждого из подуровней, то форма результирующей линии становится асимметричной. Аналогичная картина асимметрии линий рентгеновского излучения наблюдается в некоторых химических соединениях и сплавах и связана с характером химических связей [3]. [c.806]

    Интенсивность линий рентгеновского спектра зависит от распределения бомбардирующих электронов по скоростям или от распределения интенсивности в спектре возбуждающего излучения в случае флуоресцентных спектров. При одинаковых условиях интенсивность характеристических линий спектра максимальна, когда максимальная интенсивность источника возбуждения соответствует энергии возбуждения данной линии. Интенсивность спектра зависит также от числа излучающих атомов, вероятности излучательного перехода и некоторых других факторов. Точная оценка величин, оказывающих влияние на интенсивность спектральной линии, очень сложна. Более надежны данные, так же как и в оптической эмиссионной спектроскопии, полученные по относительной интенсивности двух спектральных линий. [c.121]

    Количественные определения основаны на пропорциональности между интенсивностью линии характеристического излучения и концентрацией элемента в пробе. На абсолютную интенсивность линий влияют условия возбуждения и другие факторы, а также химический состав пробы, что приходится учитывать серией специальных измерений и теоретическими расчетами. Зависимость интенсивности линий рентгеновского спектра от концентрации элемента имеет более сложный характер, чем концентрационная зависимость интенсивности линий в эмиссионной спектроскопии. [c.130]


    Определим теперь, какая доля интенсивности //са [согласно равенству (54)] попадет в детектор с оптимальной апертурой, < ,сли коллимирование пучка осуществлено по схеме рис. 45. На этом рисунке не показан неподвижный коллиматор с широким угловым раствором, расположенный между образцом и кристаллом и служащий в основном для снижения интенсивности рассеянного рентгеновского излучения такой коллиматор заметно не уменьшает интенсивности той доли излучения линии Ка меди, которая в конце концов входит в детектор. Допустим, что пластины подвижного коллиматора, расположенного между кристаллом и детектором, имеют длину 100 мм, толщину 25 мк и удалены друг от друга на 0,25 мм. Это обеспечивает максимальную расходимость прошедшего через коллиматор пучка 0,3°. Для достаточно большого равномерно излучающего образца коллиматор теоретически пропускает долю мощности потока излучения, равную [c.127]

    Определение производилось на дифрактометре УРС-50И с фиксацией рентгеновского излучения счетчиком Гейгера — Мюллера и использованием фокусирующего кристалла — монохроматора (кварц). В качестве аналитических линий были выбраны для СзА — его самая интенсивная линия с = 2,70 А, для С АР — линия с = 2,63 А для СзЗ — линия с интенсивностью 7 по десятибалльной шкале с = 3,02 А. Большинство интенсивных линий Р-СаЗ накладывается на [c.91]

    Если электрон выбивается с 14 -орбитали, то возникает /С-серия рентгеновского излучения, при удалении электрона с 2s - 2р -орбиталей - L -серия. Наиболее вероятны переходы на вакантную li -орбиталь с уровней 2/Р и Pj/2 -оболочки и Ру/2 М -оболочки. Этим переходам отвечают линии рентгеновского спектра о(р, j и j соответственно, кото ые являются наиболее, интенсивными в спектре (рис. 1). Интенсивность остальных линий i 2-> s примерно на три порядка ниже и их можно не принимать во внимание. Съемка рентгенограмм проводится почти исключительно на излучении К -серии. Для возбуждения этого излучения энергия попадающих на анод электронов должна быть больше или равна энергии связи ls-электрона. Минимальное напряжение, при котором это реализуется, называется потенциалом, или напряжением возбуждения Uq ). [c.7]

    Одним из основных недостатков камер РКД и РКУ, как и других камер с фотографической регистрацией рентгеновского излучения, является неточность в значениях интенсивностей линий. Возможно, этот недостаток будет преодолен при более широком распространении микроденситометров -приборов для определения плотности почернения пленки I). Плотность почернения определяется формулой  [c.17]

    Ввиду пропорциональной зависимости между интенсивностью спектра тормозного излучения и квадратом высокого напряжения стремятся использовать рентгеновские трубки с максимально допустимым напряжением. Однако при определении легких элементов при высоком напряжении появляется очень сильное диффузное излучение, ухудшающее соотношение интенсивности линии к фону. Во избежание колебаний интенсивности подаваемое на трубку напряжение стабилизируют электронными приборами. [c.204]

    Специальные области применения. Применяя специальные рентгеновские трубки, можно получать узкие пучки лучей диаметром. 100 мкм. В связи с этим в сплавах и рудах можно качественно и количественно анализировать отдельные фазы и включения без разрушения образцов. В случае когда необходимо измерить очень малую интенсивность линий флуоресценции, можно даже отказаться от разложения излучения в спектр кристалл-анализа-тором и определять элементы по энергии соответствующих квантов при помощи амплитудного анализатора. [c.217]

    Жидкости и аморфные тела в отличие от кристаллов не дают дискретных дифракционных максимумов. Поэтому для исследования их структуры важно знать общий ход интенсивности в зависимости от угла рассеяния. Поскольку характеристический спектр рентгеновского излучения состоит из дискретных длин волн, каждая из которых дает свою дифракционную картину, то используемое излучение должно быть монохроматическим. Наиболее интенсивной в рентгеновском спектре является / ol-линия, поэтому кажется естественным, что в структурном анализе жидкостей используется именно /Са-излучение. Сопровождающее его /Ср-излучение рассеивается веществом независимо от / i-излучения. В результате возникают две дифракционные картины одна от Кш -, а другая от -излучения, что затрудняет их расшифровку. Поэтому ATp-излучение отфильтровывается. [c.91]

    Интенсивность фона, наблюдаемого на рентгенограммах, является не только результатом диффузного рассеяния рентгеновских лучей на образце, но также связана с инструментальными факторами (например, с рассеянием дифрагировавшего излучения атмосферным воздухом) [141]. Если инструментальные факторы одинаковы для исследуемых образцов, то появляется возможность сравнительного анализа роли самих образцов в формировании диффузного фона рассеяния на рентгенограммах. Интенсивность дифрагировавших рентгеновских лучей, зафиксированная на рентгенограмме, складывается из интенсивности рентгеновских пиков и интенсивности фона [130]. Для отделения интенсивности, связанной с фоном, в районе рентгеновских пиков, представленных псевдофункциями Фойгта, проводят базисные линии. Левая и правая точки каждой базисной линии соответствуют интенсивности фона слева и справа от рентгеновского пика. Для получения интегральной интенсивности фона площади под базисными линиями суммируют с площадями под линией фона вне рентгеновских пиков. [c.79]


    Интенсивности линий рентгеновского излучения определяются силами осцилляторов и частотами соответствующих переходов, а также статистическими весами уровней атомов. Вычисление сил осцилляторов представляет собой очень трудоемкую задачу. Однако для относительных интенсивностей линий внутри одного мультиплета можно получить простые соотношения, воспользовавшись следующим правилом Бургера—Дор-гело если расщеплением начальных (конечных) уровней пренебречь, то суммы интенсивностей тех линий, [c.805]

    На зависимости интенсивности линии рентгеновского эмиссионного спектра от концентрации соответствующего элемента основан рентгеновский флуоресцентный аиализ (РФА), к-рый широко используют для количеств, анализа разл. материалов, особенно в черной и цветной металлургии, цементной пром-сти и геологии. При этом используют вторичное излучение, т.к. первичный способ возбуждения спектров наряду с разложением в-ва приводит к плохой воспроизводимости результатов. РФА отличается экспрессностью и высокой степенью автоматизации. Пределы обнаружения в зависимости от элемента, состава матршц, и используемого спектрометра лежат в пределах 10" -10 %. Определять можно все элементы, начиная с Mg в твердой или жидкой фазе. [c.240]

    Относительные интенсивности линий. Хотя имеется большое число возможных переходов для заполнения вакансий на оболочке, за счет которых возникают линии рентгеновского излучения различной энергии, например Ка и К или вплоть до 25 различных -линий, вероятность каждого типа перехода меняется в значительной степени. Относительные интенсивности линий означают относительные вероятности образования линий внутри серии, т. е. линий, возникающих за счет ионизации данной оболочки. Отметим, что относительное соотношение линий устанавливается внутри серии, например такой, как -серия эти величины не включают в себя относительные соотношения линий между сериями, как, например, /С-серии по отношению к -серии. Относительные интенсивности линий в серии сложным образом меняются в зависимости от атомного номера. Соотношение линий в /С-серии хорошо известно, но в - и М-се.-риях они известны гораздо меньше. В табл. 3.7 в первом приближении приведены относительные интенсивности линий значительной интенсивности относительные интенсивности линий являются полезными при интерпретации спектров, наблюдаемых с помощью рентгеновского спектрометра с дисперсией по энергии. [c.76]

    Для измерения энергии и интенсивности характеристического рентгеновского излучения используют спектрометры с волновой и энергетической дисперсией (рис. 10-2.9). Энергодисперсионные рентгеновские спектрометры регистрируют одновременно все длины волн в спектре, позволяя проводить определение элементов от Ве до и (при использовании безоконных детекторов). Эти спектрометры состоят из полупроводникового детектора (кремния, легированного литием), преобразующего энергию фотонов в электрические импульсы, напряжение которых пропорционально энергии фотонов. Таким образом происходит дискриминация фотонов по энергиям. Разрешение энергодисперсионных спектрометров составляет около 140 эВ для линий средней энергии [c.333]

    Интенсивность лини > характеристического излучения можно увеличить, если повысить энергию источника возбуждения. Например, обычно рентгеновское издучение получают при бомбардировке пластинки, изготовленной из образца, электронами, ускоренными высоким потенциалом интенсивности излучения / связана с приложенным потенциалом выражением  [c.80]

Рис. 1. С.хема рентгеновского многоканального флюоресцентного спектрометра с плоским (о) и изогнутым (б) кристаллами 1 — рентгеновская трубка 2 — анализируемый образец 3 — диафрагма Соллера 4—плоский и изогнутый (радиус — 2Н) кристалл-анализаторы 5— детектор излучения 6 — т. н. монитор, дополнительное регистрирующее устройство, позволяющее осуществлять измерение относительной интенсивности спектральных линий при отсутствии стабилизации интенсивности источника рентгеновского излучения Я — радиус т. н. окружности изображения. Рис. 1. С.хема <a href="/info/1427550">рентгеновского многоканального</a> флюоресцентного спектрометра с плоским (о) и изогнутым (б) кристаллами 1 — <a href="/info/16960">рентгеновская трубка</a> 2 — анализируемый образец 3 — диафрагма Соллера 4—плоский и изогнутый (радиус — 2Н) <a href="/info/18812">кристалл-анализаторы</a> 5— <a href="/info/380788">детектор излучения</a> 6 — т. н. монитор, дополнительное <a href="/info/1158770">регистрирующее устройство</a>, позволяющее осуществлять <a href="/info/207875">измерение относительной</a> <a href="/info/1492521">интенсивности спектральных линий</a> при отсутствии стабилизации интенсивности <a href="/info/1565867">источника рентгеновского излучения</a> Я — радиус т. н. окружности изображения.
    ОДНОГО фильтра последовательно в два различных положения. Этот метод, напоминающий одну из работ Баркла (см. 1.8), основан на том, что в двух положениях фильтра, показанных на рис. 43, интенсивность рассеянного рентгеновского излучения, попадающего на детектор, одинакова, тогда как интенсивность характеристической линии различна она значительно меньше, когда фильтр расположен между образцом и детектором. [c.124]

    Количественный анализ катализаторов методом диффракции рентгеновских лучей сложен и не очень точен по следующим причинам а) диффузный фон, образующийся как из-за особенностей аппаратуры, так и из-за различного рода неупорядоченности в кристаллитах б) расширение линий в) различие в отражениях от различных фаз вследствие различий в рассеивающей силе составляющих атомов г) различия в интенсивности рассеивания, определяющиеся размерами единичной ячейки и степенью асимметрии д) случайная интерференция линий е) флюоресцентное излучение от образца и трудности, присущие методам измерения интенсивности линий. Применение в качестве стандарта кристаллического образца с диффракционными линиями, близкими к линиям определяемой фазы, смягчает влияние некоторых из указанных факторов. Интенсивность рассеянного рентгеновского излучения, вызванного наличием данной фазы, с поправкой на различные. эффекты, указанные выше, линейно зависит от ее концентрации, но четкость диффракционной картины зависит от величины и упорядоченности кристаллитов. Большие кристаллиты дают резкие интенсивные диффракционные линии, в то время как маленькие кристаллиты дают широкие размытые линии. В некоторых случаях вещества с очень маленькими кристаллитами, например голи аморфной окиси железа, дают очень широкие диффракционные линии, которые с большим трудом можно отличить от фона беспорядочно отраженного рентгеновского излучения [8]. Поскольку многие катализаторы приготовляются методами, обусловливающими образование относительно аморфных структур с сильно развитой поверхностью, их рентгенограммы получаются слабыми и расплывчатыми и даже качественный анализ по рентгенограммам представляет большие трудности. Смесь малых количеств кристаллического вещества с большим количеством почти аморфг ного вещества может дать диффракционную картину только кристаллического вещества. Интенсивность диффракпионных линий увеличивается с ростом порядкового номера атомов, образующих кристаллическую решетку. В отработанных железных, кобальтовых или никелевых катализаторах синтеза углеводородов из окиси углерода и водорода обычно нельзя установить характеристическиа линии углерода, даже если он присутствует в значительных количествах. Однако углерод, присутствующий в виде карбидов, можно обнаружить, поскольку расстояния между отражающими плоскостями из атомов металлов в карбидах обычно отличаются от этих расстояний в чистом металле. [c.37]

    Сравнительно недавно [27] были получены спектры РФС газообразных веществ, ранее исследуемых методом УФС. Полученные интересные результаты основаны на относительных поперечных сечениях фотоионизащ1и валентных электронов в зависимости от энергии источника. Например, для рентгеновского излучения с больщей энергией электроны на молекулярной орбитали, составленной главным образом из атомных 5-орбиталей, имеют более высокое относительное поперечное сечение (и, следовательно, большую интенсивность спектральной линии), чем электроны на молекулярной орбитали, составленной в основном из атомных 2р-орбиталей. Сопоставление спектров РФС и УФС указывает на различные относительные интенсивности соответствующих пиков. Пик, обусловленный электронами на молекулярных орбиталях, составленных главным образом из атомных орбиталей 5-типа, имеет большую относительную интенсивность в спектре РФС, чем в спектре УФС. [c.340]

    Студенты изучают принцип действия прибора, который заключается в излучениии маломощной рентгеновской трубкой и фиксировании определенных длин волн излучения. Наличие характерных спектральных линий свидетельствует об элементном составе образца. Интенсивность линий связана с количественным содержанием. Студенты учатся рассчитывать количественные содержания химических элементов с помощью микропроцессора или персонального компьютера путем сравнения с результатами анализа стандартных образцов, осваивают пробоподготовку, метод измерений, рассчитывают нормы погрешностей спектрального анализа. [c.56]

    Фазовый состав катализаторов. Для общего фазового анализа катализаторов используются в основном два метода — рентгенография и дифракция электронов (электронография), хотя для некоторых специальных задач могут применяться и другие физические методы — магнитной восприимчивости, термография, ЭПР, различные виды спектроскопии. Практически наиболее широко применяется рентгенография, основанная иа дифракции характеристического рентгеновского излучения на поликристаллических образцах. Каждая фаза имеет свою кристаллическую решетку и, следовательно, дает вполне определенную дифракционную картину. На дебаеграмме каждой фазе соответствует определенная серия линий. Расположение линий на дебаеграмме определяется межплоскостными расстояниями кристалла, а их относительная интенсивность эависит от расположения атомов в элементарной ячейке. Межплоскостные расстояния d вычисляются по уравнению Брэгга—Вульфа  [c.379]

    Для проведения количественного химического анализа в исследуемом многокомпонентном образце и эталоне, представляющем собой чистый элемент, в одних и тех же условиях измеряют интенсивность рентгеновской характеристической линии данного элемента. Отношение интенсивностей этих линий дает приближенные данные о количестве элемента в материале. Для повышения точности данных в полученные результаты нужно внести обязательные поправки, учитывающие особые условия нахождения элемента в многоком-понентном образце по сравнению с чистым эталоном. Это составляет разницу в поглощении рентгеновского излучения в анализируемом образце и эталоне, дополнительное возбуждение определяемого элемента в образце характеристическим излучением других элементов и т. п. Отсутствие точных данных о величине коэффициентов поглощения рентгеновского излучения такими эле- [c.152]

    Использованные в предыдущих разделах формулы для дифракции рентгеновского излучения, в частности формулы расчета интенсивностей линий, выведены для идеальномозаичных кристаллов, когда для реального кристалла предполагается модель, по которой они содержат области с совершенной структурой (области когерентного рассеяния, ОКР), несколько разориентированные друг относительно друга. При размерах ОКР около 1000 А доля граничных областей с несколько искаженной структурой мала и практически не отражается на дифракционной картине. Размер ОКР обычно меньше размеров частиц, т.к. каждая частица может содержать не одну ОКР, а несколько, поэтому отождествление размеров ОКР и частиц неправомерно. Иногда ОКР называются кристаллитами, что и может создать подобную иллюзию. Лишь при малых размерах ОКР (меньше 100 А) это различие становится малосущественным. [c.228]

    При съемке кристаллов белков, нуклеиновых кислот и других объектов с очень большими параметрами решетки, когда общее число отражений достигает нескольких десятков или сотен тысяч, а также при съемке кристаллов, нестабильных во времени или разлагающихся под действием рентгеновского излучения, возникает необходимость ускорения рентгеновского эксперимента. Один из естественных методов ускорения — повышение мощности рентгеновских трубок, в частности использование трубки с вращающимся анодом или переход к другим источникам мощного у-излучения. Второй метод — замена последовательного измерения отражений в обычных дифрактометрах одновременным измерением многих дифракционных пучков с помощью специальных устройств. В настоящее время разработаны так называемые многоканальные дифрактометры, оснащенные системой из нескольких (трех или пяти) параллельно перемещаемых счетчиков, которые регистрируют дифракционные лучи, возникающие одновременно (или почти одновременно) на разных слоевых линиях в процессе вращения кристалла. Эти приборы предназначены специально для кристаллов с большими периодами. В стадии технического совершенствования находятся в принципе более перспективные координатные детекторы, как олтномерные, так и двумерные. Одномерный координатный детектор позволяет измерять интенсивность всех дифракционных лучей одной слоевой линии (в том числе возникающие одновременно) с регистрацией угловой координаты (а следовательно, и индексов) каждого луча. Аналогичным образом двумерный координатный детектор позволяет регистрировать дифракционные лучи всех слоевых линий. [c.64]

    После охлаждения образцы по грани 8 х 35 мм шлифовали, исследовали их структуру на металлографическом микроскопе МИМ-8М и по методу Глаголева определяли объемное содержание связующего сплава по длине образцов. Распределение меди и кобальта по длине образцов исследовали методом локального рентгеноспектрального анализа на установке Микроскан-5 . Облучение образцов проводили электронным зондом длиной 1000 и шириной 2 мкм. Это позволило замерять усредненную интенсивность рентгеновского излучения исследуемых элементов и избежать влияния структуры сплава (зернистости) на измерение интенсивностей. Пять участков измерения интенсивностей располагались на грани 8 X 35 жж по линии, перпендикулярной продольной оси грани, расстояние между этими линиями составляло 0,5 мм. В образцах, контактировавших с расплавом кобальта, количественное содержание связующего металла находили также путем сравнения отношений интенсивностей кобальта и вольфрама (/со// у) с отношением интенсивностей этих элементов в эталонах. Абсолютная ошибка определения содержания кобальта составляла 0,5 об. %. Разность результатов определения содержания связующего металла по методике Глаголева и путем измерения отношений интенсивностей не превышала 0,8 об.%. [c.95]

    Рентгеноспектральный микроанализ основан на возбуждении электронным зондом характеристич. рентгеновского излучения исследуемого образца (см. Рентгеновская спектроскопия). Рентгеновские микроанализаторы создают на основе просвечивающих и растровых электронных микроскопов. Они состоят из электронной пушки с системой линз для формирования электронного зонда, рентгеновского спектрометра, к-рый разлагает излучение в спектр и преобразует его в электрич. сигналы, и регистрирующей системы. В приборе поддерживается высокий вакуум. По спектру характеристич. рентгеновского излучения определяют атомные номера элементов, а по интенсивности спектральных линий — их концентрации. Метод примен. для качеств. и количеств, определения всех хим. элементов, начиная с В абсолютные и относит, пределы обнаружения соотв. 10" —10 г и 10 —10 %. Относит, стандартное отклонение при количеств, анализе 0,02—0,05. Объем образца, к-рый можно анализировать данным методом, зависит гл. оор. от энергии первичных электронов [1—50 кэВ, или (0,16—8)-10 Дж], плотности образца, степени поглощения излучения и составляет 0,1—10 мкм . Рентгеноспектральный анализ примеп. для определения состава микровключений, распределения элементов в тонких слоях и фазового анализа твердых в-в, [c.701]

    Для рентгеновского флуоресцентного определения используется /С-излучение алюминия. Указывается [11291, что 81, Са и Ре не влияют на определение алюминия. Однако, согласно Савелли [11431, интенсивность линий А1 — Ка. увеличивается в присутствии 81 (4% 8Ю2 эквивалентны 0,1% А12О3). Поэтому надо вводить поправку на 8102. [c.166]

    Измерение интенсивности линий А1 — Ка проводится на рентгеновском флуоресцентном спектрометре (ХКО — 3, ХКО — 5, фирмы Филипс) с хромовой и вольфрамовой трубками. Трубка с хромовым анодом лучше, так как в этом случае интенсивность флуоресцентного излучения у алюминия в 4 раза выше, чем с трубкой с вольфрамовым анодом [Б4А, 620, 11781. На трубки подают напряжение 40—50 кв, ток 20—50 ма. В качестве кристаллов анализаторов для разложения лучей в спектр используются пентаэритрит и этилен-диаминдитартрат. Детектор для измерения интенсивности спектральных линий представляет собой газопроточный пропорциональный счетчик с амплитудным анализатором (смесь 90% аргона и 10% метана). Рекомендуются особо тонкие пленки для окон пропорцио нальных счетчиков. [c.166]

Рис. 3.48. Изменение отиошеиия S интеисивиости образующегося косвенного рентгеновского излучения к полной интенсивности рентгеновского излучения в зависимости от атомного номера 2 для линий и [57]. Рис. 3.48. Изменение отиошеиия S интеисивиости образующегося косвенного <a href="/info/28163">рентгеновского излучения</a> к полной <a href="/info/135101">интенсивности рентгеновского излучения</a> в зависимости от <a href="/info/7168">атомного номера</a> 2 для линий и [57].

Смотреть страницы где упоминается термин Интенсивность линий рентгеновского излучения: [c.236]    [c.273]    [c.6]    [c.81]    [c.256]    [c.153]    [c.7]    [c.359]    [c.107]    [c.107]    [c.124]    [c.111]    [c.18]    [c.27]    [c.214]    [c.75]    [c.94]    [c.245]   
Физические методы анализа следов элементов (1967) -- [ c.203 ]




ПОИСК





Смотрите так же термины и статьи:

Линии интенсивность

Линия излучения

Рентгеновское излучение



© 2024 chem21.info Реклама на сайте