Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ряды органические

    Первоначально свойства и поведение поляризованного света интересовали исключительно физиков. Однако в 1815 г, французский физик Жан Батист Био (1774—1862) показал, что при прохождении поляризованного света через некоторые кристаллы происходит поворот плоскости колебаний (плоскости поляризации) световых волн. В одних случаях она поворачивается по часовой стрелке (правое вращение), в других — против часовой стрелки (левое вращение). К числу кристаллов, обладающих указанным свойством,— оптической активностью, относятся и кристаллы ряда органических соединений. Белее того, некоторые из этих органических соединений, например различные сахара, оптически активны и в растворах. [c.86]


    Многочисленные опыты показывают, что в среде жидкого кислорода и воздуха горение ряда органических веществ протекает более интенсивно. Необходимо при этом, чтобы реакция началась до соприкосновения с жидким кислородом или воздухом. Например, уголь дуговой лампы, один из концов которого нагрет до красна, при погружении в прозрачный сосуд Дьюара с жидким кислородом продолжает гореть очень спокойно с интенсивным выделением света и теила. Бурная реакция происходит при погружении в сосуд с жидким кислородом раскаленных проволок из стали и магния. В ряде случаев реакция горения сопровождается взрывом. Например, прп погружении в жидкий воздух горящего кусочка фосфора происходит сильный взрыв. Смеси жидкого кислорода со спиртом и керосином обладают очень сильными взрывчатыми свойствами при наличии достаточного импульса. Эти свойства жидких воздуха и кислорода позволили использовать их для получения взрывчатых веществ. В качестве взрывчатого вещества вначале применяли древесные опилки, пропитанные жидким воздухом, обогащенным кислородом. В настоящее время взрывчатые вещества, представляющие смесь тонко измельченного горючего вещества с жидким кислородом, получили название оксиликвитов [22] и их широко применяют в промышленности. [c.44]

    В жидком и растворенном состоянии, а также в парах при температурах ниже 1000°С устойчивы четырехатомные молекулы Р , имеющие форму тетраэдра (см. с. 233). При конденсации паров образуется белый фосфор (пл. 1,8 г/см ). Он имеет молекулярную кристаллическую решетку, в узлах которой находятся молекулы Р4. Белый фос-фзр — мягкое бесцветное воскообразное вещество. Он легкоплавок (т. пл. 44,ГС, т. кип. 275°С), летуч, растворяется в сероуглероде и в ряде органических растворителей. Белый фосфор чрезвычайно ядовит  [c.366]

    ВО много раз ускоряет присоединение водорода к кислороду и к различным органическим соединениям. А Кирхгоф в 1812 г. показал, что кислота значительно ускоряет расщепление ряда органических соединений. Причем ни платина, ни кислота в процессе реакции не расходуются, количество их остается неизменным. [c.115]

    Фосген — важный промышленный продукт. Он применяется пр производстве ряда органических и неорганических веществ, на пример красителей. [c.444]


    Азеотропная перегонка основана на способности ряда органических соединений образовывать друг с другом или с водой нераздельно кипящие смеси, имеющие температуру кипения ниже температуры кипения воды. В этом случае извлекаемое соединение вместе с дистиллатом поступает на дальнейшую переработку. [c.489]

    При исследовании искровых разрядов с заряженной поверхности ряда органических жидкостей установлено, что максимально возможная энергия разряда с жидкой поверхности на заземленный металлический электрод пропорциональна четвертой степени поверхностного потенциала, т. е. [c.344]

    Адсорбируясь на поверхности металла, эти вещества могут существенно снижать скорость электрохимических реакций, вызывающих коррозию. Ионы галогенов в кислых растворах способствуют адсорбции ряда органических соединений (преимущественно азотсодержащих органических оснований) на поверхности железа и мягких сталей и, следовательно, усиливают замедляющее действие ингибиторов. [c.641]

    Ацетон используется также как исходное вещество для синтеза ряда органических соединений. [c.486]

    Природный графит встречается редко и находит ограниченное применение. В больших количествах используют искусственный графит, получаемый нагреванием в электропечи при 2200—2800 °С углей или нефтяного кокса (продукт пиролиза нефтяного пека). Различные формы графита получают также пиролизом (сильное нагревание без доступа воздуха) ряда органических соединений,в том числе полимеров. Содержание примесей в полученном углероде, его структура, механическая прочность и другие свойства очен . сильно зависят от исходного вещества и технологии термической обработки. Продукты пиролиза, представляющие по составу почти чистый углерод, но полученные в разных условиях, сильно отличаются друг от друга — это различные углеграфитовые материалы. [c.354]

    В Советском Союзе имеются громадные месторождения сульфатов кальция и натрия, которые пока что не используются в производстве серной кислоты, т. е. являются потенциальным сырьем. Необходимо также использовать гипс, который является отходом производства фосфорной кислоты путем воздействия серной кислоты на природные фосфаты кальция. При травлении стали серная кислота превращается в сульфаты железа. При очистке нефтепродуктов остается кислый гудрон, содержащий серную кислоту. В ряде органических производств получается в виде отхода разбавленная серная кислота, сильно загрязненная органическими примесями. Все эти и им подобные отходы производств, содержащие серную кислоту или ее соли, при нагревании в присутствии восстановителей дают диоксид серы, который можно перерабатывать на серную кислоту. [c.118]

    На рис. 15.1 показаны различные виды изотерм (кривые 1—4). Одной из наиболее типичных является 5-образная (рис. 15.1, кривая 2) диэлектрическая изотерма, полученная для ряда органических и неорганических сорбентов. Эта изотерма состоит из трех участков А, В, С. Согласно слоистой модели, молекулы первого слоя (участок А) обладают сравнительно малой ориентационной способностью в электрическом поле вследствие их сорбции на наиболее активных центрах. Такими центрами являются функциональные группы, способные образовывать водородные связи, дефекты структуры кристалла, координационно ненасыщенные атомы [647]. Молекулы второго слоя более подвижны и дают больший вклад в ориентационную поляризацию сорбата, что выражается в более высоких значениях й /йа (участок В). Однако при достаточно больших величинах сорбции с развитием сетки водородных связей происходит цементация сорбата, его структура становится более жесткой. [c.243]

    Кроме того, часто возникают и другие осложнения процесса разделения. Значения pH смещаются в сторону кислых или щелочных сред, что ускоряет гидролиз полимерных мембран. Возможно обезвоживание набухающих мембран, сопровождающееся необратимым изменением их структуры. В концентрированных растворах ряда органических веществ может происходить растворение мембран. В результате дополнительного воздействия концентрационной поляризации на мембране могут выпадать в осадок малорастворимые соли, а при ультрафильтрации высокомолекулярных соединений образуется гелеобразный слой, что нарушает нормальную работу аппаратов. [c.188]

    При помощи уравнений (У,5) и (V, ) исследован процесс фильтрования различных жидкостей (вязкость 0,7-10 —9-10- Н-с м- ) через слои заранее полученных осадков с неодинаковой степенью сжимаемости и размером твердых частиц от 1 до 350 мкм [170]. Для получения осадков применяли суспензии стальных сферических частиц, частиц песка и сульфата натрия, а также частиц ряда органических веществ, в частности антрахинона, антрацена, у-кислоты, фталевой кислоты. Установлена зависимость между переменными величинами е и ЛР  [c.176]


    В табл. 1-3 перечисляется ряд органических жидкостей, применяемых в качестве растворителей в экстракционных процессах. Они разделены на три класса по следующим признакам  [c.15]

    Если данных для соединен йй, строго однотипных с рассматриваемым, недостаточно, на практике нередко возникает необходимость использовать для сопоставления свойств вещества менее однотипные, например соединения элементов второго ряда периодической системы (лития, бериллия, бора) или аналогичные соединения элементов, принадлежащих к другой подгруппе (и даже к другой группе) периодической системы, или первые члены гомологических рядов органических соединений. В таких случаях хорошие результаты получаются с помощью метода двойного сравнения (см. 19). [c.177]

    Химическая термодинамика особенно быстро развивалась в XX в. На ее основе проведены фундаментальные исследования по синтезу аммиака, метанола и получения ряда органических веществ, имеющих большое народнохозяйственное значение, синтезированы искусственные алмазы и др. Были разработаны более совершенные установки для определения тепловых эффектов реакций и теплоемкостей, которые позволили значительно снизить экспериментальные ошибки, что в свою очередь, дало возможность с большей точностью вычислять константы равновесия химических процессов. В этот же период времени были предложены более совершенные методы расчета химического равновесия как при низких, так и при высоких давлениях. Проводились и в настоящее время проводятся обширные термодинамические исследования в области растворов. Особую важность приобрели исследования химических процессов при экстремальных условиях. [c.181]

    Полярографический метод широко используется, например, для определения незначительных примесей в металлах и горных породах, при анализе ряда органических веществ, а также для определения констант нестойкости комплексны. соединении, изучения скорости и механизма электродных процессов и др. [c.505]

    Значительные количества серной кислоты используются также при производстве ряда органических продуктов, в частности спиртов, фенолов, красителей, неорганических пигментов, текстильных волокон, взрывчатых веществ, нефтепродуктов, целлюлозы и бумаги, моющих средств, неорганических продуктов, в том числе квасцов и плавиковой кислоты, а также для выщелачивания руд, травления металлов и в свинцовых аккумуляторах. Использование кислоты по некоторым из этих направлений уменьшается, по другим — увеличивается, но общее ее потребление растет очень медленно, исключая производство удобрений. [c.241]

    При термическом разложении метана можно получить такие ценные продукты, как водород, необходимый для ряда органических производств (гидрирование жиров, деструктивная гидрогенизация углеводородов, гидрпроваппе угля — см. ниже, главу XI) и сажу, широко применяемую в каучуковой нромышленностн в качестве наполнителя, а также для многих других целей. [c.245]

    Энергетический кризис, начавшийся в 1973 г., в 3—4 раза повысил цену сырой нефти в несколько раз возросли цены на ряд органических полупродуктов [8, 9]. Результатом явилось некоторое замедление темпов увеличения производства ароматических [c.146]

    Растворы, близкие по свойствам к идеальным растворам, существуют в действительности. Они образуются из веществ, близких по своей природе смеси изотопов, смеси изомеров, смеси соседних гомологов в рядах органических соединений, смеси органических веществ с разными замещающими функциональными группами и т. п. Получим простое соотношение между химическим потенциалом компонента идеального раствора и его составом. Для изменения химического потенциала компонента при образовании раствора в соответствии с уравнением (VI, 6) можно написать  [c.211]

    Развитие ряда органических производств и в первую очередь производства капролактама и волокон на его основе, привело к значительному увеличению выпуска сульфата аммония. В среднем на 1 т капролактама побочно производится [c.208]

    За прошедшие два столетия после М.В. Ломоносова накопилось огромное количество химических, геохимических и геологи — еских данных по проблеме происхождения нефти. В настоящее ьремя преобладающая часть ученых считает наиболее обоснованными представления об органическом генезисе нефти. В пользу органической гипотезы неоспоримо свидетельствуют обнаруженная поразительная генетическая связь между групповыми компонентами нефти, твердых горючих ископаемых и исходных материнских Beuj,e TB (биологический аргумент), а также прямые экспе — )именты по органическому синтезу нефти, подобной природной. Так, в нефтях обнаружен ряд органических соединений, являющихся как бы "биогенными метками" от исходного материнского пещества. К таковым относятся порфирины — структурные фрагменты хлорофилла и гемоглобина животных изопреноидные угле — подороды, например, с одним лишь идентичным природному [c.52]

    Производные с числом углеродных атомов более двух могут быть получены из олефиновых углеводородов. Поэтому наибольший интерес представляют кислородные произеодные метана муравьиный альдегид или формальдегид (СН2О) [45,46], применяющийся в производстве пластмасс и в промышленности органического синтеза, й также в медицине в качестве дезинфицирующего средства метанол или метиловый спирт (СН3ОН), используемый для выработки формальдегида и для ряда органических синтезов муравьиная кислота (НСООН), применяемая в текстильном, кожевенном, консервном и дру- гих производствах. [c.26]

    Хлористый алюминий легко растворим в ряде органических растворителей, и такие растворы обычно обладают в различной степени каталитическими свойствами. Растворы соли в нитро-алканах эффективны в промотировании алкилирования изопарафинов и ароматики олефинами, но оказывают слабое влияние на изомеризацию парафинов. Они показывают только сдерживающие действия по отношению к нафтепам [658]. Однако растворы хлористого алюминия в простых и сложных эфирах, ацетоне, бензофеноне, нитробензоле и двуокиси серы, особенно концентрированные растворы, содержащие молярный излишек растворенного вещества, являются сильными катализаторами и для алкилирования и для изомеризации парафинов [659]. [c.143]

    Применение пероксида водорода связано с его окислительной способностью и с безвредностью продукта его восстановления (Н )0). Его используют для отбелки тканей и мехов, применяют в медицине (3% раствор — дезинфицирующее средство), в нишевой промышленности при консервировании пищевых продуктов), в сельском хозяйстве для протравливания семян, а также в производстве ряда органических соединений, полимеров, пористых материалов. Как сильный окислитель пероксид водорода используется в ракетной технике. [c.350]

    Водород гидроксильной группы легко замещается как кислотными, гак и щелочными радикалали. Можно также легко заместить атомы водорода в кольце атомами галоидов или ннтрогруппами. С рядом органических ооединений феноды дают продукты конденсации. [c.387]

    Исследовано [164] влияние ряда органических веществ на характеристики разделения 0,01 М раствора МаС1. В качестве мембран использовали ацетатцеллюлозные пленки производства ВНИИСС (г. Владимир). Рабочее давление составляло 5,0 МПа, температура 20 2°С. [c.194]

    Сероуглерод S2 и тетрахлорид углерода I4 — растворители многих веществ, их используют также /ля получения ряда органических соединений Ss расходуется в больших количествах в производстве вискозы. [c.367]

    Широко используются многие продукты кислотно-основных реакций. Так, например, фторид бора, являющийся мощным катализатором ряда органических реакций, неудобно хранить и транспортировать, так как это газообразное соединение. Поэтому ВРз часто применяют в виде эфирата РзВ 0(С2Н5)а как мы знаем, образование данного вещества представляет типичный случай кислотно-основного взаимодействия по Льюису (см. стр. 252). [c.255]

    Железо и никель, обладая взаимрюй растворимостью, дают непрерывный ряд твердых растворов. Никель способствует образованию сплавов с неограниченной -у-областью. Железоникелевые сплавы устойчивы в растворах серной кислоты, щелочей и ряда органических кислот. Однако железоникелевые сплавы не нашли широкого применения в качестве конструкционных материалов в химическом машиностроении, так как они не имеют особых преимуществ по сравнению с хромистыми сталями. [c.218]

    В неокисляющих, разбавленных кислотах — НС1 (до 15%), Н2304 (до 70%) и в ряде органических кислот никель достаточно устойчив па холоду, но коррозия его заметно ускоряется при увеличении концентрации окислителен (РеС1з, СиСЬ, АдМОз, гипохлориты) пли при наличии аэрации. Его поведение и этом отношемми похоже на поведение меди. В азотной кислоте ни-кел[> нестоек. [c.256]

    Что касается наличия в составе присадок металлов, главным образом бария, кальция, цинка и магния, то соли ряда органических кислот этих металлов, основные и сверхосновные, обладающие высокой щелочностью, нейтрализуют образующиеся в процессе работы двигателя продукты окисления масеЛ и способствуют диспергированию различных типов отложений в масле. [c.9]

    Исследованиями Эмануэля и Денисова [227] найдено объяснение и противоположному явлению — ингибированию окисления ряда органических соединений солями металлов переменной валентности. Это происходит в результате проявления некоторыми пероксидными радикалами окислительно-восстановительных свойств. Например, каждый катион металла бесконечно обрывает цепи ио реакции с гидроксииероксидным радикалом  [c.178]

    Вытеснительная десорбция осуществляется путем вытеснения из адсорбента поглощенного вещества (адсорбата) другим компонентом— вытеснителем (в литературе его принято называть десорбентом), к которому предъявляются следующие требования 1) хорощая сорбируемость и высокая способность замещать поглощенный компонент в адсорбенте 2) способность активно вытеснять поглощенный компонент из адсорбента 3) пожаро- и взрывобезопасность 4) низкая стоимость. В качестве компонента-вытеснителя органических веществ из адсорбента может применяться ряд органических веществ, аммиак, диоксид углерода, вода и т. д. [c.82]

    Случай а., который называется верхней критической точкой расслоения, наблюдается наиболее часто и был найден для целого ряда органических жидких смесей. Для нижней критической точки расслоения, показанной на рис. 29, б, примером являются системы вода—диэтиламини вода — триэтиламин. Замкнутая кривая растворения, которая приведена на рис. 29, в, была найдена в системе [c.223]

    Сераорганические соединения входят в состав большинства нефтей. По содержанию и составу сернистые соединения нефти сильно различаются. В нефтях, кроме элементной серы и сероводорода, присутствуют и органические соединения двухвалентной серы меркаптаны, сульфиды, тиофены, соединения типа бензо- и дибензотиофенов. Поэтому проблема технологии нефтехимической переработки серосодержащих нефтяных фракций требует разработки качественно новых экспрессных методов оценки физико-химических свойств фракций и входящих в них компонентов. В частности, таких важнейших характеристик реакционной способности, как потенциал ионизации (ПИ) и сродство к электрону (СЭ), которые определ пот специфику взаимодействия веществ с растворителями, термостойкость и другие свойства [1]. Чтобы перейти к изучению фракций серосодержащих нефтей целесообразно изучить зависимости изменений физико-химических свойств в гомологических рядах индивидуальных соединений, содержащих серу Определенные перспективы в этом направлении открывает электронная абсорбционная спектроскопия. Целью настоящей работы является установление существования подобных зависимостей между ПИ и СЭ в рядах органических соединений серы и логарифмической функцией интегральной силы осциллятора (ИСО). Основой данной работы явились закономерности [2-4], что ПИ и СЭ для я-электронных органических веществ определяются логарифмической функцией интегральной силы осциллятора по абсорбционным электронным спектрам растворов в видимой и УФ области. Аналогичные результаты получены для инертных газов. Обнаружена корреляция логарифмической функции ИСО в вакуумных ультрафиолетовых спектрах, ПИ и СЭ [3]. [c.124]

    В ИК-спектрах комплекса сульфоксидов с хлоридом палладия не ыло замечено сдвига частоты колебаний 50-группы от перво- начальной, на основании этого было сделано предположение о координации палладия в этом комплексе через серу. Данное предположение сорошо согласуется с результатами других работ 123]. При снятии ИК- спектров сульфоксидов различного строения было замечено отсутствие корреляции частоты колебаний 80-группы в зависимости от строения сульфоксидов, что не позволяет связать непосредственно экстракционную способность сульфоксидов с энергией 50-связи. В связи с этим нами предпринята попытка связать экстракционную способность сульфоксидов с основностью, что позволяет одновременно более четко установитьположениесульфоксидов в ряду органических окисей. Для определения основности сульфоксидов, ТБФ и ДАМФ применялась методика Тафта. [c.43]

    Алкилирование бензола пропиленом широко изучено Нъюлэн-дом с сотрудниками [24] в присутствии фтористого бора, растворенного в ряде органических и неорганических веществ. Последние рассматривались авторами как промоторы фтористого бора. По современным представлениям, эти вещества образуют с фтористым бором определенные молекулярные соединения и действуют как самостоятельные особые катализаторы. При этом скорость алкилирования и состав продуктов реакции зависят от скорости пропускания пропилена в смесь бензола и катализатора, а главным образом от природы того вещества, в котором растворяется ВРз. [c.76]


Смотреть страницы где упоминается термин Ряды органические: [c.459]    [c.229]    [c.87]    [c.172]    [c.25]    [c.271]    [c.270]    [c.243]    [c.241]    [c.12]   
Сочинения Научно-популярные, исторические, критико-библиографические и другие работы по химии Том 3 (1958) -- [ c.241 ]




ПОИСК







© 2025 chem21.info Реклама на сайте