Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Льюиса молекулярных орбиталей

    Теория молекулярных орбиталей позволяет объяснить парамагнитные свойства молекулы О2, обнаруживая наличие в ней двух неспаренных электронов, тогда как теория Льюиса не в состоянии сделать этого. В льюисовой структуре О 2 нет неспаренных электронов [c.529]

    Что эквивалентно представлению Льюиса о ковалентной связи в теории молекулярных орбиталей  [c.545]


    Развитие электронных представлений о строении атома и молекулы (начало XX в. Н. Бор, В. Коссель, Г. Льюис) привело к поискам решения этой проблемы на электронном уровне, а разработка в 30-х годах основ квантовой механики (В. Гейзенберг, Э. Шредингер, Э. Хюккель) послужила толчком для развития в теории строения и реакционной способности качественно нового метода — метода молекулярных орбиталей. Узловой теоретической проблемой современной органической химии стала теория активированного комплекса и механизма реакций. [c.9]

    Представление Льюиса о связи посредством пары электронов находит квантовомеханическое выражение в теории валентных связей. Как и метод молекулярных орбиталей, теория валентных связей является приближенным методом. Однако ее исходные положения о строении молекулы ближе подходят к обычным представлениям о локализованной химической связи. Согласно этой теории, атомы сохраняют свою индивидуальность, а связи возникают в результате взаимодействия валентных электронов при сближении атомов. Такая точка зрения удобнее для качественных [c.157]

    Для органических соединений характерны ковалентные связи. Первое их объяснение на основе модели поделенных электронных пар было предложено в 1916 г. независимо друг от друга Льюисом и Косселем. Согласно современной теории молекулярных орбиталей, электроны в молекуле размещаются на молекулярных орбиталях (МО), подобно тому как в атомах электроны размешаются на атомных орбиталях (АО). Теория МО основана на приближенном решении уравнения Шредингера, которое описывает поведение элементарных частиц с помощью представлений о волновом движении в пространстве. Как и АО, МО различаются своим видом и энергией. Нужно отметить, что, когда говорят об энергии орбитали, имеют в виду энергию размещенного на этой орбитали электрона. [c.52]

    В отличие от упомянутых в предыдущем параграфе модельных, наглядных представлений о химической связи квантовомеханический подход есть способ математического описания состояния (энергетического, пространственного) электрона в той или иной-системе (атоме, молекуле, кристалле и т. п.). Естественно, что может существовать и на самом деле существует несколько математических методов решения одной и той же квантовомеханической задачи о движении электрона. Эти методы не очень строго называют теориями химической связи, хотя они тождественны в своей физической основе и опираются на один и тот же расчетный аппарат волновой механики при этом, однако, различаются исходные позиции и из-за вынужденной приближенности расчетов (как уже отмечалось в гл. 4, уравнение Шредингера точно решается в настоящее время только в случае одноэлектронной задачи) отличаются количественные результаты, получаемые при различных степенях приближения. Поэтому в зависимости от объекта рассмотрения (конкретной молекулы) или поставленной задачи используются разные более или менее равноправные методы. Здесь будут рассмотрены два из них метод валентных связей (ВС) и метод молекулярных орбиталей (МО) первый благодаря его большей наглядности и связи с предыдущими теориями хид и-ческой связи, в частности с теорией Льюиса—Ленгмюра электронных пар, а второй — из-за лучшего описания строения и свойств, молекул при использовании его простейшей формы. [c.107]


    В начале настоящей главы мы расскажем о том, как атомы могут объединяться в молекулы. Рассмотрев различные типы связей, которые существуют в органических соединениях, мы обсудим теорию молекулярных орбиталей и применение этой теории для описания связей в некоторых малых молекулах. Затем мы перейдем к теории отталкивания электронных пар валентной оболочки и к понятию гибридизации, которые помогут нам представить образование связей в более сложных молекулах. Далее мы кратко расскажем о том, как структуры Льюиса используются для представления органических молекул. Часть этого рассказа будет посвящена расчету заряда ( формального заряда ) на атомах в молекулах. Наконец, мы остановимся на очень важной для понимания строения и реакций органических соединений теории резонанса. [c.27]

    На рис. 5.2,6 приведена схема молекулярных орбиталей для связи третьего типа на примере диборана. Это соединение очень реакционноспособно и мгновенно загорается на воздухе с выделением 78 кДж тепла в расчете на 1 г. Другие реакции, характерные для диборана, являющегося сильной кислотой Льюиса, приведены на рис. 5.2. Типичные для льюисовских кислот продукты присоединения образует и не существующий в мономерной форме ВНз. Другие гомологи до В5 в присутствии кислорода или воздуха мгновенно загораются с выделением тепла порядка 70 кДж-г . В данном случае тепловыделение в расчете на 1 г вдвое меньще, чем у Нз, но с бороводородами удобнее работать, и их применяют в качестве ракетного топлива. Гомологи выще Ве не возгораются. [c.274]

    Жесткие кислоты — кислоты Льюиса, в которых акцепторные атомы малы по размеру, и, следовательно, обладают большим положительным зарядом, большой электроотрицательностью и низкой поляризуемостью. Молекулярная орбиталь жест- [c.114]

    Принцип ЖМКО относится к реакциям обобщенных кислот и оснований Льюиса. В данном случае под кислотами понимают акцептор электронной пары — протон, катион ме-. талла, заряженный или нейтральный комплекс металла, органическое соединение — любую частицу А, имеющую вакантную атомную или молекулярную орбиталь. Соответственно под основанием понимают донор электронной пары — ацидо-лиганд или сложное органическое соединение — любую частицу В, имеющую электронную пару на верхней занятой атомной или молекулярной орбитали. Взаимодействие кислот и оснований Льюиса рассматривают как процесс обобществления по крайней мере одной пары электронов  [c.40]

    Развивая концепцию Льюиса, теория молекулярных орбиталей определяет кислотно-основные свойства на основе значений энергий занятых МО донора (О) и свободных МО акцептора (А). Наиболее важным в кислотноосновной реакции оказывается переход электронов с ВЗМО донора на НСМО акцептора эти орбитали ближе других по энергии. [c.112]

    Применение метода ЛКАО позволяет найти наглядное соответствие между молекулярной орбиталью У имеющейся молекулы А—В и атомными орбиталями Уд и Уд, из которых она образована. Представим себе, что два электрона, заселяющие орбиталь У, являлись валентными электронами атомов А и В, которые эти атомы и предоставляли для образования связи А—В. Очевидно, что этим электронам соответствовали АО Уд и Уд. Не менее очевидно, что при удалении атомов А и В на достаточно большое расстояние связь А—В разрывается, МО перестает существовать и оба электрона оказываются на Уд- и Рд- орбиталях. Это, хотя и весьма грубое описание, помогает лучше понять как взаимную связь атомных и молекулярных орбиталей, так и общий подход теории молекулярных орбиталей и более ранних электронных теорий (Льюис, Ленгмюр) к образованию химической связи. [c.609]

    Представление Льюиса о связи, осуществляемой парой электронов, находит квантовомеханическое выражение в теории валентных связей. Как и метод молекулярных орбиталей, теория валентных связей является приближенным методом. Однако ее исходные положения о строении молекулы ближе к обычным представлениям о локализованной химической связи. Согласно этой теории, атомы сохраняют свою индивидуальность, а связи возникают в результате взаимодействия валентных электронов при сближении атомов. Такая точка зрения для качественных объяснений более удобна, чем теория молекулярных орбиталей. Однако метод валентных связей часто требует более сложного математического аппарата, чем теория молекулярных орбиталей, и, кроме того, установить начальную функцию для сложной молекулы не так просто, как в теории молекулярных орбиталей. [c.175]

    Обе приведенные теории (Косселя и Льюиса) не могут в полной мере объяснить существование и строение комплексных соединений. Следующим этапом развития теории координационных соединений явились теория молекулярных орбиталей, которая как бы развивает и углубляет теорию ковалентных связей, и теория строения кристаллического поля, которая основывается на электрохимических представлениях. И, наконец, в последнее время создана теория, объединяющая теорию молекулярных орбиталей и теорию кристаллического поля. Это — теория поля лигандов. [c.279]


    Представление Льюиса о связи посредством пары электронов находит квантовомеханическое выражение в теории валентных связей. Как и метод молекулярных орбиталей, теория валентных связей является приближенным методом. Однако ее исходные положения [c.152]

    В приближении валентных связей 0-связь М—С может быть описана с помощью гибридных (Psp -. dsp - и р -орбиталей (см. с. 218). Несколько лучшее описание образования о-связей получа-ется при использовании ранее обсуждавшихся схем молекулярных орбиталей (описанных на с. 221 для октаэдрических и на с. 248 для тетраэдрических молекул). Связь между металлом и группами СО не может быть простой а-овязью и возникать только благодаря передаче неподеленной (т-пары каждого атома углерода металлу, потому что молекула СО представляет собой слабое основание по Льюису, которое не образует донорно-акцепторных связей с сильными льюисовыми кислотами типа ВРз. Ключ к разгадке прочности связей металл — углерод дает степень окисления металлов. Во всех приведенных примерах металлы формально находятся в нулевой степени окисления и имеют значительное число электронов на дважды заполненных -орбиталях. Эти электроны могут участвовать в образовании обратных связей благодаря dn—Ря-взаимодействию. Оно обсуждалось в разделе 11.2, где мы видели, что три -орбитали dxy, dxz и dy ) могут образовывать связь с лигандами, подходящими по симметрии, размеру и энер- [c.283]

    Согласно теории валентности Льюиса, электроны в молекуле связаны с определенными атомами. При образовании химической связи некоторые из них обобществляются двумя атомами. В гл. 14 будет видно, что эта картина привела к развитию (уже на квантовомеханическом языке) метода валентных связей (ВС). В методе молекулярных орбиталей (МО) электроны не считают связанными с определенными атомами. Вместо этого полагают, что молекулярные орбитали распространяются, вообще говоря, на всю молекулу. Связь с атомными орбиталями устанавливают лишь на уровне ЛКАО-разложения, представляющего собой физически обоснованное и математически удобное средство решения соответствующих уравнений. [c.121]

    Теперь расположение электронов обеспечивает каждому атому кислорода по восемь электронов на валентных орбиталях (все четыре электрона, изображенные между атомами, обобществлены между обоими атомами), как в неоне эта формула показывает, что в молекуле кислорода должна быть двойная связь. Единственным недостатком этой простой схемы можно считать то, что в соответствии с ней молекула кислорода должна быть диамагнитной. Парамагнетизм, который, по-видимому, требует структуры с ординарной связью (5.4), доставлял в течение последних тридцати лет массу неприятностей преподавателям химии первых курсов до тех пор, пока не получил широкого распространения метод молекулярных орбиталей.. Как правило, о парамагнетизме кислорода раньше старались просто не упоминать, предполагая, очевидно, что, если не обращать на него внимания, он исчезнет сам. Для того чтобы устранить этот недостаток схемы Льюиса, необходим метод МО. [c.137]

    В более недавнее время метод молекулярных орбиталей продемонстрировал свои большие возможности, но иногда соотношения между структурами, к которым приходят на основе этого метода, и структурами, предложенными Менделеевым, химиками 19-го столетия и позже — Льюисом и Полингом — не осуществляются. [c.103]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Метод молекулярных орбиталей, с которым мы познакомились на примере двухатомных молекул, может быть использован также для объяснения свойств многоатомных систем. Общий способ построения молекулярных волновых функций для многоатомных молекул заключается в составлении линейных комбинаций из атомных орбиталей. Электроны на таких молекулярных орбиталях не локализованы между двумя атомами многоатомной молекулы, скорее они делокализованы между несколькими атомами. Эта модель принципиально отличается от представлений Льюиса, согласно которым пара электронов, обобществленых двумя атомами, эквивалентна одной химической связи. [c.551]

    Прежде чем обсуждать некоторые теории координационной связи следует отметить, что теория — не более чем приближение к дей ствительности. И если бывают из нее исключения, этого еще не достаточно, чтобы обесценить всю теорию. Более вероятно, что исключения указывают на наше неумение давать им удовлетворительные объяснения. Обычно нужно только видоизменять тео-шю таким образом, чтобы эти исключения были ею охвачены Лримером может служить современное состояние метода валент ных связей. Часто одни и те же явления могут быть объяснены двумя или даже более теориями, и тогда мы должны искать более фундаментальную концепцию, общую для обеих теорий, которая будет по всей вероятности лучшим приближением к действительности. Такое положение существует сейчас и с теориями кристаллического поля, и молекулярных орбиталей в их применении к комплексам. На их основе вырос в настоящее время более универ сальный метод, известный как теория поля лигандов. Электронная теория валентности, сформулированная Льюисом в 1916 г. и распространенная на многие системы Лэнгмюром е 1919 г. и другими авторами в течение последующего десятилетия дала химикам возможность выразить вернеровское понятие валентности с помощью электронных представлений. Основная за слуга в использовании новой теории валентности принадлежит Сиджвику и Лаури . Главные валентности Вернера были интерпретированы как результат электровалентности, или пере коса электрона, а побочные рассматривали как проявление ковалентности, или обобщения электронных пар. Главная валент ность может быть, а может и не быть ионной. Так, если во внутрен пей координационной сфере находится отрицательный ион, на пример ион хлора в нитрате хлорпентаамминохрома (И1) Сг(ЫНз)цС1](ЫОз)з, он может быть связан с атомом металла как главной, так и побочной валентностями. В данном случае ион хлора потерял свой ионный характер. Только нитрат-ионы насы щают главную валентность и поэтому сохраняют свой ионный рактер. [c.245]

    Дри сближении же атомов водорода, у которых спины электронов параллелыш ХиЛ >. проявляется только отталкивание. Следовательно, церекрывание атомных орбиталей не происходит и молекула не образуется. Химическую связь, образованную в результате обобщения (перекрывания) электронной плотности, взаимодействующих атомов называется ковалентной (по Льюису ковалентная связь образуется за счет обобп1е-ния электронов). В настоящее время существует два подхода, используемые для объяснения ковалентной связи метод валентных схем (ВС) и метод молекулярных орбиталей (МО). Представление Льюиса о связи посредством пары электронов находит квантово-механическое выражение в теории валентных связей. Как и МО, теория валентных связей является приближенным методом. Однако ее исходные положения [c.13]

    Концепции Э. т.— общепринятый язык теор. орг. химии. Однако они не примен. для описания структур с нецелочисленными связями , таких, как аром, соед., комплексы переходных металлов, неклассич. ионы, а также для характеристики св-в, зависящих от параметров отд. электронов (напр., УФ спектры). Поэтому они дополняются заимствованными из квантовой химии представлениями (в частности, о молекулярных орбиталях, гибридизации . Э. т. были впервые развиты в работах Г. Льюиса, Р. Робинсона, К. Ингольда, Л, Полинга в 20—30-е гг. 20 в. [c.701]

    Согласно теории электронных пар (точечные структуры Льюиса), в метане четыре атома водорода связаны четырьмя электронными парами с центральным атомом углерода. Лежащие глубоко внутри 18-электроны атома углерода можно рассматривать как несвязывающие, и в большинстве случаев ими можно пренебречь. Четыре валентные орбитали метана не идентичны одна орбиталь не имеет узловых плоскостей, а три другие представляют собой вырожденные орбитали (т. е. равной энергии) и имеют по одной узловой плоскости. Формы этих орбиталей изображены на рис. 2.1. Необходимо ясно понимать, что существование связывающих орбиталей разной энергии никоим образом не противоречит картине электронных пар, в которой все углерод-водо-родные связи идентичны. Тетраэдрическое расположение атомов водорода четко видно при комбинации этих четырех орбиталей. Наличие различающихся между собой молекулярных орбиталей удается продемонстрировать только методом фотоэлектронной спектроскопии, позволяющим непосредственно измерять энергетические уровни электронов. Фотоэлектронный спектр подтверждает, что в валентной [c.15]

    Электронные пары изображены так, будто они переносятся от атомов на связи таким образом, что сохраняется стабильный октет электронов (ср, с теорией Льюиса) вокруг всех атомов, принимающих участие в этом процессе. К донорным группам отно-сятся любые заместители с несвязывающими или заполненными молекулярными орбиталями, имеющими правильную симметрию, допускающую взаимодействие с подходящей системой я- [c.342]

    В рамках теории валентных связей волновые функции реагентов и продуктов и 1 ) являются локализованными двухцентровыми одноэлектронными орбиталями связей. В наших целях можно использовать даже октетную теорию химической связи Льюиса при условии, что ее структурные формулы адекватно описывают рассматриваемую систему (следует, однако, проводить различие между а- и я-компснентами двойных связей). Из орбиталей связей, преобразующихся друг в друга операциями симметрии, необходимо сконструировать линейные комбинации, отвечающие неприводимым представлениям точечной группы симметрии системы. Соответствующие неприводимые представления полностью эквивалентны представлениям, по которым преобразуются занятые молекулярные орбитали, полученные при молекулярно-орбитальном описании системы. После того как построены такие симметризованные функции, правила отбора для реакций, найденные с их помощью, оказываются совершенно аналогичным описанным выше. Во многих случаях формализм метода валентных связей имеет определенные преимущества по сравнению с методом молекулярных орбиталей, поскольку получить из орбиталей связей правильно симметризованные комбинации часто легче, чем установить симметрию занятых молекулярных орбиталей. [c.389]

    Мягкие кислоты — кислоты Льюиса, содержащие ак-гпторные атомы большого размера с малым положительным за-1Д0М, с небольшой электроотрицательностью н высокой поляри-№Мостью. Молекулярная орбиталь мягких кислот, принимаю-,ая электроны донора, имеет высокий уровень энергии. [c.115]

    Используя метод молекулярных орбиталей, авторы [10] рассчитали энергию взаимодействия протона ОН-группы с -гептаном. Было установлено, что протолптический крекинг н-парафина энергетически выгоднее (на 83,8 кДж/моль) р-расщепления через карбениевые ионы и примерно эквивалентен крекингу разветвленных алканов. Таким образом, инициирование путем протолитического крекинга является наиболее вероятным. Это наводит на мысль о том, что механизм, показанный на рис. 5.4, справедлив как для данного случая, так и вообще для всех реакций крекинга на твердых катализаторах. Из рис. 5.4 видно, что начальное соотношение алканов и олефинов в продуктах определяется соотношением числа центров Бренстеда и Льюиса на свежем катализаторе. Образующиеся при этом карбокатионы обычно остаются на указанных центрах. Если бы они десорбировались, соотношение алканов и олефинов было бы близким к единице. Однако если цепь реакций инициируется по крайней мере на нескольких центрах, будет получен высокий начальный выход алканов. Этот же процесс может проявляться при образовании парафинов дегидрированием углеродистых отложений (кокса) на поверхности катализатора. [c.90]

    Хотя ощущаем цвет, сладость или горечь, на самом деле это только атомы и пустота . Эти слова приписывают греческому философу Демокриту (около 420 г. до н. а.) он может считаться отцом химической теории. В 1812 г. Берцелиус предположил, что все химические сочетания вызываются электростатическим притяжением. Как мы увидим, в нашей работе по прошествии 165 лет предполагается в точности то же, хотя смысл этой идеи отличается от смысла, заложенного в нее Берцелиусомт В начале ХХ века Коссель и Льюис сделали значительный вклад в понимание ионных и ковалентных связей соответственно. Их концепции наряду с идеями Вант-Гоффа и Ле Беля относительно форм органических молекул дали толчок к систематическому изучению структуры и реакционной способности в органической химии. В 1927 г. Гайтлер и Лондон первыми воспользовались квантовой механикой для описания ковалентной связи через валентные связи. После этого любимым инструментом химиков-органиков, позволяющим делать рациональные объяснения и предсказания, стала теория резонанса [1], основанная на теории валентных схем [2]. Этот подход все еще остается основой обучения на старших курсах популярность его обусловлена не только возможностями как теоретического метода, но также и концептуальной доступностью для студентов и специали-стов-органиков, не имеющих достаточного опыта в обращении с формальной квантовой механикой. Со второй половины нашего столетия внимание химиков-органиков стала привлекать теория молекулярных орбиталей (МО), но никогда она не была столь популярной, как после опубликования правил Вудворда — Хофмана в 1965 г. [3, 4]. Понятны причины, почему до этого момента теория МО не могла вытеснить теорию резонанса . Многие проблемы, которые были в центре внимания вплоть до 1965 г., такие, как скорость и ориентация замещения в ароматическом ряду, влияние заместителей на скорость сольволитических процессов и т. д., находили качественное объяснение в рамках теории резонанса . В результате успех теории МО в объяснении той же самой совокупности фактов был впечатляющим, но не неотразимым. [c.7]

    Октетная модель Льюиса — Лангмюра оказалась очень удачной для описания строения органических соединений (большая часть органических молекул построена из атомов элементов второго периода) она дает возможность делать правильные выводы о строении многих органических соединений и обладает предсказательной силой. Выводы, сделанные на основе октетпой модели, в большинстве случаев согласуются с полученными при применении более строгого метода описания строения молекул — метода молекулярных орбиталей — и могут быть подтверждены при изучении как физических, так и химических свойств органических молекул. Приведем несколько примеров. [c.6]

    Ни электронные пары Льюиса, ни электронные квартеты Лин-нета не ассоциируются непосредственно с орбиталями, которые принимают участие в образовании химических связей. Однако схема молекулярных орбиталей показывает, насколько существенно и то, какие орбитали приводят к возникновению данной связи. При рассмотрении характера связи в соединениях переходных элементов необходимо каждый раз тщательно исследовать орбитали, способные к образованию связи. Поэтому нам следует вспомнить ту схему ячеек, которая описывает валентные орбитали и их заселенность. Эта схема имеет большое значение для нас, потому что она воплощает сущность представления о валентных связях и при этом позволяет четко проследить за образованием молекулярных орбиталей. [c.157]

    Возможно, наиболее важным понятием, связанным с координационными соединениями и контролирующим их, является льюисовская кислотность иона металла. Это понятие будет расомотре-но в гл. 2, а здесь достаточно сказать, что комплексы непереходных металлов (Ма+, К+, Са +, Мд +, Ва +, А1 +) удерживаются вместе с электростатическими силами и их стереохимия определяется почти исключительно размером лиганда и зарядом на ионе металла. Устойчивости комплексных ионов изменяются параллельно с основностью протонов лигандов, и эффективная роль иона металла подобна таковой протона. Стереохимия комплексов переходных металлов более сложна, и в настоящее время не существует удовлетворительной эмпирической или теоретической модели для детального описания всех аспектов их структуры или даже стереохимии. Для многих из этих металлов ионная модель усложняется тем, что их электронные облака не имеют сферической формы (эффекты кристаллического поля), а также, что подразумевается в их названии, очень значительным отступлением от ионного характера, связанным с переходом от ионной к ковалентной связи. Для таких комплексов важна как нейтрализация зарядов, так и кислотность по Льюису, и для описания химической связи в этих комплексах были развиты теория поля лигандов и метод молекулярных орбиталей [2, 5]. [c.19]

    Оз, СОа, N2O, NO2 и фторидов состава XeFj, РР5, IF3, SP., SF4 и нитрозо-соединений с использованием классических нредставлегтий о валентности. Им сопоставлены структуры исходя из октетного при щипа Льюиса, представлений Полинга о трехэлектронной связи и резонансе и метода молекулярных орбиталей с учетом корреляции электронов. Октетные формулы удовлетворительно передают свойства молекул при условии, что электроны одного спина отличаются от электронов другого спина, и это условие представляет собой дальнейшее развитие идей Льюиса. [c.245]


Смотреть страницы где упоминается термин Льюиса молекулярных орбиталей: [c.86]    [c.128]    [c.92]    [c.11]    [c.116]    [c.72]   
Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.1 (0) -- [ c.27 , c.31 ]




ПОИСК





Смотрите так же термины и статьи:

Льюис

Молекулярные орбитали орбитали

Орбиталь молекулярная



© 2025 chem21.info Реклама на сайте