Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Переходные элементы соединения

    Парамагнитные соли переходных элементов. Соединения иона переходного металла в определенном состоянии окисления обладают характерными параметрами спектров ЭПР. [c.197]

    Однако между металлами главных и побочных подгрупп есть ц существенные различия. Они также связаны с особенностями электронного строения переходных элементов, а именно с тем, что во втором снаружи электронном слое их атомов имеется неполностью занятый электронами -подуровень. Для образования химических связей атомы переходных элементов могут использовать не только внешний электронный слой (как это имеет место у элементов главных подгрупп), но также -электроны и свободные -орбитали предшествующего слоя. Поэтому для переходных элементов значительно более характерна переменная валентность, чем для металлов главных подгрупп. Возможность создания химических связей с участием -электронов и свободных -орбиталей обусловливает и ярко выраженную способность переходных элементов к образованию устойчивых комплексных соединений, С этим же связана, как указывалось на стр. 598, характерная окраска многих соединений переходных элементов, тогда как соединения металлов главных подгрупп в большинстве случаев бесцветны. [c.646]


    Как мы уже видели, для реакции синтеза благоприятны низкая температура и высокое давление. Однако реакция практически не протекает без катализатора вследствие очень большой стабильности молекулы азота, что обусловлено высокой энергией разрыва связи N—N. Функции катализатора заключаются в образовании на каталитической поверхности нитридного соединения, которое затем гидрируется в аммиак. Связь азота с металлом достаточно слаба, тем не менее она дает возможность адсорбироваться молекулам синтезируемого аммиака. Связь азота с металлом слишком сильна для таких элементов, как литий, кальций и алюминий, которые образуют с азотом нитриды непосредственно в массе вещества. В первой серии переходных металлов оптимум между образованием поверхностного нитрида и десорбцией аммиака с поверхности получён для железа, которое, не образует нитрида непосредственно из азота, исключая случай очень высоких давлений (на порядок выше давлений синтеза), но легко образует его в реакции с аммиаком. Тем не менее железо быстро хемосорбирует азот и это и есть та адсорбция, которую обычно считают стадией, лимитирующей скорость всего процесса синтеза. Рутений и осмий, находящиеся в более высоких сериях переходных элементов, не образуют нитридов в массе и являются эффективными катализаторами синтеза. [c.158]

    Неспаренными электронами обладают многие соединения переходных элементов. В этом случае неспаренными являются -электроны, для которых тенденция к образованию электронных пар выражена довольно слабо. Такие частицы, как правило, вполне устойчивы, и их не принято относить к категории свободных радикалов. [c.16]

    Грин М Металлорганические соединения переходных элементов// М, 1972 - с 264 [c.92]

    Согласно этой теории, катализ происходит только при структурном и энергетическом соответствии катализируемых молекул данному катализатору. Теорией Баландина было предсказано, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. При этих условиях шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей М— — С — С, валентный угол которых близок тетраэдрическому углу. Данным условиям удовлетворяют палладий, платина, иридий, родий, осмий и все они являются активными катализаторами гидрирования бензола и дегидрирования циклогексана. В то же время металлы, обладающие объемноцентрированной структурой, например тантал, вольфрам, даже при почти таких же размерах их атомных радиусов, как у платиновых металлов, а также металлы, имеющие такую же кристаллическую структуру, как платина, но иные размеры атомных радиусов, в частности серебро, золото, или не относящиеся к переходным элементам — медь, цинк,—все эти металлы не проявляют каталитической активности в вышеуказанных реакциях. Таким образом, структура поверхностных соединений бензола и циклогексана с платиновыми металлами была описана и доказана. Мало того, было, в сущности, установлено, что в условиях катализа подобные соединения легко и притом в точности воспроизводятся. Иначе катализ был бы невозможен. [c.59]


    Свойства элементорганических соединений определяются природой элемента, связанного с углеродом. По характеру связи С—Э (Э — элемент) все элементорганические соединения делятся на две группы производные непереходных и переходных элементов. [c.173]

    Почти для всех переходных -элементов известны соединения, в которых осуществляется связь двух или более атомов металла друг с другом. Были исследованы соединения с груп- [c.615]

    То обстоятельство, что у переходных элементов при образовании соединений в связях участвуют -орбитали, энергетические уровни которых затем расщепляются при октаэдрическом , тетраэдрическом или квадратном расположении лигандов (ср. разд. 6.5.6), способствует существованию большого числа степеней окисления у этих элементов. [c.631]

    На внешней электронной оболочке атомов переходных элементов содержатся два, иногда один и даже нуль (у палладия) электронов. Невысокие значения энергии ионизации этих атомов указывают на сравнительно слабую связь внешних электронов с ядром так, для ванадия, хрома, марганца, железа, кобальта энергии ионизации составляют соответственно 6,74 6,76 7,43 7,90 и 7,86 эВ. Поэтому переходные элементы в образуемых ими соединениях имеют положительную степень окисления и выступают в качестве характерных металлов, проявляя тем самым сходство с металлами главных подгрупп. [c.496]

    Органические соединения остальных переходных элементов. Переходные элементы остальных (кроме ПБ) побочных подгрупп периодической системы в проявляемых их атомами степенях окисления имеют незавершенные электронные -подоболочки предвнешнего уровня. Поэтому, наряду с образованием ординарной полярной ковалентной связи с углеродом за счет вклада внешних з- и р-орбиталей, они способны образовывать совершенно иные по строению и свойствам соединения за счет участия ( -орбиталей. В таких соединениях металл можно так же, как и соединения магния, бора, алюминия (см. выше), считать координационно ненасыщенным. Данная ненасыщенность металла теперь определяется наличием вакантных орбиталей не только на внешнем, но и на втором снаружи энергетических уровнях его атома. Природа вакантных орбиталей атома переходного элемента также отличается от орбиталей в- и р-элементов. Симметрия и пространственная протяженность -орбиталей переходного элемента позволяет им эффективно перекрываться с орбиталями большего числа атомов и удаленных на большее расстояние от металла, чем это возможно для з-или р-элемента. Поэтому часто органические соединения переходных металлов являются комплексными. С примерами таких комплексных элементоорганических соединений мы уже встречались ферроцен, дибензолхром, хелаты и др. (разд. 13.4). [c.599]

    По характеру связей углерод — элемент (С—Э) элементоорганические соединения делятся на две группы производные непереходных и переходных элементов. Непереходные элементы образуют с атомом углерода типичные а-связи за счет электронов внешней оболочки. Их внутренние оболочки содержат максимально возможное количество электронов (2, 8, 18) и участия в образовании связей не принимают. [c.334]

    Так как в магнитном поле намагниченность диамагнитных веществ меньше, чем в вакууме, диамагнетики выталкиваются из магнитного поля. Вследствие более высокой намагниченности парамагнетиков по сравнению с вакуумом последние втягиваются магнитным полем. Диамагнетизм присущ всем веществам, а парамагнетизмом характеризуются соединения переходных элементов. [c.338]

    Незаполненные электронами З -состояния могут привлечь неразделенную пару электронов какой-либо молекулы. Это приводит к способности переходных элементов давать комплексные соединения. Известно, например, что железо образует тетра-и пентакарбонилы. Жидкий карбонил железа может быть разогнан и отделен от примесей. На этой основе построен один нз промышленных методов получения весьма чистого железа. [c.461]

    Аналогичная гибридизация имеет место и у переходных элементов. При этом комбинируются 3d-, 4s- и 4/ -орбиты. Особый интерес представляет s/j d-гибридизация. Полинг показал, что при этом возникают шесть эквивалентных электронных тяжей, направленных, например, вдоль положительных и отрицательных направлений осей х, у, г (октаэдрическая гибридизация). Эти гибридизации привлекались для объяснения строения комплексных соединений типа ионов Fe ( N)s или Со (ЫНз)б . Атом железа имеет внешние электроны (3df (4s) . Ион Ре + имеет строение (3d)" (4s)Представляется энергетически выгодным возбудить три электрона из З -состояния в 4р-состояние. Тогда в возникшем ионе осуществляется состояние (МУ (4s) (4р) . Два /-электрона, один 4s и три 4р дают октаэдрическую гибридизацию, приводящую к шести сильным связям, компенсирующим энергию, затраченную иа возбуждение. [c.480]

    Атомы переходных элементов могут выступать одновременно в роли доноров и акцепторов электронных пар. Они имеют вакантные 5-и р-орбитали, а неподеленные электронные пары находятся на (1-уровнях. Отсюда возникает необходимость различать виды донорно-акцепторных связей. Донорно-акцепторную связь, которая образуется за счет неподеленных пар -электронов, принято называть дативной. С такого типа связями мы встретимся ири рассмотрении комплексных соединений. [c.194]


    Существует четыре ряда переходных элементов, соответствующие незаполненным Зс1-, 4й-, Ы- и 6 -подуровням. Ряды начинаются с элементов группы III А 5с, V, Ьа и Ас из них три первых кончаются соответственно на N1, Р(1 и Р1. Элементы такого класса похожи друг на друга, особенно по физическим свойствам. У них много разных степеней окисления, их соединения ярко окрашены, для них характерны комплексные соединения. [c.105]

    У переходных металлов необычных степеней окисления не меньше, чем обычных. Особенно часто они проявляются в координационных соединениях, в которых некоторые координируемые группы стабилизируют необычные степени окисления. В табл. 4-10 не помещены многочисленные примеры степеней окисления меньше + 11, но следует сказать, что для многих переходных элементов в последнее время найдены соединения со степенями окисления + 1, О, —I и даже —П. [c.132]

    Ниже не будет обсуждаться применение метода валентных связей для предсказания и описания структур молекул, так как это уже было сделано в гл. 5 для простых соединений непереходных элементов и будет сделано в гл. 7 для комплексных соединений переходных элементов. Однако будет показано, что конфигурации молекул могут быть объяснены с помощью более простых теорий, чем метод валентных связей. Кроме того, будет отмечено, что для метода валентных связей концепции о гибридизации, резонансе п обмене являются просто удобными математическими описаниями, но они не дают объяснений истинным причинам явлений, которые [c.198]

    Гидридные комплексы переходных элементов получают разнообразными способами. При высоких температурах и давлениях свежевосстановленный Со реагирует со смесью Нг+СО, продуктом является НСо(СО)4. Это же соединение получается, если восстанавливать oS или СоЬ порошкообразной медью в присутствии Нг-4- O при 200 °С и 250 атм . Водород окисляет многие комплексы, либо внедряясь по связи металл — металл, например в Мп(СО)ю, либо присоединяясь. Особенно характерны реакции присоединения к квадратным комплексам  [c.91]

    Общая характеристика переходных элементов. Особенности переходных элементов определяются, прежде всего, электронным строеинем их атомов, во внешнем электронном слое которых содержатся, как правило, два 5-электрона (иногда—один 5-элек-трон ). Невысокие значения энергии ионизации этих атомов указывают на сравнительно слабую связь внешних электронов с ядром так, для ванадия, хрома, марганца, железа, кобальта энергии ионизации составляет соответственно 6,74 6,76 7,43 7,90 и 7,86 эВ. Именно поэтому переходные элементы в образуемых ими соединениях имеют положительную окисленность и выступают в качестве характерных металлов, проявляя тем самым сходство с металлами главных подгрупп. [c.646]

    Соединения переходных элементов характеризуются незаполненными d-орбитами и в низшем валентном состоянии могут ас-сопчпровать с алкилами металлов, образуя комплексы с сильно [c.178]

    Ионы элементов малых периодов н концов длинных периодов периодической системы имеют тенденцию сохранять неизменную валентность и принимать структуру заполненных оболочек, и элементы образуют бесцветные диамагнитные соединения, которые являются типичными изоляторами (MgO, AljOg, SiOj). Переходные элементы имеют переменную валентность, образуют стабильные ионы с незаполненными d-оболочками и могут давать окрашенные магнитные, полупроводниковые соединения, катионы которых имеют электроны с непарными спинами. Можно сказать, что ионы с полузаполненными и заполненными подоболочками (d , Мп + Zn + ) по своим свойствам находятся между двумя этими крайностями. [c.20]

    Следующие за скандием переходные элементы титан и ванадий V содержат соответственно два и три -электрона. Для них более характерны высшие степени окисления - -4 — для и - -4, + 5 — для V. Свойства соединений титана в высшей степени окисления напоминают свойства аналогичных соединений олова (например, жидкие тетрахлориды Т1С14 и 8пС 4, образование комплексов и т. д.). Соединения со степенью окисления +2 — сильные восстановители. Производные оксида титана (IV) Т10г — сложные оксиды титана — важные сегнетоэлектрические материалы. [c.154]

    Связь в органических соединениях переходных элементов осуществляется за счет электронов более глубоких /-уровней, которая называется я-комплексной связью. Это оказывает влияние на характер о-связей в этих соединениях, которые, как правило, менее прочные. Исключением из этих веществ являются комплексные -орбита [ьные соединения, образованные за счет -электронов некоторыми переходными элементами (Ре, Со, N1, V, Т1, Мп и др.). [c.173]

    Циклопентадиенильный анион образует с катионами таких металлов, как железо, кобальт и др., интересные соединения. Одним из таких веществ, обладающих ароматическими свойствами, является ферроцен (бициклопентадиенилжелезо). Он относится к органическим производным переходных элементов. Ферроцен имеет сандвичевую ( бутербродную ) структуру два цнклопентадие-нильных кольца заключают между собой атом двухвалентного железа. Вся эта система связывается единой молекулярной орбиталью обобществленных электронов  [c.336]

    Гидрид-ион выступает в качестве донорного лиганда при образовании гидридных комплексов. Различают комплексы элементов главных подгрупп (Х = В, А1, Оа) и переходных элементов (Мп(СО)5Н, Та(С5Н5)Нз, [Р1(РЯз)2С1Н]). Гидрид-ион реагирует с акцепторами электронов ХНз, имеющими свободную орбиталь. Устойчивость получающихся соединений падает в ряду В>А1>0а, что соответствует изменению кислотности по Льюису соединений ХНз (разд. 33.4.3.3) [c.465]

    Наряду с солеобразными и ковалентными гидридами (разд. 35.1.1.1) существуют соединения водорода, так называемые металлические гидриды , образуемые переходными элементами. В них водород тем или иным образом внедрен в рещетку к1еталла. Часто при этом не образуется стехиометрических соединений и в системе М — Н имеют место весьма сложные фазовые соотношения. Ниже в качестве примера приведены данные для системы гафний — водород  [c.644]

    Цинк, кадмий и ртуть по своему химическому поведению несколько напоминают переходные элементы первой группы (близкие значения электроотрицательности сходство в растворимости и окраске ряда соединений). В то же время благодаря наличию полностью заполненных -орбиталей, у этих элементов не может происходить стабилизации под действием поля лигандов. В связи с этим их стереохимия практически полностью определяется размерами ионов. Реакции 2п + и Сс12+ в значительной мере соответствуют реакциям Mg + С<1 + проявляет также сходство с Си +. [c.652]

    Химическая связь в ферроцене между двумя пентадентатными лигандами и атомом железа осуществляется за счет того, что тг-электроны лигандов (по 5 от каждого лиганда) и 8 валентных электронов атома железа заполняют связывающие и несвязывающие МО комплекса, обеспечивая его устойчивость. Хром имеет на два ва тентных электрона меньше, поэтому необходимые 18 суммарных электронов для заполнения МО в соответствующем комплексе хрома достигаются, если в качестве лигандов взять бензольные кольца. Дибензолхром (СбНб)2Сг так же, как и ферроцен, относится к тт-комплексам, называемым ио причине участия в образовании комплекса лигандов с тг-электронными системами, О важности таких соединений говорит то, что большую часть современной органической химии переходных элементов составляет химия тг-комплексов. [c.369]

    По характеру химической связи элементов с углеродом и другими элементами в их составе элементоорганические соединения делят на две большие группы. В первую группу включают соединения в- и р-элементов непереходных элементов), а во вторую — органические производные й- и /-элементов (переходных элементов). Для соединений первой группы характерно образование ковалентных полярных <7-связей. Для органических производных второй группы типичны комплексные соединения с участием -электронов предвнешней электронной оболочки атомов элемента. Существуют и другие способы классификации, однако свойства элементоорганических соедршений столь разнообразны, что проще рассмотреть наиболее типичные из них в порядке изменения строения электронной оболочки атома элемента, как это делалось при рассмотрении свойств неорганических соединений. [c.588]

    У лантанидов и актинидов незаполне 1ной оказывается третья снаружи оболочка —/-орбиталь с1- и /-орбитали также могут участвовать в образовании связей. ст-Связи атома углерода с переходными элементами непрочные и поэтому соединения, образовавшиеся только за счет внешних электронов, неустойчивы. Особенно малоустойчивы соединения алифатического ряда. Производные ароматического ряда более стабильны. [c.334]

    Связи встречаются в соединениях между атомами переходных элементов, например в ионе (Re2 iй) . На рис. 5.7, в приведены схемы перекрывания двух атомных -орбиталей, расположенных в параллельных плоскостях перекрываются все лепестки с(-орбн-талей и образуется б-связь. [c.104]

    Больнюй интерес представляют многочисленные карбиды непереходных и переходных элементов. Так, В С и Si чрезвычайно тверды, мало уступают но твердости ал.мазу, Si имеет алмазоподобную решетку. Карбиды -элементов образуют твердые, тугоплавкие соединения (Ti , Zr , Н[С и др.), имеют высокую проводимость, большинство из них относится к фазам внедрения (см. рис. 5.20). [c.289]

    Периодический закон — научная основа и метод многочисленных исследований. Назовем некоторые направления (темы), которые еще ждут дальнейших исследований. Это работы но теории химической связи и электронной структуры молекул химия комплексных соединений, включая редкоземельные элементы, а также соединения, имеющие полупроводниковый характер получение гю-лупроводниковых материалов, развитие химии твердого тела, синтез твердых материалов с заданным составом, структурой и свойствами поиски новых материалов на основе твердых растворов изоморфных боридов, карбидов, нитридов и оксидов переходных металлов IV и V групп получение сплавов и катализаторов на основе переходных элементов синтез неорганических веществ, включая неорганические полимеры получение веществ высокой [c.427]

    Реакция потекает по анионно-координационному механизму. Каждый акт присоединения мономера начинается со стадии образования я-комплекса двойной связи мономера (донор электронов) с переходным металлом катализатора (акцептор электронов). Благодаря наличию неспаренных я-электронов переходные элементы акцептируют электроны электронодонорных веществ, образуя комплексные соединения с высоким координационным числом (6—8). Возникновение я-комплекса приводит к ослаблению связи Ме---К, что облегчает внедрение мономера в корень растущей полимерной цепи. Такой механизм позволяет объяснить высокую избирательность катализаторов Циглера — Натта. К образованию я-комплексов Склонны мономеры с повыщенной электронной плотностью у двойной связи, т. е. мономеры, полимеризующиеся по механизму катионной полимеризации. В то же время внедрение очередного мономера по связи Ме—С характерно для реакций анионного роста цепи. [c.28]

    Выше, в главе I, была дана общая характеристика комплексных соединений. Здесь мы рассмотрим кратко образование и свойства химических связей в комплексах переходных элементов (см. также раздел И 1.7), ограничиваясь комплексами с координационными числами 4 и 6, так как именно такие числа характерны для подавляющего большинства известных в настоящее время комплексов. В соединениях вида MLiL2...L , где М — атом или ион переходного металла, а L — лиганд, т. е. атом или группа атомов, непосредственно связанная с центральным атомом М комплекса, число лигандов п равно 4 и 6. Обычно четыре лиганда располагаются вокруг центрального атома или в одной плоскости (рис. И 1.39, а), или в вершинах тетраэдра (рис. ili.39, б , шесть лигандов располагаются в вершинах октаэдра (рис. 1И.39, е). [c.209]

    Одной из наиболее ценных идей, которая, по-видимому, должна быть введена в стереохимию вслед за первыми применениями теории валентной связи, является утверждение, что при определении структур молекул соединений непереходных элементов не-тюделенные, или свободные пары электронов так же важны, как и связывающие пары. Однако следует отметить, что при определении стереохимии соединений переходных элементов свободные пары, вероятно, не играют такой же роли, как в случае непереходных элементов. У атомов переходных элементов свободные пары и одиночные неспаренные электроны находятся в предпоследнем п — 1) -подуровне, т., е. на негибридных металлических атомных орбиталях, тогда как у непереходных элементов они расположены на внешнем квантовом уровне, т. е. на гибридных орбиталях. Действительно, октаэдрическая конфигурация комплексов переходных металлов не зависит от числа несвязывающих электронов. Так, ион Мо(СМ)б имеет додекаэдрическую форму несмотря на то, что валентная оболочка атома молибдена содержит девять электронных пар. [c.199]

    Отметим, что для любого числа электронных пар от двух до шести и независимо от того, эквивалентны эти пары или нет, конфигурации, приведенные в табл. 6-1, верно предсказывают форму молекул непереходных элементов . Некоторые примеры приведены в табл. 6-2, а в табл. 6-3 даны геометрические формы молекул непереходных элементов. Следует отметить, что максимальное число ординарных нормальных ковалентных связей, образуемых любым непереходным элементом, равно семи, так как это максимальное число электронов на внешнем квантовом уровне химически реакционноспособного атома. Таким образом, не следует ожидать появления примеров с восьмью и девятью электронными парами в валентном уровне, за исключением некоторых переходных элементов, у которых по крайней мере некоторые из связей, образуемых электронными парами, будут формироваться за счет координационной ковалентности, и в этом случае будет участвовать ( -подуровень. Например, ТаРа и ацетилацетонат тория ТЬ(С5Н702)4 имеют структуру квадратной антипризмы, показанной в табл. 6-3. Известно лишь одно соединение — Мо(СМ) , в котором имеется восемь электронных пар, но обладающее структурой додекаэдра. Однако было отмечено ранее, что атом молибдена в этом ионе в действительности имеет девять электронных пар на валентном уровне, одна из которых — не поделенная пара. [c.207]

    Многообразие валентных состояний объясняет существование большого числа химических соединений у переходных элементов по сравнению с остальными металлическими элементами периодической системы. Оксиды и гидроксиды переходных элементов, в которых они находятся в низшем валентном состоянии, проявляют обычно основные свойства (например, МпО и Мп(0Н)2), в то время как высшие оксиды и гидроксиды характеризуются амфотерными (например, ТЮг и Т1(0Н)4) или чаще кислотными (например, МпаО и НМп04)свойства-ми. Соединения переходных элементов с низшей степенью окисления могут быть восстановителями в химических реакциях. Так, например, Ре " — е в реакции [c.281]


Смотреть страницы где упоминается термин Переходные элементы соединения: [c.504]    [c.450]    [c.316]    [c.364]    [c.601]    [c.601]    [c.89]    [c.428]   
Квантовая химия (1985) -- [ c.313 , c.325 ]




ПОИСК





Смотрите так же термины и статьи:

Главные переходные металлы (d-элементы) и их соединения

Окислительно-восстановительные свойства соединений переходных элементов в водном растворе

Органические соединения переходных элементов

Переходное соединение

Переходные элементы и соединения на их основе

Переходные элементы координационные соединения

Рентгеновские спектры поглощения атомов переходных элементов в молекулах (на примере соединений никеля)

Специфика простых веществ н соединений, образуемых переходными элементами Приложение. Задачи и упражнения

Форма рентгеновских Kai,2-линий атомов переходных элементов в металлах и в простейших химических соединениях

Экспериментальное изучение формы и структуры рентгеновских К-эмиссионных линий атомов переходных элементов в простейших соединениях и сплавах

Элементы II соединения

Элементы переходные



© 2025 chem21.info Реклама на сайте