Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды инфракрасные спектры

    Спектральный анализ углеводородов. Инфракрасные спектры [c.434]

Рис. 11. Характеристические частоты обертоиов валентного колебания С—Н, наблюдаемые в инфракрасных спектрах для углеводородов ра,зличыых структур. Область первого обертона 5600—6200 область второго обертона 8100—8800 см . Рис. 11. <a href="/info/5691">Характеристические частоты</a> обертоиов <a href="/info/2518">валентного колебания</a> С—Н, наблюдаемые в <a href="/info/97737">инфракрасных спектрах</a> для углеводородов ра,зличыых структур. <a href="/info/1679427">Область первого</a> обертона 5600—6200 <a href="/info/1679428">область второго</a> обертона 8100—8800 см .

    Для идентификации конденсированных ароматических углеводородов, входящих в вышеуказанные фракции были изучены спектры комбинационного рассеяния на спектрометре ИСП-51 и инфракрасные спектры поглощения в области 690—1700 M- на спектрометре ИКС-14. [c.44]

    Нафтеновые углеводороды масляных фракций различаются также по общему числу атомов углерода в боковых цепях, по числу, длине, структуре н степени разветвленности этих цепей, по положению в них заместителей. Структуру изопарафиновых углеводородов и боковых цепей нафтенов определяют по инфракрасным спектрам поглощения. В этих спектрах метиленовым [c.11]

    Несколько капель перегонялось при 295—300 "С, а основная масса — при 300—330°С. Ввиду малого количества дистилляты объединялись и для идентификации вторичных конденсированных ароматических углеводородов изучался инфракрасный спектр объединенного дистиллята. [c.102]

    I ароматических углеводородах характерны частоты 3000 — 3100 сл1 1. При помощи инфракрасных спектров определяют наличие в исследуемом веществе углеводородов различных рядов 1 изомерных углеводородов, вплоть до обнаружения столь близ- 1Х структур, как цис- и транс-изомеры. [c.92]

    Вторым недостатком книги, в значительной степени объясняющимся характером ее построения, являются ее некоторая фрагментарность и отсутствие внутренней связи между отдельными ее частями в тех разделах, где это вызывается существом дела. Так, например, главы, посвященные ультрафиолетовым и инфракрасным спектрам и глава о молекулярной структуре и вычислении термодинамических величин на основании спектроскопических данных недостаточно связаны между собой, что понижает их ценность для неспециалиста в области спектральных методов исследования углеводородов. [c.5]

    Хроматографическая методика, используемая в сочетания с ректификацией и ультрафиолетовой абсорбцией, была применена для количественного анализа различных типов ароматических углеводородов в газойлевых фракциях и во фракциях каталитического крекинга [8, 17, 221., Степень замещения ароматического ядра можно определить, если использовать инфракрасные спектры поглощения и значения молекулярных весов. Таким образом, получаются количественные соотношения для углеводородов с различным числом ароматических ядер. [c.286]

    Ни одно физическое свойство не дает более точной информации о химическом строении углеводородов, чем спектр поглощения в инфракрасной области, особенно для простых алифатических соединений. Большинство полос поглощения возникает при резонансных вибрациях валентных связей и поэтому зависит от действительной инерции атомов и атомных групп в молекуле и сил между ними. В этой же области наблюдаются вращательные и вращательно-колебательные спектры, но они имеют меньшее значение [185]. Полосы, появляющиеся вследствие алифатических С—Н связей, особенно интересны, так как их частоты зависят от атомных весов атомов, с которыми связаны три другие валентности углерода [186—190]. [c.189]


    До сих пор мы рассматривали теоретические вопросы, связанные с молекулярными колебаниями. Теперь мы остановимся на использовании экспериментальных данных. К этим данным относятся частоты полос в инфракрасных спектрах поглощения и частоты в спектрах комбинационного рассеяния (разности между частотами возбуждающей линии, и линий спектра), а также их поляризуемости. Строго говоря, эти данные нужно было бы получить для образцов, находящихся в газообразном состоянии, чтобы избежать возмущений, вызываемых межмолекулярным взаимодействйем. Однако ввиду того, что этот эффект для углеводородов обычно мал, часто пользуются спектрами, полученными для жидкого вещества, особенно спектрами комбинационного рассеяния. [c.300]

    На основании данных, полученных по инфракрасным спектрам, авторы сделали следуюш,ие весьма существенные выводы относительно строения изученных твердых нефтяных углеводородов. Во-первых [c.94]

    Выводы исследователей в основном согласуются с уже опубликованными экспериментальными данными о строении парафинов, часть которых была кратко изложена выше. Следует, однако, предостеречь от одностороннего, основанного только на анализе инфракрасных спектров, суждения о числе групп СНд в высокомолекулярных парафинах. Изучение инфракрасных спектров индивидуальных углеводородов, содержащих в прямой цепи одно или несколько разветвлений, показало, что уже для углеводорода ie трудно различить по, интенсивности спектров изомеры с двумя группами Hj (нормальное строение) или с тремя группами СНд (слабо разветвленная структура) [153]. [c.95]

    Это подтверждается также и инфракрасными спектрами. Основные результаты этой серии исследований по изучению химической природы высокомолекулярных углеводородов большой группы индивидуальных сырых нефтей различного геологического возраста и разных месторождений Советского Союза приведены в табл. 37 [64, 73]. [c.204]

    Изучение инфракрасных спектров поглощения моноциклических ароматических углеводородов, выделенных из продуктов дегидрогенизации, показало, что они по своему характеру весьма близки к спектрам 1,3,5- и 1,2,4-трехзамещенных гомологов бензола (рис. 39, 40). О размерах и строении заместителей в бензольном кольце па основании только инфракрасных спектров ничего определенного сказать нельзя. [c.225]

    Инфракрасные спектры моноциклических ароматических углеводородов дегидрогенизатов отличаются от спектров моноцикличе- [c.225]

    Оказалось, что инфракрасные спектры каждого углеводорода (до Са—Сю) имеют свои особенности, по которым можно идентифицировать тот или иной углеводород в смеси. В результате такой спектральной паспортизации индивидуальных синтетических углеводородов созданы обширные атласы инфракрасных спектров [81— 91]. На основании этих данных можно количественно оценивать индивидуальный углеводородный состав бензино-лигроиновых фракций нефтей путем идентификации их при помощи инфракрасных спектров [92]. [c.234]

    В легких фракциях нефтей также было идентифицировано большое число сернистых соединений [93—98]. Задача идентификации индивидуальных соединений в более высококипящих фракциях нефти сильно усложняется. В настоящее время в литературе встречаются лишь единичные примеры идентификации при помощи инфракрасных спектров индивидуальных углеводородов в керосино-масляных фракциях нефтей. Так, сообщается [99] о наличии 3-метилдифенила в керосиновой фракции (температура кипения 207—290° С) из нефти Восточного Эдмонда. [c.234]

    На основании тщательного исследования процесса сульфохлорирования мепазина (гидрированный когазин II, кипящий при 230—320°) известно, что температура кипения масел, получающихся после омыления мерзолят а-ЗО (см. главу Сульфохлорирование парафиновых углеводородов ) и />ехлорирования, гораздо ниже, чем исходного продукта. Изучение инфракрасных спектров (неопубликованная работа Гейзелера — Кауфхольда) однозначно показывает, что изменения структуры (изомеризации), которым можно было бы объяснить понижение температур кипения, не происходит. Поэтому следует принять, что в реакцию вступали преимущественно высшие углеводороды. [c.585]

    Во многих случаях для облегчения анализа спектров может быть применен чрезвычайно полезный метод, основанный на зависимости частот колебаний от масс атомов. Замещение атомов их изотопами, в частности замещение атомов водорода в углеводородах атомами дейтерия, заметно изменяет инфракрасные спектры и спектры комбинационного рассеяния н позволяет получить ряд важных сведений. Поскольку силовые постояниые практически не зависят от изотопического состава, исследование спектров полностью дейтерированных углеводородов позволяет получить допо.инительиое число частот для вычисления силовых постоянных и поэтому применяется в ряде с-дучаев. Кроме того, частичное дейтерирование симметричных молекул уменьшает их симметрию, изменяет правила отбора и приводит к расщ(шлению вырожденных колебаний на невырожденные (т. е. к снятию вырождения с некоторых колебаний). Подобные изменения часто чрезвычайно важны для определения и отнесения основных частот исходных (недейтерированных) углеводородов. [c.301]


    Чтобы облегчить решение качественных аналитических задач, была применена система перфорированных карточек [26, 51]. Применялась как ручная сортировка карточек (Мак-Би Кизот), так и электрическая сортировка. Обычно на карточки вместе со спектральными данными наносятся также данные по физическим и химическим свойствам. 13 одной из таких систем [51] можно в один прием при помощи электросортировки выбрать только те карточки, которые 1) имеют в определенных положениях одну или больше полос, 2) в определенных положениях не имеют полос, 3) обладают определенными физическими или химическими свойствами. Это снижает число спектров, с которыми приходится сравнивать исследуемое вещество, до 1—2% от начального количества спектров. Системы перфорированных карточек пока получили, по-видимому, более широкое распространение в химической промышленности, чем в нефтяной. Однако по мере накопления спектров более высокомолекулярных углеводородов это положение изменяется. В настоящее время данные по инфракрасным спектрам, опубликованные по Проекту 44 Американского нефтяного института, нанесены ira перфорированные карточки, которые можно сортировать электрическим методом. [c.320]

    Для спектров комбинационного рассеяния применяется только относительная шкала интенсинностей. Где возможно, данные спектров комбинационного рассеяния и инфракрасных спектров показаны на одном графике, чтобы облегчить сравнение и показать многочисленные случаи, когда коле-ба1Н1я молекулы слабо отражаются или совсем неактивны в спектре одного типа, но активны в спектре другого типа. Выбрана линейная шкала частот, выраженная в волновых числах, но приведена такн е соответствующая шкала длин волн в микронах. Черточки, указывающие длину волны полос, сделаны широкими, чтобы дать представление о спектральной области, в пределах которой встречается рассматриваемая полоса в исследованных углеводородах. [c.321]

    Метод полного анализа характера смеси насыщенных углеводородов по инфракрасным спектрам описан Хастингсом [19]. Количество парафиновых метиленовых групп определялось по измерению средней или интегральной интенсивности в области от 12,5 до 14,3 ц. Такое же измерешхе в области от 7,1 до 7,5 г даст довольно надежные данные о содержании метильных групп как парафинов, так и нафтенов. Измеренное для смеси поглощение на 3,38 и 3,42 л исправляется затем на количество метиленовых групп парафинов и общее содержание метильных групп. Остающееся после внесения поправок поглощение на 3,38 /л относится к СНа-грунпам циклопентанового кольца, а на 3,42 /г — к СНа-группам циклогексанового кольца. Эти два последние класса нафтеновых метиленовых групп определяются по остающемуся поглощению. ]1о этой схеме определяется (в весовых процентах) содержание четырех различных структурных групп. Результаты, [c.331]

    Два последних высокомолекулярных алифатических углеводорода (полиэтилен и гидрированный полибутадиен) уникальны в том отношении, что они представляют собой примеры нерегулярно разветвленных структур. Фокс и Мертин при изучении инфракрасных снектров углеводородов в области 3—4 [л обнаружили полосу поглощения при 3,38 ц в спектре полиэтилена, которая является характеристической областью колебаний связи С—Н в метильных группах. Было определено, что соотношение СНз составляет от 1/д до 1/70- Все эти величины значительно превышают частоты, которых следовало ожидать, если бы полимеры представляли собой линейные углеводороды. Многие исследователи с тех пор способствовали детальной расшифровке инфракрасных спектров полиэтилена. Наиболее полные и точные исследования провели Рагг [28] и Кросс [9]. Последняя работа представляет особый интерес, поскольку в ней была определена зависимость между интенсивностью поглощения метильных групп и плотностью полимера. Степень кристалличности полиэтилена была определена при помощи нескольких различных методов, основанных, например, на измерениях плотности инфракрасных спектров, дифракции Х-лучей и теплоемкости. Ни один из этих методов не принимался за абсолютный, но метод, основанный на определении плотпости полимера, по-видимому, один из дающих наиболее достоверные данные. Поэтому Кросс впервые установил, что существует тесная зависимость между числом метильных групп в нолиэтиленах и их кристалличностью. [c.169]

    Поскольку последний пример является примером несимметричного разветвленного высокомолекулярного алифатического углеводорода, то следует указать также па полимеры, полученные Котманом [8] восстановлением поливиниловых хлоридов. Эти полимеры по некоторым физическим свойствам подобны полиэтилену. Их инфракрасные спектры качественно напоминают таковые полиэтилена. Однако количественное определение показывает, что соотношение метильных групп к метиленным составляет здесь лишь величину порядка 1 100. Эта величина значительно меньше, чем соотношения, наблюдавшиеся у большинства полиэтиленов, и свидетельствует о том, что поливинилхлорид несколько более разветвлен, чем большинство полиэтиленов. Плотности этих продуктов в литературе не приводятся. [c.170]

    Инфракрасные спектры углеводородов изучают в области основных колебательно-вращательных частот (2,5—25 р, соответ-< твенно 4000—400 см ). Максимумы поглощения отдельных по-шс соответствуют онределенным частотам собственных колебаний молекул. Полосы ноглощения не только характеризуют молекулу в целом, но многие из них характерны также для отдельных атомных группировок внутри молекулы. Часть этих полос пецифична для данного соединения и не повторяется у других шществ другая часть характерна для отдельных структурных олементов и повторяется у всех соединений, имеющих эти струк- урные элементы. Так, все молекулы, содержащие группу СНз, имеют nojio bi с максимумами ноглощения при частотах 2960, 2910, 2850, 1450 и 1380 см . Соединения, содержащие группу СН , имеют полосы с максимумами поглощения 2850, 2880, 2940 и 1470 Соединения, содержащие двойные связи, харак- [c.92]

    Методы инфракрасной спектроскопии и комбинационного рассеяния света часто заменяют друг друга при исследовании углеводородов (табл. 15). В ряде случаев они дополняют друг друга, так как одни часгот1л активны только в спектре комбинационного рассеяния, другие — только в инфракрасном спектре . [c.94]

    Проведя полное гидрирование смол, авторы получили нафтеновые углеводороды высокой вязкости с низким (О—37) индексом вязкости. Это подтверждает полицикличность исследованных смолистых веществ, а также косвенно указывает на присутствие в них ко,ротких боковых парафиновых целей. Нафтены, получаемые при гидрировании высокомолекулярных ароматических углеводородов, выделенных из тех же нефтей, заметно отличаются от полученных при гидрировании смол их индекс вязкости значительно более высок, что, очевидно, связано с меньшей цикличностью исходных ароматических углеводородов к наличием в них более длинных боковых цепей. Исследование инфракрасных спектров у-казанных выше смолистых веществ показало большое сходство между собой этих продуктов все они соде,ржат ароматические кольца (полосы 1600 см ) и группы СНз и СНа (полосы 1380 см , 1460 см ) в насыщенной части всех смол преобладают группы СНа, что подтверждает, по мнению авторов, наличие в смолах нафтеновых циклов. В отличие от ароматических углеводородов для исследованных образцов смол в инфракрасной части спектра обнаружены полосы, характерные для связей С—О (1720 см- ). Полос, ха,рактерных для связей 5—Н, О—Н и N—Н, в спектрах изученных смол не обнаружено. [c.31]

    В зависи.мости от того какие лучи электромагнитного спектра пропускать через вещество, могут возбуждаться либо вращательные, либо колебательные движения, либо электронные переходы, либо все виды движений одновременно. Возбуждение того или иного движения в молекуле происходит тогда, когда его частота совладает с частотой электромагнитного колебания (резонанс). Наибольшей энергией обладают рентгеновские лучи (Я = 0,01 — 10А), еатем ультрафиолетовые лучи (10ч-4000.4), затем видимый свет (4000.А.8000А), затем инфракрасные лучи (0,8—300 р), затем микроволны 0,03—100 см и далее радиоволны. Энергия радиоволн слишком мала, чтобы возбуждать колебания молекул органических веществ. Микроволны и длинные инфракрасные волны могут возбуждать только вращательные движения в молекулах. Если частоты колебания этих волн совпадают с собственной частотой вращения отдельных частей молекулы, то происходит резонансное поглощение энергии инфракрасного облучения этой частоты, что отразится в спектре поглощения. Такого рода спектры применяются для тонкого структурного анализа органических веществ. Инфракрасные спектры органических соединений обычно изучают в пределах длтш волн 1 25 х, при этом линии поглощения Б спектре появляются за счет вращательного п колебательного движения в молекулах исследуемого вещества. Каждой функциональной группе и группе атомов в молекуле исследуемого соединения в спектре соответствует одна или несколько линий с опре-денной длиной волны. С помощью инфракрасных спектров можнс проводить идентификацию чистых углеводородов, анализировать качественно и количественно смеси нескольких компонентов вплотг-до обнаружения таких близких структур как цис- и транс-изомеры. На рис. 16 приведен г /с-спектр толуола. [c.32]

    Большое число узких фракций твердых углеводородов, выделенных из нефтей и озокеритов, было охарактеризовано при помопщ инфракрасных спектров поглощения для определения количества метильных групп на молекулу, т. е. стенени разветвления парафиновых структур [152]. [c.94]

    Изучение инфракрасных спектров поглощения показало, что между моно- и бициклическими ароматическими фракциями высокомолекулярных углеводородов нет резкого перехода, хотя каждая из них имеет свои специфические полосы поглощения. Полоса 9,6 (i, характерная для нафталинового кольца, отсутствует в мопоцикли-ческой и отчетливо видна в бициклической ароматической фракции. Триплет в области 13—14 л по-разному проявляется у этих фракций — у моноциклической фракции наиболее интенсивно проявляется полоса 13,95 ji, а полосы 13,1—13,5 jj, очень слабы, тогда как в бициклических ароматических углеводородах наиболее интенсивна полоса 13,5 JA, а две другие полосы проявляются слабо. Моноциклическая фракция характеризуется более сильным пропусканием (60%), чем бициклическая (40%). [c.212]

    За последние годы в литературе появились сообщения о инфракрасных спектрах синтетических углеводородов, содержащих в молекуле более 20 атомов углерода. Наибольший интерес представляют исследования [144], в которых приводятся спектры предельных углеводородов С24 гибридного строения с соотношением алифатических и циклических атомов от 6 до 18, т. е. от 25 до 75%. От одного до трех атомов водорода в парафиновой цепи замещено циклогексановыми или циклонентановыми кольцами. [c.244]

    Так, инфракрасные спектры фракции весьма близки к спектрам фракций конденсированных бициклоароматических углеводородов, выделенных из той же нефти, а также к спектрам индивидуальных замещенных нафталинов. В ультрафиолетовом спектре этой фракции не обнаружено полос, характерных для конденсированных три- и полициклических ароматических систем, но были обнаружены, правда весьма нерезко выраженные и диффузные, полосы поглощения вблизи 30250 см, специфичные для три- и тетразамещенных нафталинов. Из полученных спектральных данных следует, что в наиболее нолициклической части высокомолекулярных углеводородов радченковской нефти, если и присутствуют структуры, содержащие конденсированные полициклические ароматические ядра, то лишь в небольших количествах, которые не удается однозначно определить методами инфракрасной и ультрафиолетовой спектроскопии. [c.295]

    Первая стадия превраш,ения, т. е. восстановление эфиров в спирты, осуш ествлялась при помош и ЫА1Н4. Такой метод восстановления эфирср нефтяных кислот осуществлен впервые. Выход был почти количественный. Свойства полученных углеводородов (инфракрасные и ультрафиолетовые спектры, и др.) напоминают свойства углеводородов масляной фракции, из которой были выделены нефтяные кислоты. Полученные из нефтяных кислот углеводороды характеризуются групповым составом, приведенным в табл. 58. [c.321]

    Близкая аналогия в характере инфракрасных спектров высокомолекулярных бпциклоароматическпх конденсированных углеводородов и смол одной и топ же нефтп служит прямым доказательством существования генетической связи между углеводородной п смолистой частями нефти, т. е. общности в строении углеродного скелета их. Было показано также, что высокомолекулярные моноциклические ароматические углеводороды, выделенные из различных нефтей (ромашкинской и радченковской), не различаются между собой ио [c.478]


Смотреть страницы где упоминается термин Углеводороды инфракрасные спектры: [c.306]    [c.324]    [c.325]    [c.325]    [c.325]    [c.326]    [c.328]    [c.329]    [c.332]    [c.505]    [c.318]    [c.244]    [c.280]    [c.478]    [c.478]   
Методы органической химии Том 2 Издание 2 (1967) -- [ c.958 , c.965 ]

Методы органической химии Том 2 Методы анализа Издание 4 (1963) -- [ c.958 , c.965 ]




ПОИСК







© 2025 chem21.info Реклама на сайте