Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектров накопление

    Причин отклонений от закона Бугера—Ламберта — Бера много. С изменением концентрации вещества в растворе меняется сила взаимодействия частиц (агрегация и дезагрегация, процессы полимеризации). Вещества, обладающие кислотно-основными свойствами, изменяют pH раствора, при этом возможно или образование различных комплексов, отличающихся друг от друга спектрами поглощения, или изменение степени диссоциации данного вещества, а ионы и нейтральные молекулы часто имеют резко различные спектры поглощения. Спектр поглощающего вещества может изменяться из-за накоплен гя в растворе некоторых непоглощающих, но химически активных веихеств. [c.23]


Рис. 21. Спектры поглощения прогестерона в гексафторбензоло, полученные Фурье-преобразованием сигнала спада свободной индукции, накопленного за 500 импульсов (а) и за одинаковое время стационарным методом (б). Рис. 21. <a href="/info/2753">Спектры поглощения</a> прогестерона в гексафторбензоло, полученные <a href="/info/141903">Фурье-преобразованием сигнала</a> <a href="/info/122800">спада свободной индукции</a>, накопленного за 500 импульсов (а) и за одинаковое <a href="/info/593916">время стационарным</a> методом (б).
    Использование масс-спектрометров с двойной фокусировкой во много раз увеличило надежность идентификации неизвестных соединений благодаря уменьшению перекрывания спектров компонентов смеси. Кроме того, получение масс-спектров индивидуальных соединений высокого разрешения позволило более детально проследить различные этапы распада молекулярного иона и обнаружить значительное количество ионов, имеющих совершенно непредвиденное строение. Накопление подобных данных приводит к более полной корреляции между строением молекул и их масс-спектрами, а значит и к более тонкой оценке характеристических ионов, используемых при идентификации. Так, например, с помощью масс-спектрометра высокого разрешения исследовались алифатические эфиры муравьиной, уксусной, пропионовой и масляной кислот [218] был идентифицирован состав всех ионов. Основное преимущество высокого разрешения при исследовании [c.125]

    Анализ спектров алканов показал также, что молекулу алкана нельзя описывать как систему связанных гармонических осцилляторов [27]. Молекула алкана может совершать колебания, в котором участвуют все или большая часть связей С—С. При такого рода колебаниях накопление энергии может приводить к отщеплению водорода в положениях 1—4 и разрыву молекулы по связи 2—3  [c.23]

    С другой стороны, экспериментальные работы по изучению инфракрасных спектров неорганических веществ не были столь же успешными. До недавнего времени было трудно, если не невозможно, приготовить образцы неорганических веществ, пригодные для получения спектров. Поэтому та информация, которую несут колебательные спектры неорганических веществ, получалась главным образом из спектров комбинационного рассеяния и методом отражений. Однако за последние 6—8 лет была развита методика приготовления образцов из неорганических соединений. Это привело к заметному увеличению экспериментальных данных и позволило наблюдать дискретные спектры целого ряда неорганических веществ. Были выявлены важные закономерности в возникновении и поведении инфракрасных спектров. Накопление экспериментальных данных вызвало появление теоретических работ, касающихся структур неорганических веществ и межмолекулярных сил. Часть I настоящей книги представляет собой обзор обычных методов, [c.11]


    Таким образол , к настоящему времени но поляризационным спектрам накоплен уже значительный материал. Интересующимся можно рекомендовать специальную литературу (см., например, [24]). [c.347]

    На практике осуществляется многоимпульсная (с промежутками I между импульсами в несколько секунд) последовательность с накоплением сигнала ССИ и фурье-преобразованием полученной интерферограммы на ЭВМ. Интерферограмма, представляющая су-пер-позицию ССИ, является функцией времени /(/) и зависит от спектра резонансных переходов ядер (ЯМР), который обозначим как функцию (v). Экспериментатора интересует обратная задача — получение спектра ЯМР, что достигается фурье-преобразованием временной функции в частотную  [c.45]

    Рабочий диапазон )—5000 СМ-. Горизонтальные шели. Управление ЭВМ — обработка спектров, накопление сигнала, интегральная и дифференциальная запись спектров [c.361]

    Несомненно, что в будущем технические возможности исследования спектров комбинационного рассеяния значительно возрастут. Например, исследование химических частиц, изолированных в твердых матрицах, методом спектроскопии КР все еще невозможно из-за слабой интенсивности рассеяния. Использование мощных лазеров в качестве источников возбуждения может решить эту проблему, и работа в этом направлении успешно осуществляется в настоящее время во многих лабораториях ). Применение лазерных источников стимулирует также и поляризационные исследования, что сильно облегчает интерпретацию спектров. Накопление экспериментальных данных приведет к лучшему пониманию различных эффектов и развитию теории, которая в конечном счете объясняет эксперимент. [c.404]

    Рпс. 7-7. Спектр ПМР раствора этилбензола (26 мкг) в СС (45 мкл), полученный в резз льтате обработки 334 спектров, накопленных в памяти вычислительной машины N8-544. [c.311]

    На шельфах Черного и Азовского морей на многих площадях проведена газовая съемка с целью обнаружения нефтяных и газовых залежей в глубоко погруженных отложениях. Как известно, сущность этих исследований заключается в том, чтобы уловить поток диффузионных газов от нефтяных и газовых залежей. Ранее уже отмечалась безнадежность этого метода, обусловливаемая тем, что если теоретически предположить такой поток можно, то практически уловить его в верхних современных осадках нельзя, поскольку эти осадки сами генерируют УВГ в очень широком спектре и в таком количестве, которое на много порядков больше, чем теоретически предполагаемый диффузионный поток. Поэтому те аномалии а содержании УБ, которые вырисовываются в ряде районов по данным газовой съемки, следует объяснять не наличием диффузионного потока, а чисто местными различиями в условиях накопления осадков. [c.65]

    Здесь уместно напомнить, что высокоэластические деформации развиваются на фоне необратимых деформаций и в определенной мере независимо от них (события как бы разыгрываются в разных областях релаксационного спектра). Соответственно, по мере развития -пластической деформации в режиме на первый взгляд установившегося течения происходит постепенное накопление обратимой деформации, масштаб которой до поры до времени остается того же порядка, что и у необратимой. Теперь термокинетические факторы, связанные уже не с напряжением сдвига Р, а непосредственно с градиентом скорости -у начинают приобретать роль, возрастающую по мере увеличения у. Это увеличение, с развиваемых в настоящей книге позиций, означает не что иное, как смещение стрелки действия в сторону меньших т. Соответственно, меняется [c.176]

    Развитие АСНИ в значительной степени обязано совершенствованию инструментальной и вычислительной техники, разработке эффективных средств преобразования информации, проникновению микропроцессорной техники в аналитическое приборостроение. Так, применение ЭВ М в аналитическом приборостроении позволило разработать новую технику, обладающую рядом принципиальных преимуществ существенно повысилась точность и разрешающая способность приборрв благодаря применению современных методов идентификации увеличился на несколько порядков динамический диапазон регистрации входного сигнала существенно увеличилось отношение сигнала-шума за счет суммирования и усреднения спектров (для ЯМР-снектрометра), полученных с одного образца значительно увеличилась производительность прибора уменьшилась вероятность появления субъективных и непредсказуемых ошибок при обработке и интерпретации данных появилась возможность накопления и хранения экспериментальных данных, их последующей расшифровки и интерпретации. [c.182]

    Анализ результатов регистрации акустической эмиссии показал, что представительная эмиссия, превышающая два импульса в секунду на канал, исходила из зоны несплошностей и свежих сварных швов при нагружении в диапазоне 80-100 атм. При этом в амплитудном спектре эмиссии снижался вес низкоамплитудной моды, и амплитудное распределение становилось равномерным. Количество импульсов акустической эмиссии уменьшалось при накоплении циклов нагружения. По мере роста числа циклов величина средней амплитуды убывала, а спектр смещался в область высоких частот. В случае выдержки под давлением 125 атм характер эмиссии изменялся. Ее интенсивность вначале падала, а затем возрастала в 5-6 раз. Импульсный поток становился более коррелированным, а его интенсивность сохранялась при разгрузке. В ходе последующего повышения давления до 150 атм образовалась течь вследствие наличия некачественного сварного шва. После ремонта испытания были продолжены. При давлении более 150 ат [c.192]


    Спектр фотоэлектронов получают, сканируя или поле анализатора, или замедляющее поле. Регистрация может проводиться непрерывно или ступенчато (по точкам). Для улучшения отношения сигнала к шуму необходимо усреднение по многократным сканам или увеличение времени счета импульсов в каждой точке. Имеющиеся в современных спектрометрах микропроцессоры и мини-ЭВМ управляют работой системы и обеспечивают накопление сигналов, усреднение, сглаживание, разложение сложных контуров на отдельные компоненты, вычитание фона, дифференцирование, интегрирование и другую обработку спектров. [c.148]

    Как показал опыт, влияние микробиологического процесса на углеводородный состав нефти носит вполне закономерный и направленный характер. В начальные этапы окисления (2 мес.), как обычно, затрагиваются нормальные алканы ia— ig. По мере углубления бактериального процесса содержание этих алканов непрерывно убы-вало, при этом окислению подвергался более широкий спектр этих углеводородов вплоть до Сз47 что хорошо видно на хроматограмме (рис. 85, в). К концу 5-го месяца микроорганизмы использовали свыше 90% нормальных алканов исходной нефти. На этой стадии несколько уменьшилась и общая концентрация разветвленных алканов. Хроматографическое исследование показало, что это уменьшение произошло в основном за счет вовлечения в процесс окисления монометилзамещенных структур (изо- и антеизоалканов). Относительное содержание изопреноидов в течение этого времени непрерывно возрастало за счет остаточного накопления. Поскольку изопреноиды на этой стадии еще не подверглись метаболизму, то не изменились ни их относительное концентрационное распределение, ни соотношение пристан/фитан. Зато значительно выросла величина Ki. Образовалась нефть типа А . [c.237]

    Если рассмотреть спектры ЯМР одного и того же вещества измеренные за одно и то же время методами медленного прохождения и импульсным методом с накоплением сигналов (рис. 21), то преимущества второго метода очевидны. [c.58]

    Широкое использование метода ЯМР в практике химиков-исследователей привело в настоящее время к накоплению обширного экспериментального материала по спектрам ЯМР органических соединений. Для облегчения поиска необходимой информации сведения о спектрах ЯМР систематизированы в каталогах и справочниках. Ниже приводится описание основных каталогов, справочников и указателей по ЯМР-спектроскопии. [c.156]

    Применимость методов структурного анализа обусловливается чистотой или, вернее, индивидуальностью пробы. Любому структурному анализу должно предшествовать отделение анализируемого вещества в наиболее чистом состоянии от возможных сопутствующих веществ химическим или физическим методом. В исключительных случаях (например, в случае спектроскопии ядерного резонанса высокого разрешения) допускается небольшое содержание примесей в анализируемом образце. Но в любом случае примеси усложняют расшифровку спектра анализируемого вещества. Для спектральных методов структурного анализа необходима небольшая проба анализируемого вещества (табл. 8.15). В случае раман-спектроскопии иногда необходимо брать пробу анализируемого вещества до 10 г. Применяя специальную технику (например, лазеры, микрокюветы, используя методы накопления), можно и для небольших проб веществ получить достаточно отчетливые спектры. Особенным преимуществом спектроскопических методов исследования структуры веществ является возможность получения спектров без разрушения образца (за исключением метода молекулярной масс-спектрометрии). [c.408]

    МЕМ действительно имеет большие преимущества при обработке либо очень неполных данных, либо спектров, накопленных с коротким временем регистрации. Используя в этом случае преобразование Фурье, мы должны применять аподизацию. При этом какую бы взвешивающую функцию мы ни выбирали, она неизбежно будет уширять линии. Применяя МЕМ, мы подбираем модельный сигнал во временнбй области независимо от уровня шума, и проблема обрезания просто не возникает (рис. 2,23), Весьма возможио, что МЕМ окажется особенно полезным при обработке двумерных спектров, для которых часто используются довольно короткие времена регистрации [3]. Большинство современных спектрометров еще не оснащено программами для применения МЕМ нри обработке данных. Объем вычислений здесь больше, чем при использовании преобразования Фурье. Однако нет сомнений в том, что в скором времени такие программы станут доступными. [c.52]

    Все спектрофотометры снабжаются ЭВМ, к-рые производят первичную обработку спектров накопление сигналов, отделение их от шумов, вычитание фоиа и спектра сравнения (спектра р-рителя), изменение масштаба записи, вычисление эксперим спектральных параметров, сравнение спектров с заданными, дифференцирование спектров и др [c.251]

Рис. 7-7. Спектр ПМР раствора этилбензола (26 мкг) в СС14 (45 мкл), полученный в результате обработки 334 спектров, накопленных в памяти вычислительной машины N8-544. а — необработанный спектр б — результат обработки участка спектра а методом наименьших квадратов (по девяти точкам) и кубическим сглаживанием (по измерениям через каждые 0,75 Гц). Рис. 7-7. Спектр ПМР <a href="/info/1031344">раствора этилбензола</a> (26 мкг) в СС14 (45 мкл), полученный в <a href="/info/18519">результате обработки</a> 334 спектров, накопленных в памяти <a href="/info/24401">вычислительной машины</a> N8-544. а — <a href="/info/1579470">необработанный</a> спектр б — <a href="/info/18519">результат обработки</a> участка спектра а <a href="/info/117065">методом наименьших квадратов</a> (по девяти точкам) и кубическим сглаживанием (по измерениям через каждые 0,75 Гц).
    Чтобы облегчить решение качественных аналитических задач, была применена система перфорированных карточек [26, 51]. Применялась как ручная сортировка карточек (Мак-Би Кизот), так и электрическая сортировка. Обычно на карточки вместе со спектральными данными наносятся также данные по физическим и химическим свойствам. 13 одной из таких систем [51] можно в один прием при помощи электросортировки выбрать только те карточки, которые 1) имеют в определенных положениях одну или больше полос, 2) в определенных положениях не имеют полос, 3) обладают определенными физическими или химическими свойствами. Это снижает число спектров, с которыми приходится сравнивать исследуемое вещество, до 1—2% от начального количества спектров. Системы перфорированных карточек пока получили, по-видимому, более широкое распространение в химической промышленности, чем в нефтяной. Однако по мере накопления спектров более высокомолекулярных углеводородов это положение изменяется. В настоящее время данные по инфракрасным спектрам, опубликованные по Проекту 44 Американского нефтяного института, нанесены ira перфорированные карточки, которые можно сортировать электрическим методом. [c.320]

    JTpH обычных способах записи спектров ЯМР (на стационарных спектрометрах с полевой или частотной разверткой) использование ЭВМ для накопления спектров и улучшения чувствительности прибора мало эффективно из-за большой длительности снятия спектра. Действительно, одна развертка спектра в среднем занимает одну минуту. Это значит, что для улучшения отношения сигнал/шум в 10 раз нужно было бы совершить 100 разверток спектра, т. е. затратить 100 минут, причем за все это время магнитное поле спектрометра не должно сместиться на расстояние более половины ширины сигнала ЯМР, иначе процесс накопления спектров теряет всякий смысл. Выполнить это условие очень трудно и не всегда возможно. Поэтому накопители сигналов ЯМР имели ограниченное применение до тех пор, пока не появился путь радикального ускорения снятия отдельных neKTpogJ (см. Импульсные спектрометры и принципы Фурье-спектроскопии ), [c.47]

    Обнаруженный ранее с помощью спектроскопии ЗПР [192, с. 1997 211, с. 337] эффект поглощения кислорода системой этилбензол — А1Вгз, вследствие которого в спектрах ЗПР наблюдается два типа сигналов, можно объяснить протеканием в данных условиях процессов диспропорционирования, а также позиционной изомеризации. Первоначально образующийся сигнал ЭПР в изучаемой системе можно отнести к радикальным частицам на основе зтил-, ж-диэтил- и 1,3,5-триэтилбензолов, поскольку константа сверхтонкого сопряжения от взаимодействия неспаренного электрона с протонами, находящимися в л ет а-положении, ароматического кольца, близка к нулю. Сигнал второго типа является, вероятно, налояСением первоначального спектра ЭПР и сигнала парамагнитных частиц, образованных о- и я-диэтилбензолами. Образование орто- и пара-изомеров подчиняется кинетическому, а накопление мета-п о-изводных — термодинамическому контролю, поэтому в спектрах ЭПР при добавлении новой порции кислорода или воздуха происходят с течением времени взаимопревращения сигналов первого и второго типов. [c.221]

    Известно [174], что поведение ошибки численного решения задачи Коши определяется спектром матрицы Якоби и(х) = Of/Dx. Если у матрицы J (х) действительная часть собственных значений положительна, то с ростом времени растет и норма ошибки, т.е. решение системы неустойчиво. В случае отрицательной действительной части собственнь1х значений норма ошибки уменьшается и решение устойчиво. При наличии чисто мнимых собственных значений норма ошибки, возникающая при численном интегрировании, не убывает, что приводит к ее накоплению. Уравнения движения для консервативных систем имеют в основном мнимые собственные значения матрицы Якоби, что и является причиной осцилля-ционного характера решений. Это обусловливает строгие требования к контролю точности численного решения. [c.79]

Рис. 30. Примерные кинетические крнвые окисления топлив по методу [58] а —накопленне конечных продуктов окисления в очищенных топливах (ИК-спектры) б — накопленне растворимых продуктов окисления в топливе без присадок и с присадкой 2,6-дн-грет-бутнл-4-метилфенол. Рис. 30. Примерные кинетические крнвые окисления топлив по методу [58] а —накопленне <a href="/info/17660">конечных продуктов</a> окисления в очищенных топливах (ИК-спектры) б — накопленне <a href="/info/103843">растворимых продуктов</a> окисления в топливе без присадок и с присадкой 2,6-дн-грет-бутнл-4-метилфенол.
    Из табл. 2 видно, что у галогеналкилов батохромный сдвиг полосы тем сильнее, чем в большей степени поляризовано электронное облако галогена. Накопление в молекуле сопряженных двойных связей вызывает сдвиг в длинноволновую область примерно на 30—40 нм на каждую вводимую связь С = С. Например, гек-сатриеи имеет максимум при 265 нм каротин, содержащий цепочку из 11 сопряженных связей,— максимум при 510 нм. Накопление сопряженных двойных связей вызывает также увеличение интенсивности их поглощения. Наиболее сильное изменение в спектре по сравнению со спектром, содержащим отдельные хромофоры, происходит при наличии в молекуле нескольких хромофоров. На- [c.10]

    Несколько иная двухфазная система с сильными связями на границах фаз получена на основе трехблочных сополимеров типа бутадиен-стирольного сополимера. Как показано в гл. 2, молекула такого сополимера состоит из твердых концевых блоков (стирол), соединенных центральными эластомернымп блоками (бутадиен). Блоки стирола накапливаются и образуют небольшие домены, которые выполняют роль сшивок, вызывая резиноподобную эластичность блочного сополимера ири температурах окружающей среды и обусловливают пластическую деформацию ири высоких температурах. Для выяснения механизма разрушения таких систем было бы полезно определить, в какой из фаз чаще всего происходит разрыв молекулярной цепи. Прямые пути решения данной задачи заключались бы в разрушении материала и анализе сверхтонкой структуры образующихся в результате спектров ЭПР. Однако в интервале температур от температуры жидкого азота до комнатной температуры деформирование растяжением не вызывает накопления свободных радикалов в количестве, достаточном для их обнаружения. Вследствие этого Деври, Ройланс и Уильямс [36] использовали менее убедительный, но более доступный метод сравнения спектра бутаднен-стирольных блочных сополимеров (5В5) с отдельными спектрами стирола и бутадиена. Эти исследования были выполнены при температуре жидкого азота путем измельчения материала с целью увеличения поверхности разрушения. При низкой температуре радикалы становились более стабильными и, по-видимому, замораживались на стадии первичных радикалов. Сравнение спектров трех материалов показало, что спектр 5В5 содержал все линии радикала бутадиена, но не содержал линий радикала стирола. Поэтому радикал системы 5В5 был отнесен к фазе бутадиена. К сожалению, в данных исследованиях не удалось выяснить, был ли радикал, полученный при измельчении в условиях низких температур, тем же самым, что и образовавшийся в нормальных условиях при комнатной температуре, и являлся ли обнаруженный радикал первичным или вторичным. [c.219]

    Взаимосвязанное изменение механических и электрофизических свойств металла оборудования в процессе накопления повреждений по-разному влияет на разные гармонические составляющие спектра отраженного электромагнитного поля. Современная компьютерная техника позволяет в реальном масштабе времени анализировать большое число гармонических составляющих, выявлять различные варианты отклонений состояния мета1ша оборудования от исходного состояния и идентифишфо-вать повреждения. Носителями информации являются амплитуда и фаза гармонических составляющих. [c.211]

    Органическая химия - эго шаг от изучения неживой природы физикой, неорганической химией и еще целым спектром наук к предметам и явлениям природы живой - биохимии, биологии, физиологии, психологии... Накопленный методический опыт весьма впечатляющ. Сказать о сложном проого, наглядно, интересно - это тоже иокус-отво, в чем можно убедиться даже просмотрев рекомендуемые ниже работы. [c.150]

    Проведенное рассмотрение масс-спектров углеводородов, содержащих различное количество кратных связей в молекуле, свидетельствует о том, что количество ионов, обязанных своим возникновением перегруппировкам, возрастает по мере накопления в молекуле кратных связей [176, 182]. Иначе говоря, перегруппировочные ионы в масс-спектрах углеводородов становятся специфическими признаками степени нена-сыи1епности. [c.79]

    Выпускаемые в нашей стране многоканальные фотоэлектрические установки (МФС-7, МФС-8, ДФС-40, ДФС-44, ДФС-51) в настоящее время оснащены ЭВМ. Общим для всех установок является применение унифицированных электронно-регистри-рующего устройства ЭРУ-18 и управляющего вычислительного комплекса Спектр 2-2 на базе вычислительного устройства Электроника ДЗ-28 . Устройство ЭРУ-18 осуществляет прием, накопление и запоминание сигналов, приходящих с анодов ФЭУ, преобразование сигналов в цифровой код и передачу их для обработки в ЭВМ. Спектр 2-2 управляет работой прибора, производит обработку поступающей с прибора информации и осуществляет контроль технического состояния всей системы, [c.70]

    Для каждого полимера характерна вполне определенная концентрация ловушек, на которых стабилизируются заряды. В начале радиолиза происходит заполнение ловушек до некоторой равновесной концентрации ионов. Для многих полимеров равновесная концентрация зарядов достигается уже при дозах, меньших 10 Гр (1 Мрад). Изменения спектров ЭПР во время радиолиза также показывают, что накопление ионов прекращается или резко замедляг ется при дозах 1—3 Мрад. Поэтому почти для всех полимеров (полиэтилена, полипропилена, политетрафторэтилена, полиметилметакрилата и различных эластомеров) интенсивность РТЛ растет с дозой только до 1—5 Мрад. Дальнейшее увеличение дозы облучения или меняет площадь под кривой высвечивания, или в некоторых случаях даже снижает ее. [c.237]

    Существует значительное число модификаций методов, основанных на детектировании электрохимически генерированных промежуточных продуктов посредством получения их оптических спектров в ультрафиолетовой, видимой или инфракрасной областях поглощения света. Идентификация продуктов реакции производится по длинам волн и интенсивностям характеристических полос поглощения. Наибольшую информацию о природе частиц можно извлечь из данных ИК-спектрометрии, однако ее сравнительно невысокая чувствительность, определяемая небольшими значениями коэффициента молярной экстинции е, требует достаточно высоких концентраций интермедиата, труднореализуемых в случае короткоживущих частиц. Дополнительные осложнения при использовании ИК-спектрометрии связаны с трудностями применения в качестве растворителей воды и других гидроксилсодер-жащих соединений, сильно поглощающих в исследуемой области частот. В силу названных причин ИК-спектрометрия для изучения промежуточных продуктов электродных реакций используется относительно редко. Большим достоинством видимой и УФ-спектро-фотометрии является высокая чувствительность метода. Однако в этой области спектра низка специфичность поглощения, т. е. полосы многих хромофоров перекрываются. Пики поглощения находящихся в растворе частиц, как правило, очень широкие, и спектры сильно искажаются примесями, поглощающими свет в той же области спектра. Поэтому применение УФ-спектрометрии для установления структуры частиц оказывается малоэффективным. Значительно чаще такие измерения используются для изучения кинетики накопления или исчезновения промежуточных продуктов. [c.220]

    Оценка содержания адсорбированных молекул по интенсивности полосы 8н,о была произведена по спектрам, полученным на ИК спектрометре высокого разрешения. Сочетание этого прибора с ЭВМ позволяет проводить накопление спектров поглощения адсорбционной системы и П утем вычитания спектров адсорбента выделить вклады адсорбции (собственно полосы бн о) и вызванного ею возмущения перекрывающихся с ней полос поглощения колебаний остова кремнезема (табл. 3.1 и 3.2). На рис. 3.6 представлены спектры поглощения в области деформационных колебаний молекул воды в системе Н2О — гидроксилированная поверхность [c.58]


Смотреть страницы где упоминается термин Спектров накопление: [c.119]    [c.6]    [c.123]    [c.128]    [c.304]    [c.153]    [c.157]    [c.242]    [c.111]    [c.134]    [c.137]    [c.143]    [c.47]    [c.55]   
Введение в курс спектроскопии ЯМР (1984) -- [ c.75 ]




ПОИСК





Смотрите так же термины и статьи:

Накопление

Пробные системы финитных функций и непрерывная часть спектра сингулярного оператора как множество точек накопления спектров регулярных операторов

Спектроскопия накопление спектров

ЯМР-эксперимент накопление спектра



© 2025 chem21.info Реклама на сайте