Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магний сернистый хлористый

    Так, при наличии хлористого магния и хлористого кальция, присутствующих в пластовой воде, может образоваться соляная кислота. При разложении сернистых солей образуется сероводород, приводящий совместно с водой к интенсивному процессу коррозии. [c.38]

    Гидролиз хлористого магния требует относительно сложного аппаратурного оформления процесса и связан с ограниченными возможностями получения магнезии различной степени легкости. Осаждение гидроокиси магния сернистым барием не имеет самостоятельного значения, а комбинируется с производством бариевых солей. [c.239]


    Древесина ие стойка по отношению к азотной, щавелевой, концентрированным серной и соляной кислотам, растворам щелочей, углекислых солей, солей железа и алюминия, хлористого магния, сернистого газа, хлора и эфира. [c.491]

    Аналогично, но при более высоких температурах гидролизуются соли кальция и натрия. Скорость гидролиза увеличивается с повышением температуры. При 343°С гидролизу подвергается 90% хлорида магния. Даже небольшое количество образовавшегося хлористого водорода при наличии сероводорода, который появляется при переработке сернистого сырья, резко интенсифицирует коррозионное разрушение металла печных труб. Это объясняется реакциями между железом, сероводородом и хлористым водородом. На железе образуется пленка сернистого железа, которая разрушается хлористым водородом с образованием растворимого в воде хлорида железа и сероводорода  [c.147]

    Натрия гидроксид Калия гидроксид Аммония гидроксид Натрий углекислый Калий углекислый Калий углекислый Натрий сернокислый Натрий сернокислый Натрий сернокислый Натрий сернисто-кислый Натрий хлористый Барий хлористый Кальций хлористый Магний хлористый Марганец хлористый Железо хлорное Железа сульфид Железа сульфид Натрия сульфид Сероводород Сера Сера Сера [c.115]

    Превращение серы и сернистых соединений в сероводород наблюдается также при многих каталитических процессах переработки нефти. Даже при содержании в нефти 0,3% серы скорость коррозии на выходе из ри бойлера составляет 2-5 мм/год, в линиях подачи сырой нефти и в теплообменниках - 1,3 мм/год [28]. Хлористый водород образуется в результате гидролиза хлоридов кальция, магния и аммония, содержащихся в нефти. Хлористый водород легко абсорбируется конденсатом и накапливается до весьма высокой концентрации [29]. В нефтях соде[>-жание хлоридов может достигать 100-150 г/м , а количество образовавшегося хлористого водорода в результате гидролиза хлоридов 17-22 г/м [30]. [c.48]

    Сернистые нефти наряду с сернистыми соединениями содержат большое количество солей, состоящих в основном из хлоридов натрия, кальция и магния, гидролизующихся с образованием соляной кислоты. В процессе первичной переработки нефти гидролиз хлористого магния совершается на 75—90%, а хлористого кальция на 8—15%- При воздействии сероводорода, содержащегося в нефти, на металле аппаратуры образуется пленка сульфида железа, нерастворимая в воде. В присутствии даже небольшого количества хлористого водорода сульфид железа превращается в растворимое в воде хлорное железо, что значительно увеличивает скорость коррозии. [c.108]


    Окись лантана. . . Гидрат окиси лантана Сернокислый лантан Сернистый лантан. Бромистый литий. Углекислый литий. Хлористый литий. Фтористый литий. йодистый литий. . Гидрид лития. . Алюмогидрид лития Азотнокислый литий Гидрат окиси лития Сернокислый литий Бромистый магний Углекислый магний Хлористый магний Хлорнокислый магний йодистый магний. Окись магния. . Гидрат окиси магния Сернокислый магний Углекислый марганец Хлористый марганец Закись марганца. Окись марганца Двуокись марганца Сернистый марганец [c.37]

    Хлористый натрий (ГОСТ 153—63) — соль поваренная, натрий хлористый МаС), природный минерал — порошок кристаллический белого или желтоватого цвета. Различают четыре вида поваренной соли каменную, самосадочную, садочную и выварочную. Каменную соль добывают из недр открытым или шахтным методом самосадочную соль получают из р.ампы озер после естественного испарения воды садочную —из водоемов, содержащих соль путем испарения воды в специально подготовленных мелких искусственных озерах выварочную соль получают из растворов, содержащих соль, в выпарных аппаратах на солевых заводах. Соль выпускается четырех сортов экстра, высший, 4 и 2. Содержание хлористого натрия (соответственно указанным сортам) должно быть не менее 99,2 98 97,5 96,5 сернистого натрия не более 0,2% для высшего сорта и 0,5%> для остальных сортов содержание кальция для сорта экстра не допускается, а для остальных сортов—0,6 0,6 и 0,8% магния — 0,03 0,01 и 0,25% веществ, не растворимых в воде, не более 0,05 0,2 0,5 0,9% влаги 0,5—0,8% для экстра и каменной или [c.243]

    В процессе переработки сернистые нефти вызывают повышенную коррозию аппаратуры и оборудования, при этом интенсивность коррозии усиливается, когда в нефти содержится повышенное количество солей хлористого кальция и магния. В соединении с железом сера образует на поверхности аппаратуры и труб пирофорные соединения, способные самовозгораться при соприкосновении с кислородом воздуха. [c.218]

    При изучении химических факторов коррозии бетона следует рассматривать как химический и минералогический составы бетона, его капиллярно-пористую структуру, так и состав агрессивной среды, в которой, как это следует из опыта работы бетонных сооружений, большую роль играют ионы магния, натрия, алюминия, аммония, меди, железа,, водорода, гидроксила, сульфатные, карбонатные и бикарбонатные, хлористые анионы. Также опасны все виды кислых газов — углекислый, сернистый, сероводород. Определенную роль играют также и органические соединения. Рассмотрим некоторые виды коррозии. [c.371]

    Образующийся при этом Са(0Н)2 выпадает в осадок и его отделяют, а раствор насыщают сероводородом до требуемой величины pH и сливают с раствором хлористого магния.. Выщелачивание плава сернистого бария растворами СаСЬ позволяет получить растворы с высокой концентрацией бария. Плав сернистого-бария подвергают выщелачиванию при 65° 10% раствором СаСЬ, количество которого берут с таким расчетом, чтобы перевести весь BaS, содержащийся в плаве, в Ba(HS)2 и обеспечить добавочное извлечение бария из карбоната и силиката бария в виде ВаСЬ. Для этой цели шлам, оставшийся после выщелачивания, дополнительно разваривают при 100°. [c.442]

    Для получения светосостава к сернистому цинку добавляют активатор и плавень, после чего смесь прокаливают. В качестве активатора обычно применяют медь в количестве 0,00005—0,0001 г меди на 1 г сернистого цинка. Активатор вводят или в виде спиртового раствора какой-либо соли меди в сернистый цинк, или в виде водного раствора в очищенный раствор сернокислого цинка перед пропусканием сероводорода. В качестве плавня обычно применяют хлористую соль натрия, калия, магния, кальция или бария. Перед добавкой к сернистому цинку плавень подвергают тщательной очистке многократной перекристаллизацией. [c.738]

    Медь применяется главным образом в виде хлористой меди, н также и в виде медно-аммиачного сульфата, азотнокислой меди и основной углекислой соли (медная лазурь). Для повышения блеска пламени находят применение следующие металлы сурьма (также в виде сернистой сурьмы), ртуть в виде каломели, марганец—перекиси, свинец—азотнокислой соли, окиси и свинцового сахара—и более редко соли лития, никкеля и висмута. Металлы, как алюминий, магний, чугун, сталь, медь, латунь и цинк, в виде опилок служат для достижения особых эффектов. [c.718]

    Инертные газы (азот, водород и др.) аммиак жидкий и газо-обдазный сернистый ангидрид кислоты азотная 50%-ная, соляная 60, фосфорная 100, плавиковая 50, уксусная 100, муравьиная 50, фтористоводородная 60, кремнефтористоводородная 32,5%-ная растворы солей любой концентрации алюминия азотнокислого, сернокислого, хромистокислого меди сернокислой, хлористой, цианистой магния сернокислого, хлористого кальция хлористого и хлориоватистокислого [c.240]


    СОСНЫ, лиственницы, березы а = 0,05 при сжатии вдоль волокон ели, пихты, дуба а = 0,04 при изгибе всех пород а = 0,04 при скалывании вдоль волокон для всех пород а = 0,05. С повышением температуры с 20 до + 80° С прочностные свойства дерева ухудшаются на 20"—30%. Наоборот, понижение температуры до минус 60 С увеличивает пределы прочности при скалывании, растяжении и сжатии соответственно на 15, 20 и 45% сравнительно с этими же характеристиками при 20° С. Древесина химически не стойка против действия крепких серной и соляной кислот, азотной кислоты, растворов едких ш,елочей, углекислых солей, солей железа, алюминия, магния, сернистого газа, хлора и многих других сред. Смолы, содержащиеся в древесине, могут загрязнять обрабатываемые вещества. Конструктивное оформление аппаратуры из дерева довольно примитивно. Максимальная температура материалов, обрабатываемых в деревянной аппаратуре, не должна быть выше 100° С. Дерево применяется в пищевой промышленности, а также в промышленности органических полупродуктов и красителей. Дерево служит прекрасным материалом для тары. Дерево устойчиво против органических кислот, хлористых и сернокислых солей, масел, растворов красителей, сахарных растворов, соляных рассолов. Теплоемкость абсолютно сухой древесины не зависит от породы и равна 0,33 ккал/ка °С, теплопроводность ее весьма низка К = 0,03 до 0,1 ккал м Счас, что может явиться в зависимости от применения и достоинством, и недостатком. Коэффициент температурного расширения весьма мал. Механические свойства основных пород, используемых в аппаратостроении, приведены в табл. 34. Для улучшения свойств древесины ее покрывают бакелитовым и другими лаками. [c.55]

    Винипласт при разных температурах стоек к следующим агрессивным средам до 80° С — к озону, до 60° С к газообразному аммиаку (100%), газам, содержащим НР (влажным), содержащим серную кислоту, топочным сухим, едкому кали (до 60%) насыщенному бромноватистокислому, азотнокислому, цианистому, марганцевокислому (6%), хлористому и перхлорату (1%) калия насыщенному хлористому кальцию и азотнокислому (до 50%) разбавленным квасцам, кислороду любой концентрации кислотам — бромистоводородной (48%), винной (насыщенной), гликолевой, кремнефтористоводородной (до 32%), лимонной (насыщенной), надхлорной (насыщенной), олеиновой (продажной), серной (до 80%), соляной (до 37 ), стеариновой, уксусной (до 60%), щавелевой (насыщенной), жирным насыщенному сернокислому и хлористому магнию мочевине (до 33%) насыщенному, сернистому, хлористому и хлорноватистому натрию, едкому натру (до 60%), насыщенному уксуснокислому свинцу, сухому сернистому газу, сухой газообразной углекислоте, формалину (до 40%),-насыщенному сернокислому и хлористому цинку. [c.63]

    В процессах подготовки нефти эмульгированная минерализованная пластовая вода и сернистые соединения вызывают коррозионные разрушения установок стабилизации, обессоливания и обезвоживания нефти. Коррозионную активность перерабатываемой нефти определяют сернистые соединения и вода. В результате расщепления хлористого магния, содержащегося в пластовой воде, образуется хлористый водород, вызывающий интенсивную коррозию установок АТ и АВТ (теплообменники, элек-трогидраторы, сепараторы, холодильники, колонные аппараты и др. [292]. В процессах прямой перегонки нефти коррозионному разрушению подвержены верхняя часть аппаратуры под действием второй фазы водного конденсата с растворенными в ней хлористым водородом и сероводородом [291, 292]. Значительно усиливаются процессы коррозии при введении в сырье водяного пара [292]. Содержание в нефтях нафтеновых кислот способствует коррозии печных труб при температуре ts = 350°С. Защита от [c.7]

    Особо важным является вопрос о перегонке до гудрона сернистых нефтей Второго Баку, весьма богатых не только парафином, смолистыми и сернкстыми соединекинми, но и хлористыми кальцием и магнием, способными в известных условиях привести к сероводородной и хлористоводородной коррозии. [c.377]

    При каких условиях следующие вещества будут взаимодействовать между собой хлористый барий+сер-нокислый натрий, едкий натр+хлорное железо, гидрат окисн магния+азотная кислота, углекислый газ+серная кислота, гидрат окиси кальция+сернистый газ, двуокись азота+серная кислота, углекислый газ+мрамор-f вода, металлический магний+Еоздух. [c.461]

    В обычной русской номенклатуре названия солей производили от соответствующих кислот и металлов, причем первая часть названия солей кислородных кислот имела окончание — кислый. Примеры KNO3 — азотнокислый калий, MgS04 — сернокислый магний, но Na l — хлористый натрий, FeS — сернистое железо и т. д. [c.47]

    В процессах переработки сернистая нефть вызывает интенсивную коррозию аппаратуры, которая особенно усиливается при наличии в нефти большого содержания остаточных солей хлористого кальция и магния. Соединяясь с железом, сера образует на внутренней поверхности аппаратов и тру пирофорные соединения, способные самовозгораться при соприкосновении с кислородом воздуха. Распределяясь в продуктах переработки, сера вызывает необходимость их глубо1<ой очистки для доведения качеств до требований стандарта. Высокое содержание сероводорода в нефти и продуктах ее переработки требует дополнительных мероприятий по созданию безопасных условий труда и принятия специальных мер по герметизации оборудования. [c.31]

    Резина листовая техническая по ГОСТ 7338 81 Хлор (сухой газ) сероводород двуокись углерода кислоты любой концентрации соляная, борная, сернистая, винная, мышьяковая кислоты ограниченной концентрации серная 50 %-ная, фосфорная 85 %-ная, фтористоводородная 50 %-ная, ацетон ненасыщенные растворы солей алюминия азотнокислого, сернокислого, хромистокислого, бария сернокислого, железа сернокислого (закисного и окисного), калия двухромовокислого, сернокислого и сернистокислого, бисульфата калия, кальция сернистокислого, хлористого, хлорноватокислого, меди сернокислой, хлористой, цианистой, натрия кислого сернистокислого, цианистого, никеля уксуснокислого, серебра азотнокислого растворы солей любой концентрации анилина солянокислого, магния хлористого и сернокислого, натрия азотнокислого, сернистого, углекислого и хлористого, олова хлористого растворы хлористого цинка 50%-ной концентрации До 0,6 От -30 до +65 [c.382]

    Наиболее активным, разъедающим металл агентом является хлористый водород (в присутствии воды), выделяющийся при разложении хлористых солей (осрбенно распадающихся при сравнительно низких температурах хлористых магния и кальция)-, содержащихся в промысловой воде, сопровождающей нефть. Соляная кислота наиболее интенсивно разрушает оборудование в присутствии активных сернистых соединений, особенно сероводорода, т. е. при совместном их воздействии на металл. Вместе с тем, сероводород и другие сернистые соединения (меркаптаны, элементарная сера) сами активно действуют на сталь, разъедают ее с образованием опасного в пожарном отношении пирофорного сернистого железа. Хлористоводородная и сернистая коррозия поражает конденсационно-холодильные системы АВТ и термического крекинга отстойники АВТ и ЭЛОУ днища, верхние пояса, кровли и фермы сырьевых и дистиллятных резервуаров печные трубы и двойники линии продуктов с высокой температурой верхние части ректификационных колонн и т. д. [c.147]

    Отделение. металлюв группы сернистого ам.мония от щелочных н щелочноземельных металлов производится посредством сернистого я ммония в присутствии хлористого ам.мония. Но если исследуемый ра.створ содержит фосфорную, щавелевую или много бариой кислоты, то при нейтрализации раствора вместе с металлами рассматриваемой группы выпадают в осадок также. кальций, стронций, барий и магний в виде (фосфатов, оксалатон или боратов. В присутствии фтористоводородной кислоты наблюдается в этих условиях осаждение фтористого ка.льция. [c.279]

    Другим важным фактором в применении легированных сталей в процессе крекинга являются коррозионные свойства сырья. Корро-зионность сырья и дестиллатов при крекинге может вызываться или некоторыми неорганическими хлоридами, или органическими сернистыми соединениями. Такие вещества, как хлориды магния и кальция, гидролизируются в присутствии водяного пара при высокой температуре с образованием хлористого водорода, обладающего высокой кор-розийностью. Следует отметить, что содержание неорганических солей в некоторых видах сырья значительно увеличилось в течение последних лет вследствие возрастающего применения кислотной обработки скважин. Деэмульсация нефти и удаление солей перед крекингом все еще является одним из важных требований для уничтожения или, по крайней мере, снижения коррозии. [c.262]

    Углеводороды жидкие растворы солей любой концентрации алюминия азотнокислого, сернокислого, хлористого и хромнстокислого, бария сернокислого, железа сернокислого (закисного и окисного), калия двухромовокислого, сернокислого и сернистокислого, бисульфата калия, кальция кислого сернистокислого, хлористого и хлорноватистокислого, магния сернокислого и хлористого, меди сернокислой, хлористой и цианистой, натрия азотнокислого, сернистокислого, сернистого, углекислого, хлористого и цианистого, никеля азотнокислого и уксуснокислого, олова хлористого, серебра азотнокислого, цинка хлористого сера (жидкая) сернистый ангидрид триэтаноламин фенол [c.23]

    Фуллерова земля применяется как адсорбирующее вещество, к которому добавляют соли металлов (реагирующие с сернистыми соединениями с образованием сульфидов) можно применять, например, окись меди, хлорную медь, азотнокислую медь, хлорную ртуть, хлорное железо, окисное сернокислое железо закись меди, хлористое железо, закисное сернокислое железо, хлористый кобальт, хлористый кадмий, окисную азотнокислую ртуть, за-кисную азотнокислую ртуть, гидрат окиси меди, углекислую медь, уксуснокислую медь, окись магния, гидрат окиси магния к твер- [c.400]

    Сернистая кислота Гидрат извести. . Углекислый натрий Хлористый натрий Хлористый магний Серная кислота (50з) Соляная кислота Днанистый калий Слористый натрий Зернистый цинк Крезол Лиридин Аммиак >> [c.225]

    Э ш к а заключается в сжигании нефтепродукта в смеси с окисью магния и содой, окислении образующихся сульфитов в сульфаты и определении последних осадже-нием хлористым барием в водном растворе. Ускоренный метод состоит в сжигании нефтепродукта в струе воздуха, улавливании образующегося сернистого ангидрида и количественном его определении объемным путем. [c.550]

    В нефтях содержатся также водные растворы минеральных солей (хлоридов натрия, магния и др.), образующих с нефтью стойкие эмульсии. При переработке нефти эти соли под действием новьппенных температур разлагаются с выделением хлористого водорода, который является весьма коррозионно-активным агентом. Количество хлористого водорода зависит от количества минеральных солей и температуры нагревания нефтепродукта. Особенно интенсивно коррозионное разрушение металла при совместном действии хлористого водорода и сероводорода, что типично для большинства сернисты х нефтей. [c.170]

    Производство дифенила описано S ott oM Пары бензола пропускают через металлический змеевик, погруженный в свинцовую баню, нагретую до 600—650°. По выходе из змеевика пары пробулькивают через расплавленный свинец и попадают в другой такой же змеевик, пофуженный во вторую с-вин-цовую баню, температура которой 750—800°. Полученный таким образом дифенил пропускают с большой скоростью через водяной холодильник. Согласно другому методу пары бензола пропускают через реакционную камеру, нагретую при 800° и содержащую контактные вещества, уменьшающие отложение угля Такими веществами являются сернистые кобальт, железо, медь, молибден,, мышьяк, олово или цинк хлористые никель или сурьма хромово-калиевые квасцы или же металлы селен, мышьяк, кремний, сурьма или молибден. Кроме того для такой дегидрогенизации были предложены следующие катализаторы трудноплавкие окислы, ванадаты, хроматы, вольфраматы, молибдаты, алюминаты, цин-каты таких металлов, как кальций, магний, титан, церий, цирконий, торий и бериллий [c.210]

    Хлорсульфированный полиэтилен (ХСПЭ). Его получают в результате введения в молекулу полиэтилена еульфохлоридной группы ЗОгСЬ при обработке полиэтилена, растворенного в четыреххлористом углероде, хлористым сульфурилом ЗОгСЬ или смесью хлора и сернистого газа. Каучукоподобный полимер, получаемый в виде белой рыхлой крошки, вулканизуется окислами металлов или солями органических кислот (преимущественно окисью магния и свинца или свинцовыми солями органических кислот). Структурирование происходит в результате гидролиза и дальнейших реакций с сульфо-хлоридными группами. Вулканизация протекает в при- [c.218]

    При частичном замещении атомов водорода кислоты атомами металла образуются кислые соли если же все атомы водорода замещены атомами металлов, то образуются средние соли. При частичном замещении в основаниях гидроксильных групп кислотными остатками образуются основные соли. В названиях кислых и основных солей впереди пишется дополнительное прилагательное кислый — в кислых солях, основной — в основных солях KHSO4 — кислый сернокислый калий, KHS — кислый сернистый калий, AIOHSO4 — основной сернокислый алюминий, MgOH l — основной хлористый магний и т. п. [c.36]

    В качестве плавня обычно применяют хлористую соль натрия, калия, магния, кальция или бария. Перед добавкой к сернистому цинку плавень подЕергают тщательной очистке многократной перекристаллизацией. [c.604]

    Сернистый цинк применяют в качестве основания при изготовлении светосоставов как временного, так и постоянного действия. При изготовлении светосоставов временного действия в качестве основания применяют также сернистые соли щелочноземельных металлов. В этом случае в качестве исходного сырья применяют водорастворимые соли щелочноземельных металлов кальций, стронций и барий в виде хлористых или азотнокислых солей, а магний в виде сернокислой соли. Эти соли прежде всего подвергают тщательной очистке, для чего их растворяют в де-стиллированной воде. Раствор, содержащий соли кальция, стронция или магния около 350 г)л или бария около 100 г/л, фильтруют через плотный фильтр, после чего к раствору добавляют небольшое количество (2—3 мл) 3%-ной перекиси водорода. Раствор соли с перекисью водорода кипятят и затем выделяют из него отстаиванием и последующей фильтрацией выпавшие гидраты окислов железа. К очищенному раствору приливают раствор химически чистого углекислого аммония (. Н4)2СОз и избыток аммиака до легкого запаха. Происходящая при этом реакция приводит к выпадению в осадок углекислой соли щелочноземельного металла. [c.605]

    Этот способ не вполне точен, так как вместе с хлористым мышьяком улетучиваегся также небольшое количество хлористой сурьмы. Если требуется одновременное определение мышьяка и сурьмы, то для восстановления хлорного железа и чтобы при последующем осаждении сероводородом четырех металлов не выпадало много серы, к раствору руды прибавляют фосфорноватисгокислого натрия КаН.зРО HgO (сухого) и нагревают до кипения. После отделения сернистых мышьяка и сурьмы от сернистого свинца и меди сернистым натрием и после окисления первых двух металлов, к раствору приливают винной кислогы и осаждают мышьяковую кислоту в виде мышьяковокислого магния-аммония магнезиальной смесью и аммиаком. После отстаивания в течение 24 часов раствор фильтруют, осадок прокаливают и взвешивают. Одной части MgjAsaOrj соответствует 0,4827 (lg = 0,68372—l)As. Из подкисленного соляно кислотой фильтрата снова осаждают сурьму сероводо одом и определяют ее, как указано выше. [c.45]


Смотреть страницы где упоминается термин Магний сернистый хлористый : [c.382]    [c.20]    [c.468]    [c.141]    [c.300]    [c.267]    [c.34]    [c.293]    [c.498]    [c.241]   
Краткая химическая энциклопедия Том 2 (1963) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Магний из хлористого магния

Магний сернистый

Магний хлористый



© 2025 chem21.info Реклама на сайте