Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алифатические соединения, сернистые

    Добавление к смазочным маслам 1—2% веществ с полярными группами (например, стеариновой кислоты, сернистых соединений, хлорированных восков) сильно повышает маслянистость смазочных масел, т. е. их способность к ориентированной адсорбции на трущихся поверхностях. Исследования по адсорбции стеариновой кислоты и ее солей стеклянной поверхностью показали, что молекулы располагаются перпендикулярно к последней. Алифатические соединения с СНз-группами распространяются по поверхности металлов очень быстро, чем объясняется явление смазки и загрязне- [c.102]


    Введение сульфогруппы в молекулу алифатического соединения при действии сернистого ангидрида и кислорода  [c.351]

    Если в высококипящих фракциях сернистой нефти (керосин, газойль, мазут и т. д.) преобладают алициклические-и ароматические сульфиды наряду с алифатическими и циклическими производными тиофена, то в более низкокипящих фракциях (бензинах) присутствуют в основном алифатические соединения (меркаптаны, сульфиды и дисульфиды). [c.25]

    Много холода потребляют нефтеперегонные заводы. Один из способов очистки нефти основан на том, что богатые водородом алифатические соединения отделяют от бедных водородом ароматических соединений путем прибавления жидкого сернистого газа. Наиболее полное раз- [c.161]

    Акарицидная активность смешанных алифатических эфиров сернистой кислоты с увеличением длины углеродной цепи одного из алкилов возрастает, причем максимум приходится на соединения с радикалом С12, после чего акарицидная активность падает. Изменение акарицидных свойств происходит и при модификации [c.290]

    Все эти реакции не требуют применения повышенного давления и проводятся при нагревании смеси реагентов на водяной бане. Никель служит здесь обессеривающим агентом, связывающим серу в виде N18, и, кроме того, играет роль катализатора гидрирования двойных связей. Процесс этот не нуждается в подаче водорода извне, так как последний привносится скелетным никелем, адсорбирующим его при выщелачивании сплава никеля с алюминием. Простота работы в стадии обессеривания, однако, не окупает высокую стоимость никеля, требующегося в больших количествах. Следует, впрочем, отметить, что весь никель может быть регенерирован, так что при получении сложных и малодоступных алифатических соединений (см. ниже) процесс, вероятно, может стать рентабельным. По имеющимся литературным данным стадия обессеривания может быть осуществлена с помощью других катализаторов, в частности, катализаторов типа сернистого молибдена. [c.81]

    И его сернистый и азотистый аналоги. Тот факт, что эти соединения рассматривались совместно с ациклическими, содержащими аналогичные группы, оправдан соображениями удобства, поскольку не имеется коренного отличия между химическим поведением этих веществ и других веществ того же класса, за исключением, возможно, лишь случая трехчленных циклов, которые требуют специального рассмотрения из-за необычной реакционноспособности связей С — 0,С — ЗиС — N. Действительно многие из соединений, описываемые в химической литературе как гетероциклические, по своему химическому поведению очень сходны с ациклическими соединениями, содержащими связи тех же типов, точно так же, как алициклические соединения, иные, чем соединения с малыми циклами (циклопропаны и циклобутаны), по своему поведению очень близки ациклическим алифатическим соединения>1. В настоящей главе будут рассмотрены лишь пятичленные циклы, содержащие в качестве гетероатома один атом азота, кислорода или серы, и шестичленный цикл пиридина, содержащий атом азота. Структуры основных представителей этих классов приведены на рис. 20.1. [c.501]


    Если определить алкилирование как категорию реакций, в которой молекулы полученного продукта содержат на одну или более алкильных или парафиновых групп больше, чем молекулы исходного вещества, то в эту категорию следует включить большое число различных реакций. Фтористый водород, повидимому, способен катализировать большинство, если не все эти реакции. Алкилированию могут быть подвергнуты ароматические или алифатические соединения или их производные, а источниками алкильных групп могут служить олефины, галоидные алкилы, спирты, простые и сложные эфиры, меркаптаны, сульфиды, парафиновые углеводороды и т. д. Важной особенностью использования фтористого водорода как катализатора в реакциях алкилирования является то, что он катализирует реакции алкилирования с участием любых алкилирующих агентов и не отравляется ими. Использование фтористого водорода в реакциях с сернистыми соединениями является хорошим подтверждением сказанного. В работах автора [51, 53, 54] опубликованы примеры применения фтористого водорода как катализатора нри алкилировании бензола различными алкилирующими агентами. Каталитическую силу фтористого водорода и широкие возможности его использования в качестве катализатора лучше всего можно уяснить при подробном рассмотрении опубликованных работ. Для удобства рассмотрения их целесообразно разделить на реакции ароматических и алифатических соединений. [c.230]

    Алифатические соединения серы термически нестойки (энергия разрыва первой связи -S равна 293-314, второй - 105-126 кДж/моль), и их адсорбция при повышенной температуре сопровождается разложением с вьщелением серы и углеводородных фрагментов [1, 11-14]. Углеводородные фрагменты, образовавшиеся из сернистых соединений с R < С4, дегидрируются и могуг конденсироваться с серой на поверхности, превращаясь в тиофены, а синтезу тиофенов из соединений серы с R = С2 должна предшествовать димеризация углеводородных фрагментов в некоторых случаях возможна изомеризация и полимеризация фрагментов. Состав продуктов реакции, проведенной при малом времени контакта, находится в соответствии с предположением о том, что образованию тиофенов предшествует распад исходных соединений по связям -S, например, [10]  [c.158]

    Коррозионная активность сернистых соединений зависит от их строения. Наиболее агрессивны сероводород, сера и меркаптаны. Сероводород корродирует цинк, железо, медь, латунь и алюминий. Сера, если она имеется в свободном состоянии в топливе, почти мгновенно взаимодействует с медью и ее сплавами, образуя сульфиды, вследствие чего наряду с коррозией металла, приводящей к потере его массы, наблюдается образование отложений на металле. Коррозия металлов меркаптанами определяется их концентрацией в топливе и строением. Ароматические меркаптаны более коррозионно-агрессивны, чем алифатические, при этом бициклические меркаптаны агрессивнее моноциклических. [c.104]

    Исследованиями гидрообессеривания высокосернистых нефтяных фракций было определено, что степень удаления алифатических сернистых соединений при гидрировании достигает около 95 %, в то время как степень удаления тиофеновых соединений составляет лишь около 40 % [18. [c.12]

    Термодинамика реакций деструкции сернистых соединений очень благоприятна все реакции тиолов, алифатических и циклических сульфидов имеют положительные значения логарифма константы равновесия до 900 К. Только константа равновесия реакции [c.280]

    В условиях гидроочистки сернистые соединения алифатического ряда настолько нестабильны, что термодинамически вероятен их распад на сероводород и олефин, а также образование сульфидов  [c.280]

    Эффективность фосфорсодержащих присадок, как и сернистых, зависит от природы и строения применяемых соединений. Например, из эфиров кислот фосфора фосфиты предпочтительнее фосфатов, а алкиловые эфиры с длинной алифатической цепью дают лучшие результаты, чем ариловые эфиры. Форбсом с сотрудниками [143, 144] проводились систематические исследования влияния химического строения фосфорсодержащих соединений на их эксплуатационные свойства. Было установлено, что эффективность присадок не зависит от химической активности фосфорной кислоты, а зависит от пространственного строения углеводородных радикалов чем разветвленнее и длиннее углеводородный радикал, тем более затруднена сорбция присадки на -металле. Противоизносную же пленку на поверхности трения образует фосфат-анион, который, взаимодействуя с металлом, образует на нем пленку фосфата металла. [c.135]

    Аналогично тому, как это делалось для элементарной серы, была проверена возможность полярографического определения дисульфидов в присутствии других сернистых соединений и элементарной серы. Результаты проверки показали, что полярографическому определению дисульфидов не мешают элементарная сера и алифатические сульфиды, но мешают меркаптаны, которые поэтому должны быть предварительно удалены. При удалении меркаптанов 1 %-ным раствором азотнокислого серебра дисульфиды не затрагиваются. [c.437]


    Среди сернистых соединений гомологов бензола могут присутствовать как соединенпя ряда тиофена (IV), в которых тиофеновое кольцо соединено с бензольным при помощи алифатического мостика, так и ряда тиофана (V, VI)  [c.344]

    О том, что такой распад возможен, свидетельствуют данные, полученные при изучении стойкости сернистых соединений температура начала разложения алифатических сульфидов 350° С и ароматических сульфидов 450° С. [c.415]

    При переработке сернистого сырья большое значение имеет переход сернистых соединений, в результате взаимодействия с водородом, в сероводород п углеводороды. Вначале разрывается связь углерод — сера. В результате этого, если сера находится в цикле, кольцо разрывается с образованием алифатического углеводорода. Так, тиофен образует бутан и сероводород  [c.267]

    Гидроочистка нефтяного сырья с целью получения различных топлив имеет очень большое значение, особенно для стран, перерабатывающих сернистые и высокосернистые нефти. К этим странам в первую очередь относится Советский Союз. Сернистые соединения в таких нефтях являются сложными смесями, состоящими из меркаптанов (тиолов), сульфидов (с открытой цепью и циклических), а также дисульфидов и гетероциклических соединений, содержащих и другие элементы. Во фракциях, выкипающих до 180 °С, содержатся тиолы, алифатические и алициклические сульфиды, которые гидрируются сравнительно легко. В более высококипящих фракциях, особенно выше 350 °С, присутствуют замещенные тиофены и бициклические сульфиды. [c.235]

    При крекинге алифатических углеводородов получается кокс более обогащенный водородом, чем при крекинге ароматических углеводородов [101]. В составе кокса, полученном при крекинге сырья, содержащего сернистые соединения, обнаруживается сера. В среднем отношение содержания серы в коксе к содержанию ее в сырье крекинга близко к единице [89, 90], но в некоторых случаях оно колеблется в пределах от 0,3 до 1,3 [101]. [c.143]

    Эти же и некоторые другие сульфиды (всего 24) найдены и в зарубежных нефтях. По количественному содержанию алифатические сульфиды занимают главенствующее место среди всех сернистых соединений, попадающих в светлые дистиллаты. Их содержание в бензинах, керосинах, дизельных топливах составляют от 50 до 80 5 от суммы сернистых соединений. [c.120]

    Установлено, что из всех сернистых соединений легче чсего гидрируются алифатические соединения (меркаптаны, сульфиды и другие) и труднее всего — тиофены. Так, при одних и тех же условиях гидроочистки степень гидрирования алифатических сернистых соединений достигает почти 95 %, в то время как степень гидрирования тиофенов составляет 40—50 %. Установлено также, что на степень обес-серивания преобладающее влияние оказывает молекулярный вес соединения. Скорость гидрообессеривания уменьшается с увеличением молекулярного веса нефтяных фракций. Это явление вызывается как изменением типа сернистых соединений с повышением пределов кипения фракций, так и возрастанием их молекулярного веса. Эти общие положе- [c.12]

    Кислород гидроксильной группы всегда выделяется в виде воды (п и р о г е н н а я вода). Кислород, входящий в карбонильные группы, а также эфирный кислород алифатических соединений превращается в окись углерода. Эфирный кислород ароматических соединений дает начало фенолам. Наконец, карбоксильные группы расщепляются до углекислоты. Азотистые соединения разрушаются с образованием пиридиновых и хинолиновых оснований, если азот входил в ядро цик.чических соединений. В других случаях выделяется аммиак. Сернистые соединения распадаются до сероводорода, меркаптанов, сульфидов и др., причем часть из них может иметь вторичное происхождение за счет реакций сероводорода с осколками углеводородов. Что касается углеводородов и углеводородных остатков, потерявших функциональные группы и гетероатомы, то пр11 температуре полух оксования они также подвергаются крекингу, результатом чего является накопление водорода, метана и других низкомолекулярных углеводородов в газе и жидких углеводородов разных классов и твердых парафинов в смоле. [c.415]

    Распределение отдельных групп сернистых соединений по фракциям нефти характеризуется температурой кипения нефтяных дистиллятов с увеличением температуры кипения нефтяных дистиллятов обычно увеличивается общее содержание в них сернистых производных углеводородов. Наряду с этим существенно изменяется строение сернистых соединений. Если в низкокипящих фракциях нефти (легких бензинах) присутствуют в основном алифатические соединения (меркаптаны, дисульфиды, сульфиды), то в более высококипящих фракциях (керосины, газойли) меркаптаны и дисульфиды отсутствуют и преобладают алициклические и ароматические сульфиды наряду с алифатическими и циклическими производными тиофена. В высококипящих фракциях нефти основными сернистыми соединениями являются циклические сульфиды и производные тиофена (бензо-, нафто-, бензонафто-и дибен-зотиофены). Это вполне соответствует всей общности изменения химической структуры углеводородов и их производных, входящих в высококипящие фракции нефти. [c.254]

    Важной группой методов синтеза ароматических соединений ртути является замена на ртуть остатков кислот борной в арил(алкил)борных кислотах, сернистой в сульфиновых кислотах, йодноватой в иодосоедине-ниях и карбоксила в карбоновых. кислотах. Реакции эти, имеющие главную область применения в ароматическом ряду, в случае остатков СООН, В(0Н)2, SOgH применимы и к синтезу алифатических соединений ртути. Замена на ртуть атомов тяжелых металлов — олова, свинца, висмута, таллия, кадмия, кремния, трехвалентных сурьмы и мышьяка — в их арильных (частью в алкильных и алкенильных) соединениях также может служить для целей синтеза ароматических и жирных (предельных и непредельных) соединений ртути. [c.197]

    Запатентован способ получения пленок из полимеров ненасыщенных алифатических соединений (полиэтилена или поливинилхлорида) сульфированием с применением хлорсуль-фоновой кислоты при 30—60°С с последующей обработкой щелочью. Сульфирующими веществами может быть также смесь хлорсульфоновой кислоты и сульфурилхлорида или растворы сернистого газа в неорганических или органических растворителях [73]. [c.41]

    Как видно из приведенных данных, в составе сернистых соединений прямогонных топлив в основном преобладают алифатические сульфиды, а в топливах термического крекинга — ароматические. Последние являются соединениями, вероятно, вторичного происхождения [48 . Топлива прямой перегонки отличаются также повышенным содержанием меркаптаиовой серы, [c.37]

    Сульфиды. Сульфиды как группа соединений не могут быть определены по инфракрасным спектрам поглощения, так как характеризуются лишь палпчиел связи С—8, которая присутствует также в сернистых соединениях других классов (700—600 с.и ). Предельное значение концентрации алифатических сульфидов, обеспечивающее возможность количественного определения, по Зейфриду [83], равно 2—3%. Строение заведомых сульфидов может быть уто хпено с помощью следующих спектральных признаков [79—83, 90, 88, 89, 158] (табл. 61). [c.119]

    К числу соединений, реагирующих с гидропероксидами и образующих молекулярные продукты, относятся некоторые амины и аминосульфиды, сульфиды, меркаптаны, дисульфиды, тииль-ные радикалы, алифатические фосфиты и ароматические фосфиты с неэкранированными феноксилами [43, 44]. Наиболее активными ингибиторами окисления из перечисленных сернистых соединений считают сульфиды, у которых атом серы соединен с алифатическими или циклоалифатическими радикалами, — очевидно, благодаря предварительному образованию меркантильного или феноксисульфидного свободных радикалов 45]. [c.44]

    Сравнение групповых составов сернистых соединеняй 17 образцов нефтей США и Ирана показало , что сероводород содержится только в одном образце (1,2%), элементарная сера — в семи, причем в пяти из них от 0,1 до 1,2%, а в двух — 34,6 и 42,5%. Количество тиолов варьирует от О до 45,9%, дисульфидов от О до 22,5%, алифатических и алициклических сульфидов от О др 20,9%, ароматических сульфидов и тиофенов от 3,0 до 41,5%. Однако еще очень большая часть сернистых соединений нефтей не изучена. [c.279]

    Фракции, выкипающие до 160 °С, содержат тиолы, алифатические и алициклические сульфиды, а в болёе высококипящих фракциях присутствуют замещенные тиофены и бициклические сульфиды Исследование состава высококипящих сернистых соединений представляет собой трудную задачу, так как большей частью нет модельных индивидуальных соединений для идентификации. Было установлено , что в прямогонном остатке 50% серы входит в состав тиофеновых колец. Описано подробное исследование фракции вакуумного газойля 425 —455 °С с 2,85% серы. [c.279]

    Сернистые соединения содержатся практически во всех добываемых в настоящее время нефтях 70—90% их концентрируется в остатках — мазуте и гудроне. Сернистые соединения в нефти представлены меркаптанами (тиоспиртами), алифатическими сульфидами (тиоалканами), моноциклическими сульфидами, производными тиофена, полициклическими сернистыми соединениями. [c.24]

    На второй ступени гидрогенизационной переработки проводится полное удаление сернистых соединений, что достигается исчерпывающим гидрогеноли-зом сероорганических соединений, включая тиофен. В результате образуется сероводород и соответствующий парафиновый углеводород. Одновременно гидрируются все алифатические и циклические непредельные углеводороды до парафиновых и нафтеновых углеводородов. [c.108]

    Сера содержится в нефтях и продуктах нефтепереработки в виде элементарной серы, сероводорода, меркаптанов, алифатических и ароматических сульфидов, циклических сульфидов, тиофенов и бензтиофенов. Дисульфиды обычно образуются в результате окисления меркаптанов. Элементарная сера также в основном является продуктом окисления сероводорода, однако в некоторых нефтях она была обнаружена [1]. Относительное содержание различных сернистых соединений зависит от происхождения нефти и от методов ее переработки и может изменяться в весьма широких пределах. Реакции гидрогенолиза сернистых соединений, происходящие в процессах каталитической гидроочистки, приведены ниже  [c.34]

    В методе Болла [174] введен отсутствующий во всех рассматриваемых схемах контроль на водорастворимые сернистые соединения с отдельной пробой исходного образца. Сероводород и меркаптаны определяются титрованием азотнокислым серебром. Свободная сера также определяется прибавлением известного количества раствора бутилмеркаптана и титрованием азотнокислым серебром до и после обработки докторским раствором. Алифатические сульфиды удаляются порошком HgNOs, ароматические сульфиды и тиофены — порошком Не(КОз)2. [c.426]

    Значительная часть сернистых соединений, содержащихся в дизельных топливах, представлена сульфидами (43—66%) в нефтях девонских отложений преобладают ароматические сульфиды дисульфиды составляют 0,05—2,3% меркаптаны — 0,02—7,4% на долю неидентифицироваяной остаточиой серы приходится от 30 до 60% (3—6]. В связи с этим для исследований были использованы пять образцов сульфидов циклического строения с молекулярной массой 186—306, два образца дисульфида алифатического и циклического строения. Остаточная сера, которая оказывает значительное влияние на низкотемпературные свойства топлив, была представлена дибен-зотиофеном (табл. 1). [c.134]

    В этом разделе будут рассмотрены сульфокислоты, содержащие сульфогруппы в боковой цепи ароматических соединений. Бензольное кольцо сульфируется легче, чем большинство алифатических групп, и поэтому для получения арилалкилсульфокислот обычно служат методы не использующие реакцию прямого замещения. Толуол-ш-сульфокислота [69 г, 119] наиболее легко получается из хлористого бензила и щелочной соли сернистой кислоты в щелочном растворе. Она приготовлена также нагреванием хлористого бензила с раствором гидросульфита натрия в присутствии цинковой пыли [120] окислением дибензилдисульфида азотной кислотой [121] и нагреванием метилбензилкетона с концентрированной серной кислотой [122]  [c.127]

    С. А. Болезина, а также Б. В. Лосикова, С. Э. Крейна и др. показано, что пизкомолекулярпые алифатические амины, внесенные в топливо, в процессе сгорания последнего нейтрализуют вредное влияние сернистых газов и снижают их коррозийное воздействие. Действующим началом указанных присадок, как это следует из работ Б. В. Лосикова и С. Э. Крейна, является образующийся в процессе сгорания самой присадки аммиак. Эффективность таких присадок пропорциональна количеству аммиака, образующегося в процессе сгорания топлива, содержащего присадку. Опыты введения аммиака непосредственно во всасывающую систему двигателя, проведенные Б. В. Лосиковым, М. С. Смирновыми Л. А. Александровой [22], показали резкое снижение вредного воздействия сернистых соединений. Авторы экспериментально показали, что действие аммиака основано не только на прямой нейтрализации сернистых газов, но главным образом на способности аммиака пассивировать процесс перехода ЗОа в ЗОд и, таким образом, резко уменьшать накопление в продуктах сгорания и в масле основного коррозийного агента. При работе двигателя на топливе с содержанием серы более 1 % целесообразно добавлять присадки к топливу и маслу одновременно. [c.341]

    Этим путем удалось выделить и охарактеризовать несколько индивидуальных алифатических и циклических сульфидов (тиофанов). Этим же путем показано наличие производных тиофана общей формулы С На 8 [4] в бензиновом дистилляте иранской нефти. Методом сульфирования для выделения и общей характеристики сернистых соединений пользовались и в исследовательских работах [5—7]. Из бензино-керосинового дистиллята кокай-тинской нефти Узбекской ССР был получен и охарактеризован а-метилтиофан [8]. Методом сульфирования керосинового дистиллята иранской нефти (140—250° С) 0,4 объемн. % 98%-ной серной кислоты выделено и идентифицировано 27 индивидуальных сернистых соединений [9]. Этот метод чрезвычайно сложен, о чем свидетельствует схема, приведенная на рис. 7. Индивидуальные сернистые соединения выделяли в виде комплексов с ацетатом ртути, которые затем разлагали. Строение сернистых соединений устанавливали по физическим свойствам и химической характеристике с помощью инфракрасных спектров. Спек-трометрировали углеводороды, полученные гидрогено-лизом сернистых соединений на никеле Ренея. Таким сложным путем идентифицированы моно- и бициклические сульфиды, диалкилсульфиды и тиофены. [c.97]


Смотреть страницы где упоминается термин Алифатические соединения, сернистые: [c.119]    [c.1213]    [c.1213]    [c.126]    [c.152]    [c.189]    [c.299]    [c.302]    [c.61]    [c.195]    [c.372]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Алифатические соединения



© 2024 chem21.info Реклама на сайте