Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллический пучок

    После отметки точек на шаре (рис. 10) можно отбросить и кристаллический пучок, так как сферический угол между точками на шаре отвечает углу между соответственными прямыми кристаллического пучка. [c.15]

    Метод стереографической проекции разработан Ф. Нейманом, В. X. Миллером, А. В. Гадолиным, Е. С. Федоровым, Г. В. Вульфом и др. В его основе лежит тот факт, что размеры, взаимное расстояние граней и ребер кристалла или их расстояние от какой-либо одной точки, взятой внутри его, не являются существенными признаками. Они зависят от внешних причин. Существенным признаком для граней и ребер данного кристаллического вещества является их взаимный наклон. Поэтому для удобства изучения все грани и ребра кристалла переносят мысленно в одну и ту же точку О пространства параллельно самим себе и эту совокупность граней и ребер называют кристаллическим пучком, а точку О — центром пучка. [c.41]


    Совокупность всех граней и рёбер кристалла, перенесённых параллельно самим себе в одну и ту же точку О пространства, будем называть кристаллическим пучком, а точку О—центром пучка. В тот же центр пучка переносятся параллельно самим себе все направления и плоскости, характеризующие оптические и многие другие физические свойства кристалла (А. К. Болдырев [22]). [c.44]

    Под действием электромагнитного поля рентгеновских лучей электроны атомов, входящих в кристаллическую решетку вещества, начинают колебаться. Частота вынужденных колебаний электронов будет равна частоте электромагнитного поля первичного пучка рентгеновских лучей. Колеблющийся атом становится источником электромагнитных волн, распространяющихся от него во все стороны с частотой, равной частоте первичного луча. Расположение атомов в любой кристаллической решетке закономерно и расстояния между ними в данном направлении одинаковы, поэтому лучи, рассеянные отдельными атомами, будут интерферировать между собой. Интенсивность их в одних направлениях будет получаться значительно больше, чем в других. Следовательно, для рентгеновских лучей кристалл является трехмерной дифракционной решеткой, [c.111]

    Эта концепция применима к дифракции в кристалле, поскольку кристаллическая решетка может быть описана с помощью набора параллельных плоскостей с различными расстояниями с/ между ними. Если пучок рентгеновских лучей падает на любой набор плоскостей под углом, для которого выполняется соотношение Брэгга, то из кристалла будет исходить единственный вторичный пучок. И на самом деле, когда на монокристалл вещества действует пучок интенсивного рентгеновского излучения, из него в различных направлениях испускаются многие тысячи более слабых пучков или отражений, как это показано на рис. 17.9. Угол между каждым отраженным пучком и падающим пучком излучения определяется расстоянием между рассеивающими плоскостями. [c.375]

    Обращаясь к закону Брэгга, мы видим, что sin 9, характеризующий отклонение между падающим и отраженным пучками, обратно пропорционален расстоянию d между плоскостями в кристаллической решетке. Структуры с большим d будут иметь сжатую дифракционную картину, а структуры, в которых d мало — растянутую. Если бы обратное соотношение между sin 9 и с/ можно было заменить на прямое, то интерпретация дифракционной картины упростилась бы. Это достигается конструированием обратной решетки. [c.377]


    Распространяя это обсуждение на случай трех измерений, можно сказать, что любая точка обратной решетки, лежащая на сфере отражения (определяемой длиной волны, направлением падающего пучка и началом координат элементарной ячейки), в принципе приводит к дифрагированному пучку, выходящему из кристалла в направлении, определяемом центром сферы и точкой пересечения о. р. со сферой. Отсюда немедленно следует, что по мере уменьшения Х (т.е. по мере увеличения энергии рентгеновских лучей) размер сферы растет и при пересечении сферы обратной решеткой наблюдается больше отражений. Отметим, что о. р. вращается вместе с кристаллом вокруг начала координат, которое находится на поверхности сферы отражения, а не в центре ее. Таким образом, для данной кристаллической системы можно получить больше информации. В действительности оказывается, что число возможных отражений N выражается как [c.381]

    Рассмотрим прохождение через кристалл пучка рентгеновских лучей с длиной волны X. Ввиду значительной проникающей способности рентгеновского излучения большая часть его проходит через кристалл. Некоторая доля излучения отражается от плоскостей, в которых расположены атомы, составляющие кристаллическую решетку (рис. 1.77). Отраженные лучи интерферируют друг с другом, в результате чего происходит их взаимное усиление или погашение. Очевидно, что результат интерференции зависит от разности хода 6 лучей, отраженных от соседних параллельных плоскостей. Усиление происходит в том случае, когда б равно целому числу длин волн, тогда отраженные волны будут в одинаковой фазе. Как видно из рис. 1.77, луч Si отраженный от плоскости атомов Ри проходит меньший путь, чем луч S , отраженный от соседней плоскости Р , разность этих путей равна сумме длин отрезков АВ и ВС, Поскольку АВ ВС = d sin ф, то 6 = 2d sin ф (где d — расстояние между плоскостями отражения, ф — угол, образуемый падающим лучом и плоскостью). Усиление отраженного излучения происходит при условии [c.142]

    При электронографическом исследовании следует учитывать, что большая светосила.острого первичного пучка высокой интенсивности может привести к изменению в веществе увеличению количества аморфной фазы, нарушению кристаллической структуры, образованию свободных радикалов и их рекомбинации что приводит к изменению,первоначальной структуры. [c.157]

    Люминесценцию можно измерять при различных геометрическом расположении пучка возбуждающего света и направлении наблюдения флуоресценции по отношению к образцу. В настоящее время используют в основном три типа освещения и регистрации (рис. 30). Расположение освещения и регистрации зависит от типа изучаемого образца и целей исследования. Грубо все образцы можно разделить на три типа а) разбавленные растворы или газы, для которых поглощение возбуждающего света мало для всех исследуемых длин волн стеклообразные замороженные растворы б) концентрированные растворы б) непрозрачные твердые тела и кристаллические или замороженные при низкой температуре растрескавшиеся растворы, непрозрачные жидкие растворы. [c.64]

    По данным рентгеноструктурных исследований [7-20], ПУ, полученный до 1600 С, содержит кремний в виде равномерно распределенного кристаллического карбида /3-81 С, имеющего форму чешуек (в интервале 1600-1700 С-а-81С с /3-81С). В ПУ, осажденном при 2000 С, /3-81С не обнаружен. В соответствии с рис. 7-6 можно предполагать, что при 2000"С происходит термическое разложение карбида кремния и частичное испарение кремния. [c.431]

    Пусть узкий пучок монохроматических рентгеновских лучей с длиной волны % падает на совокупность большого числа кристалликов. Каждый из них может быть охарактеризован набором семейств параллельных плоскостей с определенными межплоскостными расстояниями (рис. XXX. 5). При взаимодействии рентгеновских лучей с кристаллическим веществом возникает дифракционная картина, максимумы интенсивности которой удовлетворяют уравнению Брэгга [c.356]

    Оксид алюминия АЬОз, называемый также глиноземом, встречается в природе в кристаллическом виде, образуя минерал корунд. Корунд обладает очень высокой твердостью. Его прозрачные кристаллы, окрашенные примесями в красный или синий цвет, представляют собой драгоценные камни — рубин и сапфир. Теперь рубины получают искусственно, сплавляя глинозем в электрической печи. Они используются не столько для украшений, сколько для технических целей, например, для изготовления деталей точных приборов, камней в часах и т. п. Кристаллы рубинов, содержащих малую примесь СгзОз, применяют в качестве квантовых генераторов — лазеров, создающих направленный пучок монохроматического излучения. [c.402]

    Стадия превращения вещества А в вещество О называется предшествующей химической реакцией, а стадия превращения К в В — последующей химической реакцией. Часто электродные процессы осложняются стадией образования новой фазы. Так, при электроосаждении металлов реализуется стадия образования кристаллических зародышей, а при электрохимическом выделении газов — стадия зарождения пу- [c.170]


    Любое кристаллическое вещество обладает фиксированным для данного вещества и состояния набором межплоскостных расстояний d, поэтому на практике можно варьировать только две величины — длину волны рентгеновского излучения X или угол образующийся между первичным пучком рентгеновских лучей и кристаллографической плоскостью. [c.113]

    При обработке результатов измерения кристалла пользуются обычно следующим приемом. Центр кристалла помещается в центр шара (рис. 10). Из центра кристалла опускаются перпендикуляры на все его грани и продолжаются до пересече-пия с шаром. После этого кристалл можно отбросить. Мы его заменили пучками прямых, или полупрямых. При атом исчезают отличия в форме граней различных кристаллов. Это ясно видно из рис. и, где в плоскости, перпендикулярной главной оси, показаны разрезы трех кристаллов кварца. Если заменить каждый из этих кристаллов кристаллическим пучком, то эти пучки будут тождественны между собой, несмотря на различие в формах кристаллов. Кристаллической пучок характеризует набор углов между гранями кристалла, т. е. сохраняет наиболее важную его характеристику, соответствующую закону постоянства углов. Угол между прямыми в атом пучке является дополнительным до 180° к углу между гранями. [c.15]

    Как видно из табл. 11.2, максимальная ориентационная вытяжка возрастает с уменьшением фильерной вытяжки. Следовательно, увеличивается возможность достижения более высоких вытяжек без обрыва волокна. Сиссон полагает, что в тех участках вискозной струйки, где произошло отверждение, наблюдается образование уже ориентированных длинных частиц, упорядоченность которых аналогична той, какая бывает в решетке. При вытяжке такого структурированного геля отдельные макромолекулы вырываются из кристаллических пучков. Прирост прочности при вытягивании такого волокна небольшой, и волокно очень быстро обрывается. [c.295]

    Если же при коагуляции и сжатии к ] слю производного целлюлозы приложить направленные силы, то яче11ки образующейся сетки вытягиваются в направлении действующей си.лы и число параллельных точек соединения увеличивается. В случае же вытяжки в желаемом направлении молекулярные цепи сдвигаются относительно друг друга и принимают параллельное положение, поэтому снова проявляется сильнейшая интерференция рентгенограммы. Дезориентация, которую претерпевают кристаллиты внутри кристаллического пучка в результате химических превращений, набухания и растворения, преимущественно на границах аморфных областей, не позволяет кристаллитам регенерироваться до их первоначальной длины аморфные отрезки пучков увеличиваются за счет кристаллических. Только с помощью некоторых искусственных приемов, заключающихся главным образом в удалении веществ, затрудняющих упорядочение (частичный гидролиз в аморфных областях), или уничтолсении сил, мешающих упорядочению (напряжения в переходных областях между упорядоченными и малоупорядоченными областями), удается повысить процентное содержание полностью кристаллической части. [c.311]

    Предположение де Бронля о наличии у электрона волновых свойств получило экспериментальное подтверждение уже в 1927 г., когда К- Д. Девиссоном и Л. X. Джермером в США, Дж. П. Томсоном в Англин и П. С. Тартаковским в СССР независимо друг от друга было установлено, что прн взаимодействии пучка электронов с дифракционной решеткой (в качестве которой использовались кристаллы металлов) наблюдается такая же дифракпион-ная картина, как и при действии на кристаллическую решетку металла пучка рентгеновских лучей в этих опытах электро вел себя как волна, длпна которой в точности совпадала с вычисленной по уравнению де Бройля. В настоящее время волновые свойства электронов подтверждены большим числом опытов и широко используются в электронографии — методе изучения структуры веществ, основанном на дифракции электронов. [c.70]

    Электронно-микроскопический анализ. Этот метод дает представление о строении кристаллических областей в асфальтенах и дает наглядную картину об их надмолекулярной организации. Исследования выполняются в просвечивающих и сканирующих (растровых)- электронных микроскопах [329, 330]. Просвечивающие электронные микроскопы позволяют одновременно получать как электронно-микроскопический снимок, так и электронограмму в области больших и малых углов. Разрешающая способность их составляет 15—2 нм, а для сканирующих микроскопов 3—5 нм. Пучок электронов вызывает значительный разогрев и даже плавление образцов, поэтому просвечивающая электронная микроскопия применяется для объектов, имеющих незначительную толщину,— несколько десятков нанометров. Для этого образцы специальным образом готовят получают либо тонкие пленки, либо с помощью ультрамикротомов готовят срезы толщиной 10—20 нм. Из косвенных методов для исследования структуры асфальтенов получил распространение метод реплик. Для исследования используют мелкодисперсные порошки асфальтенов [325] или растворы в бензоле [319]. В первом случае асфальтены помещают на угольную (аморфную) подложку на медной сетке. С целью определения фоновых микропримесей проводят контрольные съемки пустой подложки. Во втором случае бензольные 0,1 % растворы асфальтенов диспергируют на поверхность полированного стекла с частотой излучателя 35 кГц. Далее стекло.с пленкой асфальтенов помещают в вакуумный пост и растворитель откачивают в течение 20 мин. Для контроля сходимости результатов с поверхности пленки асфальтенов получают реплику двумя способами. Одноступенчатая реплика образовывается напылением угольной пленки, а двухступенчатая — чистого алюминия толщиной не менее 0,2 мм. Затем асфальтеновую пленку растворяют в бензоле и отдельную угольную реплику оттеняют платиной. Во втором случае на обратную сторону отдельной алюминиевой фольги напыляют платиноугольную реплику толщиной 20—30 нм, а алюминиевую фольгу затем растворяют в азотной кислоте [331]. [c.158]

    Надмолекулярная организация, или морфология полимеров, рассматривается с целью сопоставления и определения элементов их неоднородности. Наиболее существенная неоднородность связана с тенденцией многих полимеров к (частичной) кристаллизации. Более или менее хорошо определенные кристаллические ламеллы найдены в виде монокристаллов, нагроможденных и (или) выращенных, как показано выше, друг на друге в виде осевых или связанных в пучки слоевых структур, таких, как скрученные агрегаты в сферолитах, а также в виде сэндвич-структур в высокоориентированных волокнах [1—3]. Радиальносимметричный рост скрученных ламелл (рис. 2.4) из нескольких зародышей, который приводит к сферолитной структуре, показан на рис. 2.5. Это свойственно для образцов, выращенных преимущественно из расплава. [c.29]

    Начиная с некоторых степеней ориентации — и тем раньше, чем менее полярен полимер, или чем ниже плотность энергии когезии, — происходит фибриллизация, т. е. распад волокна или пленки при любых типах нагружения на пучки тончайших фиб рилл, которые обладают огромными прочностями (у полиэтилена—почти 5-10 Па 24, т. 2, с. 363—371], но еще не являются элементарными и при разрыве распадаются на еще более тонкие элементы, представляющие собой уже, по-видимому, линейные монокристаллы ( усы ). Теория фибриллизации пока не развита, хотя ясно, что в какой-то мере этот эффект связан с исчезновением проходных межфибриллярцых цепей, вовлекаемых в кристаллическую решетку. Аналогичным образом ведут себя и суперориен-тированные системы, полученные из жесткоцепных полимеров. Видимо, в обоих вариантах кристаллическая решетка представляет собой некий гибрид обычной решетки и нематической (или смектической) фазы, что порождает дефицит поперечной прочности. [c.227]

    Если длина волны близка по порядку величины размерам молекул и расстояниям между ними, то наблюдается известная интерференционная картина, изучение которой позволяет получить ценные сведения о структуре вещества. Рентгеновские лучи и электроны рассеиваются на электронных оболочках атомов, причем в первом случае (рентгеновские лучи) главную роль играют максимумы электронной плотности, а во втором случае (пучки электронов) — неоднородность электрического поля вблизи атомных ядер. Рентгеновский метод наиболее ценен при определении структуры кристаллических соединений (его основы рассматриваются в разд. 6.4.1). Здесь обсуждают только наиболее существенные аспекты определения строения отдельных молекул с помощью дифракционных методов. Строение молекулы можно установить вполне однозначно, если получить дифракционную картину вещества в газовой фазе (пар). Однако из-за низкой плотности рассеивающей среды для получения дифракционной картины в рентгеновских лучах необходима экспозиция в течение многих часов, а для получения элект-ронограммы — в течение нескольких секунд. Поэтому для исследования молекул в газовой фазе применяется преимущественно метод электронографии. [c.74]

    Характеристическое флуоресцентное излучение, даваемое пробой, коллимируется, и параллельный пучок лучей после прохождения через абсорбер (ослабитель) падает на плоский кристалл анализатора. Возможно использование нескольких сменных коллиматоров и ослабителей, а также кристаллов, служащих для спектрального разложения рентгеновского излучения. В ассортимент кристаллов-анализаторов входят LiF, Ge, Si, кварц, графит и ряд других. Диспергирование излучения кристаллической решеткой с заданной постоянной происходит вследствие селективного отражения под углом, зависящим от длины волны. [c.151]

    НЕЙТРОНОГРАФИЯ — метод изучения структуры молекул, кристаллов, жидкостей с помощью дифракции (рассеивания) нейтронов имеет много общего с рентгегюграфией. Дифракция нейтронов — типичное оптическое явление, аналогичное дифракции рентгеновских лучей, в котором ярко проявляются волновые свойства нейтрона. Для нейтронографических исследований требуются пучки тепловых нейтронов высокой интенсивности. Поэтому Н. начала развиваться лишь после строительства ядерных реакторов. Для исследования структуры вещества узкий направленный пучок тепловых нейтронов из реактора падает на монокристалл. Отражение нейтронных волн от кристаллической поверхности происходит в результате взаимодействия нейтронов с ядрами кристалла. Чтобы определить структуру кристалла, надо измерить углы, под которыми наблюдаются отражения первого порядка и интенсивность его. Н. имеет ряд преимуществ по сра-внлшю с рентгенографией благодаря зк1 чительному расширениво числа объектов исследования. [c.172]

    С помощью электронографического анализа можно в принципе решать те же задачи, что и рентгенографическим анализом исследование кристаллической структуры, проведение фазового анализа, определение межплоскостных расстояний и периодов решетки, определение текстуры и ориентировки кристаллов и т. д. Однако особенности волновых свойств пучка электронов обусловливают и определенную специфику их использования, а также преимущества и недостатки по сравнению с рентгенографическим методом исследования кристаллов. Преимущество электронограмм заключается прежде всего в том, что в связи с малой длиной волны и сильным взаимодействием электронов с веществом этим методом можно получить резкие и интенсивные рефлексы при меньших размерах кристаллов и-меньшем количестве вещества, чем при рентгенографическом анализе, В рентгенографии, например, расширение линий начинается при р.эзмере частиц 500—900 А, а в электронографии оно становится заметным лишь при размерах 20—30 А. Интенсивность электронного луча гораздо больше, а необходимая экспозиция гораздо меньше, чем рентгеновских лучей, что дает существенные методические преимущества. Интенсивность отражений при дифракции электронов обычно настолько велика, что позволяет визуально на флюоресцирующем экране наблюдать дифракционную картину. Указанные особенности электронографии делают ее особенно ценной, например, при исследовании зародышей новых фаз. Электронография может использоваться также при изучении положений легких атомов в кристаллической решетке, хотя для этого более пригодна нейтронография, [c.105]

    В нейтронографичсском анализе для исследования веществ используются монохроматические пучки медленных нейтронов. Специфика использования нейтронографии для структур1 ых и других исследований веществ обусловлена следующими особенностями рассеяния нейтронов в кристаллической решетке по сравнению с рентгеновскими лучами нейтроны рассеиваются ядрами атомов, а рентгеновские лучи в основном электронами рассеяние нейтронов не зависит от угла (направления) падения пучка, тогда как рассеяние рентгеновских лучей от него зависит амплитуда рассеяния нейтронов не монотонно зависит от атомного номера элемента, а в случяе рентгеновских лучей функция атомного рассеяния растет с ростом атомного номера нейтроны обладают магнитным моментом нейтроны глубоко проникают в массу исследуемого образца и слабо поглощаются веществом. [c.106]

    Широкий спектр явлений контраста в зависимости от типа дефекта. В значительной мере зависит от ориентировки кристаллической решетки, направления первичного пучка электронов иоттол-щины кристалла [c.158]

    В настоящее время все большее значение для спектроскопических исследований приобретает метод, в котором молекулы изучаемого вещества предварительно вмораживаются в кристаллическую решетку инертного газа (матрицу). В такой матрице молекулы изолированы друг от друга, как в газе. Они находятся в контакте лишь с атомами благородно-газового элемента. Сущность метода заключается в том, что молекулярный пучок изучаемого вещества из кнуд-сеновской ячейки вводится в струю благородного газа. Затем этот газовый поток конденсируется на солевом окошке спектрального прибора, охлаждаемом жидким гелием, после чего снимается спектр вмороженных в благородно-газовую матрицу молекул. В связи с тем, что молекулы исследуемого вещества хотя и слабо, но взаимодействуют с материалом матрицы, получаемый спектр [c.169]

    Наконец, возможен еще один механизм, приводящий к ослаблению первичного пучка у-квантов. Ядро, перешедшее в возбужденное состояние после поглощения у-кванта с энергией ЙсОц, через некоторый промежуток времени т, называемый временем жизни возбужденного состояния, возвращается в основное состояние и при этом должен опять-таки испустить у-квант с той же энергией Г (0o. Однако если в момент испускания у-кванта ядро испытывает отдачу, которая уменьшает энергию у-кванта на величину К, то и пJ щeнный у-квант имеет несколько другую энергию — я ж, следовательно, становится нерезонансным (рис. IX. 1, в). Процессы испускания у-кванта, сопровождающиеся отдачей, т. е. рождением фонона в кристаллической решетке, являются неупругими и могут быть охарактеризованы эффективным сечением (Тн. [c.177]

    Позднее аналогичные дифракционные явления были обнаружены для пучков атомов и молекул, например атомов гелия, отраженных от кристаллов ЫР, нейтронов от кристаллических реплеток и др. [c.426]

    Рассмотрим прохождение через кристалл пучка рентгеновских лучей с длиной волны Л (рис. 1.71). Ввиду значительной проникающей способности рентгеновского излучения большая часть его проходит через кристалл. Некоторая доля излучения отражается от плоскостей, в которых расположены атомы, составляющие кристаллическую решетку (атомные п.10скости pi, p , Рз, Ра). Отраженные лучи интерферируют друг с другом, в результате чего происходит их взаимное усиление или погашение. Очевидно, что результат интерференции зависит от разности хода 5 лучей, отраженных от соседних параллельных плоскостей. Усиление излучения происходит в том случае, когда <> равно целому числу длин волн, тогда отраженные волны находятся в одинаковой фазе. Как видно из рис. 1.71, луч Si, [c.151]

    Если объект состоит из множества беспорядочно ориентированных кристаллов, электронные волны, претерпевшие дифракцию на одинаковых кристаллических плоскостях, образуют конус пучка электронов, пересекающих экран (или фотопластинку) по кольцу, радиус которого г. Отсюда по (1У.З) вычисляют межплос-костное расстояние. [c.102]


Смотреть страницы где упоминается термин Кристаллический пучок: [c.16]    [c.43]    [c.101]    [c.361]    [c.102]    [c.260]    [c.145]    [c.110]    [c.432]    [c.46]    [c.86]    [c.86]    [c.91]   
Структуры неорганических веществ (1950) -- [ c.44 ]




ПОИСК







© 2022 chem21.info Реклама на сайте