Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тройная связь окисление

    Гибридные состояния углерода и 5р. Строение и особенности двойной и тройной связи. Изомерия и номенклатура этиленовых и аце тиленовых у1 леводородов. Геометрическая цис-, транс-) изомерия Способы получения. Физические и химические свойства алкенов и ал кинов. Реакции присоединения. Правило В. В. Марковникова. Исклю чение из этого правила (Хараш). Реакции окисления. Полимеризация Свойства ацетиленового водорода. Классификация и получение диено вых углеводородов. Физические и химические свойства. Эффект сопря жения. 1,4-Присоединение, Диеновые синтезы. Полимеризация диено вых углеводородов. Каучуки синтетические и натуральные. УФ и ИК спектры этиленовых и ацетиленовых углеводородов. [c.169]


    Действие сильных окислителей [43]. Вторичные спирты легко окисляются в кетоны бихроматом в кислой среде [44] при комнатной температуре или небольшом нагревании. Это наиболее распространенный реагент, хотя применяют также другие окислители (например, КМп04, Вгг, МпОг, тетроксид рутения [45] и т. п.). Раствор хромовой и серной кислот в воде известен под названием реактива Джонса [46]. Титрование реактивом Джонса ацетонового раствора вторичных спиртов [47] приводит к быстрому их окислению до кетонов с высоким выходом, причем при этом не затрагиваются двойные и тройные связи, которые могут присутствовать в молекуле субстрата (см. реакцию 19-10), и не происходит эпимеризации соседнего хирального центра [48]. Реактив Джонса окисляет также первичные аллильные спирты до соответствующих альдегидов [49]. Широко применяются также три других реактива на основе Сг(У1) [50] дипиридинхром (VI)оксид (реактив Коллинса) [51], хлорохромат пиридиния (реактив Кори) [52] и дихромат пиридиния [53]. МпОг также отличается довольно специфическим действием на ОН-группы и часто используется для окисления аллильных спиртов в а,р-ненасыщенные альдегиды и кетоны. Для соединений, чувствительных к действию кислот, применяют СгОз в ГМФТА [54] или комплекс СгОз — пиридин [55]. Гипохлорит натрия в уксусной кислоте полезен для окисления значительных количеств вторичных спиртов [56]. Используют и окислители, нанесенные на полимеры [57]. Для этой цели применялись как хромовая кислота [58], так и перманганат [59] (см. т. 2, реакцию 10-56). Окисление перманганатом [60] и хромовой кислотой [61] проводят также в условиях межфазного катализа. Межфазный катализ особенно эффективен в этих реакциях, поскольку окислители нерастворимы в большинстве органических растворителей, а субстраты обычно нерастворимы в воде (см. т. 2, разд. 10.15). При проведении окисления действием КМп04 использовался ультразвук [62]. [c.270]

    Чаще всего, однако, для окисления вторичных спиртов до кетонов в качестве окислителя используют реагент Джонса - раствор строго рассчитанного количества СгОз Е водной серной кислоте. Нри этом спирт, растворенный в ацетоне, как бы титруется этим реагентом ири 0-25 °С. Преимущество метода состоит в том, что окисляемое вещество находится в растворе в ацетоне, и реакционная смесь разделяется на две фазы нижнюю, содержащую соли хрома (III), и верхнюю, содержащую продукты реакции. Другое важное достоинство реагента Джонса состоит в том, что вторичные спирты, содержащие двойную шш тройную связь, быстро окисляются до кетоиов без затрагивания кратных связей  [c.889]


    Взрывоопасность замороженных смесей с окислами азота, казалось бы, противоречит вышесказанному о пассивности горючих систем с окислами азота. Объяснение этого заключается в двойственности реакционной способности окислов азота. Будучи крайне пассивными в реакциях окисления, они отличаются высокой активностью в процессах присоединения к непредельным соединениям. Это обусловлено тем, что окислы азота обладают некоторыми свойствами свободных радикалов и поэтому легко присоединяются по месту двойной или тройной связи. Эта реакция почти не требует активации. [c.84]

    Как и алкены, ацетилен легко вступает в реакции присоединения и окисления. Кроме того, для алкинов характерны реакции замещения водорода, связанного с углеродом при тройной связи. [c.330]

    И реакция ограничена равновесиями Ki, К2, Кз- К процессам окисления можно в некотором смысле отнести и присоединение воды к двойной связи или к тройной связи, превращающее углеводород в кислородсодержащее соединение, спирт, альдегид или кетон. [c.170]

    Наиболее типичную селективность металлы проявляют в отношении окислительно-восстановительных реакций, но они могут также ускорять реакции аминирования, декарбонилирования, полимеризации, циклизации и молекулярные перегруппировки (см. стр. 19). В этих реакциях поведение некоторых металлов весьма специфично, например, в реакциях частичного насыщения тройных связей или одного типа ненасыщенной связи в присутствии других и в аналогичных реакциях селективного окисления. Хотя в идеале предпочитают иметь высокую селективность в сочетании с высокой активностью, на практике обычно увеличение селективности может быть достигнуто уменьшением активности данного металла или выбором менее активного металла. Например, при селективном гидрировании ацетилена до этилена селективность может быть увеличена снижением активности никеля путем его частичной дезактивации, [c.23]

    Реакции окисления. Ацетиленовые углеводороды легко окисляются с разрывом молекулы по тройной связи  [c.89]

    ТРОЙНАЯ СВЯЗЬ — связь между двумя атомами, осуществляемая тремя парами электронов. Известны три типа Т. с. С=С, =N, N=N. Ряд химических свойств соединений с Т. с. С=С, =N аналогичен свойствам соответствующих соединений с двойными связями. Например, присоединение водорода и галогенов, окисление, полимеризация и др. [c.254]

    Тройные связи углерода и азота (С=С, =N, N = N) очень сильно различаются по реакционной способности. Ацетиленовая система (С = С) обнаруживает высокую реакционную способность в реакциях окисления (часто со взрывом), восстановления и некоторых реакциях присоединения. Например, гидратация ацетилена позволяет осуществить промышленное производство ацетальдегида, а реакция с галогенводородны-ми кислотами является удобным источником получения виниловых мономеров  [c.13]

    Углерод непосредственно соединяется со многими металлами, образуя карбиды — соединения, в которых углерод электроотрицателен. Степень окисления углерода в карбидах различна. Различны и химические свойства карбидов. С активными металлами — щелочными и щелочноземельными — углерод образует солеподобные карбиды, в которых атомы углерода связаны между собой тройной связью в группировку — С С —, как, например, в СаС . Степень окисления углерода в них —1. При взаимодействии этих карбидов с водой они подвергаются гидролизу с образованием гидроксида металла и ацетилена  [c.203]

    Вероятно, в большинстве случаев механизм окисления включает первоначальное образование гликоля (т. 3, реакция 15-36) или циклического сложного эфира [186] с последующим окислением по реакции 19-7 [187]. Тройные связи более устойчивы к окислению, чем двойные, что согласуется с электрофильной атакой на олефин. [c.285]

    Важным химическим свойством этилена и его производных является способность легко окисляться уже при обычной температуре. При этом окислению подвергаются оба атома углерода, соединенные двойной связью. Если этилен пропускать в водный раствор перманганата калия КМПО4, то характерная фиолетовая окраска последнего исчезает, происходит окисление этилена КМПО4. Эта реакция используется для установления непредельности исследуемого вещества — содержания в нем двойных или тройных связей. [c.349]

    Окисление метиленовой группы в а-положении к двойной или тройной связи [c.435]

    Трудность окисления азота объясняется очень высокой энергией термической диссоциации его молекулы на атомы, а это, в свою очередь, обусловлено тройной связью. [c.196]

    Реакция окисления. Ацетиленовые углеводороды окисляются еще легче, чем этиленовые, и обычно с распадом молекулы по месту тройной связи. Фиолетовая окраска раствора марганцовокислого калия (КМпО ) при действии его на ацетиленовые углеводороды быстро исчезает, что служит качественной реакцией на эти непредельные соединения. [c.87]


    Для предельных углеводородов характерна устойчивость к различным реагентам, типичны для них реакции замещения, особенно радикального — 5 , непредельные углеводороды значительно более реакционноспособны, для них характерны реакции присоединения, главным образом электрофильного реакции окисления и полимеризации, а для ацетиленовых, кроме того, реакции замещения водорода при тройной связи на металл. В последней реакции проявляются некоторые кислотные свойства ацетилена, обусловленные больщей электроотрицательностью (выражающейся цифрой 3,1) атома углерода в состоянии <р-гибридизации по сравнению с и -гибридизацией (электроотрицательность соответственно 2,8 и 2,5), что вызывает сдвиг электронных плотностей в молекуле  [c.25]

    По химическим свойствам ацетилен во многом аналогичен этилену. Но так как в его молекуле содержится тройная связь, то он является еще более ненасыщенным соединением, а потому обладает большей реакционной способностью, чем этилен. Для него характерны реакции присоединения, окисления и полимеризации. [c.350]

    Ацетиленовые углеводороды легко окисляются при действии окислителей. При энергичном окислении углеродная цепь разрывается по месту тройной связи. [c.92]

    Окисление по Джонсу. Способ окисления первичных и вторичных спиртов с помощью хромового ангидрида СгОз в разбавленной серной кислоте. В качестве растворителя используется ацетон. Этим способом нельзя окислить тройную связь. [c.427]

    Реакция Эглинтона находит широкое применение в исходных алкинах могут присутствовать многие функциональные группы. Обычно окисление водорода при тройной связи происходит с достаточной степенью специфичности. Другая распространенная методика основана на использовании каталитических количеств солей меди(1) в присутствии аммиака или ам-монийхлорида (метод носит название реакции Глазера). Для реакции необходим атмосферный кислород или другие окислители, например перманганат или пероксид водорода. Для циклосочетания этот метод неудовлетворителен. Несимметричные диины можно получить по реакции сочетания Кадьо — Ходкевича [240]  [c.94]

    Еще один вариант — окисление соединения с концевой тройной связью ионом меди(П) вместо окисления ионом меди 1) и кислородом. [c.195]

    Данная глава начинается изучением номенклатуры алкинов, а затем будут рассмотрены реакции алкинов с точки зрения их кислотных свойств. После широкого обзора химических способов получения солей алкинов мы остановимся на некоторых методах получения алкинов. Затем мы изучим некоторые реакции присоединения к тройной связи присоединение галогенов, галогеноводородов, воды и диборана. Далее будут представлены реакции окисления алкинов и восстановления. В конце главы обсуждены спектральные свойства алкинов. [c.355]

    При дигидроборировании алкинов оба атома бора присоединяются к одному и тому же атому углерода. В случае алкинов с внутренним расположением тройной связи окисление продуктов реакции приводит преимущественно к кетонам, а если исходным продуктом является алкин с тройной связью, расположенной на конце цепи,— то к альдегидам. Истинная природа борорганических соединений последнего типа в настоящее время исследуется [9]. [c.205]

    В механизме окисления углеводородов, не содержащих активных двойных И тройных связей молекулярным кислородом (автоокисления, автооксидации), доминирующая роль в первичной стадии протекания процесса принадлежит, повидимому, гидроперекисям и оксиалкилперекисям, образующимся по формуле [c.155]

    Из табл. 27 следует, что ионизационные потенциалы атомов элементов V группы выше, чем IV группы. Это подтверждает существующую закономерность усиления неметаллических свойств в периодах слева направо. Азот и фосфор — типичные неметаллы, у мышьяка преобладают неметаллические свойства, у сурьмы в равной мере выражены металлические и неметаллические свойства, у висмута преобладают металлические свойства. При обычных условиях азот инертен, так как энергия тройной связи в его молекуле N = N велика (941,4 кДж/моль). При высоких температурах азот вступает в реакцию со многими металлами и неметаллами, образуя нитриды. Соединения азота со степенью окисления +5 являются сильными окислителями, например HNOa и ее соли. [c.232]

    При сульфировании ацетиленовых углеводородов действие столь активных агентов, как например дымящая серная кислота, приводит не только к двукратному присоединению —ОН и —ЗОзН по тройной связи, но также к окислению и последующему разрыву связи С—С, с образованием дисульфокислоты и карбоновой кислоты. Так, при действии 65%-ного олеума на ацетилен получается метандисульфокислота (метионовая кислота), образование которой можно представить как результат следующих реакций, где первично образовавшаяся ацетальдегиддисульфокислота гидролизуется затем в метио-новую и муравьиную кислоты  [c.122]

    Когда в качестве исходного вещества был взят циклоокта-нон (п = 6), удалось выделить углеводород С8Н12, который при окислении давал пробковую кислоту НООС (СНа) бСООН, что свидетельствовало в пользу присутствия циклооктина. Когда позднее циклооктин Домнина был подвергнут спектральному исследованию [127] оказалось, что в спектре комбинационного рассеяния наряду с линией тройной связи (2112 см- ), обнаруживаются и линии двойной связи. [c.483]

    В настоящем обзоре разбираются только методы введения тройной углерод углеродной связи и методы алкилирования аце-тилеяидов. В число рассматриваемых случаев не входят многочисленные примеры взаимодействия ацетиленидов натрия и ацп-тилеиидов других металлов, а также магниевых производных ацетилена, с карбонильными соединениями, в результате которого образуются соединения, содержащие тройную связь. Исключаются также и довольно близкие случаи конденсации ацетилена или алкилацетиленов с карбонильными соединениями под действием щелочных агентов (с образованием спиртов), а также реакции замещения водорода в этинильной группе на галоид при действии гипохлоритОБ и гипобромитов и образование диацети-ленов при окислении ацетиленидов металлов. [c.7]

    Окисление соединений, содержащих метиленовые или метильные группы в а-положении к двойной или тройной связи а,р-ненасыщенные спирты, альдегиды, или кетоны. Например, 2-метилбутен-2 окисляется в 2-метилбутеи-2-ол 1  [c.667]

    Окисление ацетиленов с концевой тройной связью, известное как реакция Глазера, представляет собой простой общий и полезный метод получения весьма разнообразных диацетиленов [1]. Эта реакция — простейший путь образования углерод-углеродных связей. Выходы обычно составляют 90% или выше при пропускании тока воздуха или кислорода через смесь ацетиленового соединения с хлоридом меди(1) и таким ам ином, как пиридин или этиламин. В присутствии кислорода значительно сокращается время реакции [2]. [c.194]

    Механизм окисления вторичных спиртов подобен окислению первичных сппртов]в альдегиды, поэтому для получения кетонов пригодны некоторые методы, рассмотренные нами ранее в предыдущем разделе. Ниже приведены примеры окисления вторичных спиртов до кетонов. Как мы видим из этих примеров, можно осуществить окисление спиртовой группы, но затрагивая двойные или тройные связи в этой же молекуле. [c.417]

    Следовало бы ожидать, что гидроборирование ацетиленов по Брау ну должно было бы приводить к образованию альдегидов. На самом деле винилорганические бораны, получаемые из соединений, содержащих тройную связь на конце цепи, подвергаются в щелочном растворе перекиси водорода обычному окислению. Например, из гек-сина-1 получается 1-гексальдегид с выходом 88% [30]. В разд. Д.2 рассмотрена полезная реакция изомеризации ацетиленацетатов в ненасыщенные альдегиды. [c.67]

    При реакции солей Т1 (III) с алкииами в воде вместо гидратацци тройной связи, идущей в случае солей Hg (II), происходит окисление  [c.1539]

    ДРУГОЙ СПОСОБ ГИДРАТАЦИИ АЛКИНОВ. Реже встречается другой способ присоединения элементов воды (И и ОН) к тройной связи. В этом случав начальной стадией является присоединение диборана по тройной связи. Продукт присоединения одной молекулы (ВНд) по тройной связи называется винилбораном. Последний может быть окислен до винилового-спирта на второй стадии процесса. Виниловый спирт (енол) изомеризуется в более устойчивую кето-форму. [c.367]

    Прежде чем закончить обсуждение, нам следует отметить комплементарную природу процессов гидратации с помощью НдО, НаЗО , Hg и 31а2ВН , сопровождаемых окислением. 1) Гидратация, катализируемая ионом двухвалентпой ртути, превращает алкин с неконцевой тройной связью в кетон. 2) Гидратация, катализируемая ионом двухвалентной ртути, превращает алкип с концевой тройной связью в метилкетон К—С—СНд. 3) Гид- [c.369]


Смотреть страницы где упоминается термин Тройная связь окисление: [c.137]    [c.561]    [c.9]    [c.76]    [c.281]    [c.355]    [c.137]    [c.136]    [c.308]    [c.882]    [c.627]    [c.500]    [c.505]    [c.506]    [c.369]   
Курс физической органический химии (1972) -- [ c.287 ]




ПОИСК





Смотрите так же термины и статьи:

Связь тройная



© 2025 chem21.info Реклама на сайте