Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Меди-аммония хлорид, получени

    Рассчитать количество исходных веществ для получения 25 г двойной соли. Пользуясь величинами растворимости (табл. П, стр. 357) хлорида меди и хлорида аммония, рассчитать количества воды, необходимой для получения насыщенных растворов при 50 °С. [c.349]

    В настоящее время в промышленности освоены следующие способы получения нитрила акриловой кислоты взаимодействие ацетилена и циановодорода на катализаторе, состоящем из смеси хлоридов меди, аммония и натрия, из этиленоксида и циановодорода, и из пропилена и аммиака. [c.135]


    Реактивы. 1. Смесь растворов хлорной меди и хлорида аммония 300 г хлорида аммония растворяют при нагревании в 800 мл воды и приливают к раствору хлорной меди, полученному растворением 1500 г хлорной меди в 2200 мл воды также при нагревании. Растворы соединяют, перемешивают и, если необходимо, фильтруют. [c.43]

    Получение двойной соли основано на взаимодействии концентрированных растворов хлорида меди и хлорида аммония  [c.313]

    Каталитическое действие ионов меди на восстановление ионов железа (III) тиосульфатом натрия. В два стакана вместимостью 100 мл налейте по 15 мл 0,01 н. раствора тиоцианата калия или аммония и по 1 мл 0,01 М раствора хлорида железа (III). Что при этом наблюдается В один из стаканов налейте 1 мл 0,1 н. раствора сульфата меди. К полученным растворам добавьте по 10 мл 0,1 н. раствора тиосульфата натрия. Происходит реакция [c.74]

    Присоединение хлороводорода к винилацетилену в жидкой фазе в присутствии хлорида меди (I) и хлорида аммония положено в основу промышленного способа получения хлоропрена  [c.120]

    Для работы требуется Колба емк. 50 мл с пробкой, воронкой и газоотводной трубкой. — Аппарат Киппа для получения сероводорода. — Штатив с пробирками. — Стакан емк. 500 мл. — Стакан емк. 100 мл. — Трубка стеклянная 0 см с пробкой. —Ступка фарфоровая. —Тигель фарфоровый с крышкой. — Щипцы тигельные. — Цилиндр мерный емк. 100 мл. — Воронка. — Нож. — Трубка паяльная. — Держатель для пробирок. — Асбест. — Бумага фильтровальная. — Бумага свинцовая. — Сульфат натрия безводный. — Уголь в порошке. — Уголь (кокс) кусковой. — Сера в кусках. — Сера в порошке. — Железные пластинки. — Сернистое железо.—Смесь цинковой пыли с серой. — Азотная кислота концентрированная. — Серная кислота, 2 н. и 4 н. растворы. — Аммиак, 10%-ный раствор. — Соляная кислота, 2 н. раствор. — Едкое кали, 2 н. раствор. — Хлорид олова (П), 0,5 н. раствор. — Сульфид аммония, 2 н. раствор. — Сульфид натрия, 2 н. раствор. — Хлорид сурьмы, 0,5 и. раствор. — Хлорид меди, 0,5 н. раствор. — Хлорид цинка. — Хлорид марганца, 0,5 и. раствор. — Хлорид бария, 2 н. раствор. — Теллурит калия, 2%-ный раствор. — Сернистая кислота, насыщенный раствор. — Селенистая кислота, 10%-ный раствор.— Раствор лакмуса нейтральный. — Спирт этиловый. — Ксилол. — Сероводородная вода. [c.278]


    Здесь учащиеся должны дополнить недостающие сведения, а именно подобрать те вещества, которые будут реагировать с исходным веществом с образованием указанного продукта, вспомнить условия реакций и правильно написать химические уравнения. К такому типу заданий относятся экспериментальные задачи в IX классе на доказательство ионного состава конкретной соли или на получение какого-либо вещества, если известно одно из исходных, например Докажите с помощью реакций обмена состав хлорида аммония Получите опытным путем гидроксид меди (И) из нитрата меди (И) . [c.13]

    Получение. Установку, собранную, как указано на рис. 115, продувают чистым ацетиленом со скоростью 10—12 л ч в течение 15— 20 Ш1Н.. Затем устанавливают в термостате 4 темпер р У 80 С, увеличивают скорость пропускания ацетилена до возможно большей и под его потоком " загружают в реактор небольшими порциями катализатор (35 г uj Ii, 20 г NH4 I и 45 г 0,1 н. раствора H I) в следующей последовательности соляная кислота, хлорид аммония, соля.ная кислота, хлорнд, меди (I), хлорид аммоиия, хлорид меди (I) и соляная кислота. Закрывают реактор пробкой и уменьшают скорость ацети- [c.378]

    Приборы и реактивы. Пробирки. Штатив для пробирок. Прибор для получения сероводорода. Прибор для получения сернистого газа. Пинцет. Фарфоре-вая пластинка. Сера. Медь проволочка и стружка). Сульфид железа. Сульфит натрия. Цинк (гранулированный и пыль). Железо (проволока и стружка). Сахар. Персульфат кялия (или аммония). Лакмусовая бумага. Спирт этиловый. Хлорная вода. Йодная вода. Сероводородная вода. Растворы азотной кислоты (уд. веса 1,4), соляной кислоты (уд. веса 1,19 и 2 н.), серной кислоты (уд. веса ,84, 2 н. и 4 н.), едкого натра (6 н.), сульфида аммония, хлорида бария (0,5 н.) хлорида стронция (0,5 н.), хлорида кальция (0,5 и.), хлорида трехвалентного железа (0,5 н.), перманганата калия (0,5 н.), бихромата калия (0,5 н.), сульфата кадмия (0,5 н.), сульфата марганца (0,5 н.), нитрата свинца (0,5 н.), нитрата серебра (0,1 и.), тиосульфата натрия (0,5 п.), персульфата аммония или калия (0,5 и.), сульфита натрпя (насыщенный). [c.143]

    Исследуемые смеси готовились из спиртового раствора хлорида меди и мопоэта-ноламина. Постоянство шитой среды поддерживалось введепием в систему 0,1 М нитрата аммония. При этом ие наблюдалось взаимодействия гп1трата аммония с полученным комплексом, подобно указанному в работе [3] для водно-спиртовых растворов. Исходная концентрация Си++ в каждой отдельной серии опытов была постоянной и составля.ла в нервом случае 10 г ион/л, во втором случае 10 г ион/л и в третьем случае Ю г иоп/л. Коицентрация моноэтаноламина изменя. 1ась от 0,3 до-1,5 моль./л. [c.70]

    Аппаратура, материалы и реактивы. Аппарат Киппа для получения сероводорода, прибор по рис. 32. Индикаторы растворы лакмоида, метилового красного и фенолфталеина. Серная кислота концентрированная и 2 н., азотная кислота концентрированная. Двухнормальные растворы соляной кислоты, едкого натра, хлорида натрия, сульфида натрия, карбоната натрия, ацетата натрия, ацетата аммония, хлорида кальция, хлорида бария, хлорида цинка, хлорида алюминия, хлорида меди, сульфата меди, хлорида сурьмы (Н1), сульфата железа (П), сульфата железа (П1). Раствор сульфида аммония. [c.70]

    Приборы и реактивы. Прибор для получения азота и нитрида магния. Прибор для получения оксида азота(П). Кристаллизатор или фарфоровая чашка, Тигель фарфоровый. Микроколба. Лучина. Стеклянная палочка. Нитрат свинца. Ацетат аммония. Хлорид кальция прокаленный. Нитрат калия. Хлорид аммония. Сульфат а.ммония. Магний — порошок. Смесь бихромата калия и сульфата аммония 2 1 по весу. Нитрит калия. Нитрат серебра. Медь (стружка). Гашеная известь. Индикаторы красная лакмусовая бумажка, фенолфталеин, лакмус красный. Водный раствор аммиака (2 н. 25%-ный). Бромная вода. Растворы хлорида аммония (0,5 н. насыщенный) нитрита калия (0,5 н. насыщенный) иодида калия (0,1 н.) сульфата алюминия (0,5 н.) перманганата калия (0,5 н.) бихромата калия (0,5 н.) азотной кислоты (плотность 1,4 г/см и 1,12 г/см ) серной кислоты (2 н.) соляной кислоты (плотность 1,19 г/см ) едкого натра (2 н.). [c.194]

    Ионы меди, серебра и кадмия переводят в аммикаты [Си(ЫНз) ] - , [Ад(ЫНз)2] . [ d(NHз)4] +. Полученные комплексные катионы разделяют электрохроматографическн, применяя в качестве электролита смесь 1 М раствора хлорида аммония и 0,5 М раствора аммиака. Все три иона перемещаются к катоду [Ае(ЫНз)2]+—на растояние от 2 до 4 см [С(1(ЫНз)4Р — от 4 до 6 см [Си(ЫНз)4] — от 6 до 9 см. Если в анализируемом растворе присутствуют РЬ + и В1 +, то они с электролитом образуют осадки РЬ(ОН) и В1(ОН)(ЫОз)2, которые в силу значительной сорбционной способности искажают хроматограмму, и поэтому четкого разделения ионов не происходит. Б присутствии Hg(N0a)2 часть ионов Hg + образует осадок в виде Hg [c.352]


    Приборы и реактивы. Прибор для получения сероводорода. Стакан. Тигель № 1. Фарфоровая чашечка (с1 = 3.— 4 см). Железная полоска. Цинк (гранулированный порошок). Натрий. Церий или мишметалл. Диоксид марганца. Мод кристаллический. Магний лента. Пероксид бария. Сульфат натрня. Сульфит натрия. Нитрит калия. Сульфид железа. Нитрат меди Си(Ы0з)2-ЗН20, Висмутат натрня. Дихромат аммоиия. Пероксодисульфат калия или аммония. Спирт этиловый. Растворы сероводородная вода хлорная вода бромная вода йодная вода крахмала фенолфталеина щавелевой кислоты (0,5 н,) серной кислоты (2 и. 4 и, плотность 1,84 г/см ) хлороводородной кислоты (2 н. плотность 1,19 г/см ) азотной кислоты (0,2 н. 2 н.) уксусной кислоты (2 и.) гидроксида натрня или калия (2 и.) аммиака (2 н. 25%) сульфата марганца (0,5 и.) сульфата меди (0,5 н,) сульфита натрня (0,5 н,) хлорида олова (11) (0,5 и,) дихромата калия (0,5 н.) перманганата калия (0,5 н,) нитрата ртути (II) (0,5 н,) нитрата серебра (0,1 н.) формальдегида (10%-ный) пероксида водорода (3%-ный) иодида калия (0,5 н.) сульфата цинка (0,5 и.) хлорида железа (111) (0,5 и.) гексацнано-феррата (III) калия (0,5 н.) соли ттана (IV) (0,5 и.) сульфида натрия нли аммония (0,5 и,) гидроксида натрия (2 н,). [c.94]

    При промывании осадки, полученные по ходу качественного анализа, частично проходят через фильтр. Это объясняется тем, что ионы электролита, захваченные при осаждении, растворяясь в воде, пепти-зируют осадок. Для предупреждения пептизации в промывную воду добавляют заметное количество H2S, НС1 или KNO3 (ионы К" и N0 не мешают исследованию осадка). Осадки гидроокисей металлов промывают водой, содержащей гидроокись и хлорид аммония. Образование золей нежелательно, так как оно препятствует полному разделению катионов. Однако иногда специально получают золи с яркой окраской, чтобы обнаружить следы некоторых ионов. Например, малое количество железа можно обнаружить по ярко-голубой окраске коллоидных растворов берлинской лазури (чувствительность г мл), меди — по яркой красно-коричневой окраске железистосинеродистой меди, кадмия — по желтой окраске сульфида кадмия, алюминия — по интенсивной красной окраске золя с алюминоном (лака) (чувствительность 10 г мл). [c.88]

    Получение. Ацетиленид меди (взрывается ом. стр. 363) получают пропусканием адетилена через аммиачный раствор хлорида меди (I). Для приготовления раствора к 50 г хлорида меди (I) добавляют насыщенный раствор карбоната аммония в таком количестве, чтобы растворилась вся соль, затем к рас- трору добавляют 20—35 м.г 25%-ном раствора аммиака. [c.383]

    К 10 мл анализируемого раствора, свободного от свинца, прибавляют 2 мл разбавленной НС1 и 0,5 г KJ. Затем перемешивают и прибавляют 5 мл спирта или ацетона и 5—10 мл уксусноэтилового эфира. Встряхивают и дают отстояться. Верхний слой красного цвета отделяют от нижнего водного слоя и еще pii3 экстрагируют висмут. Эфирный экстракт встряхивают с 5 мл концентрированного водного раствора хлорида аммония, и эфирный слой промывают 25 мл воды, и затем 5 мл воды, подкисленной НС1. При этом висмут переходит в водный слой. Водный раствор, содержащий весь висмут, нейтрализуют аммиаком и к нему прибавляют избыток (1—2 капли) разбавленной НС1. Для удаления эфира раствор нагревают, а после охлаждения разбавляют до 50 мл и добавляют 1 мл разбавленного раствора сульфида натрия. Полученный коллоидный раствор сульфида висмута колориметрируют. В присутствии меди или рт и раствор де т щелочным и прибавляют K N. рл опреиЬ этим методом висмут в моче. [c.202]

    Электроосаждение из неводных сред металлов четвертой группы представляет интерес прежде всего для германия и подгруппы титана, поскольку эти металлы электролитически из водных растворов не осаждаются [484, 404]. Наилучшие результаты получены в случае германия. Из спиртовых растворов (преимуш ественно в двухатомных спиртах) галогенидов германия выделены тонкие катодные пленки металлического германия [702, 641, 1225, 482, 381, 292, 650, 291, 293]. Наряду с осаждением германия на катоде происходит выделение водорода, на последний процесс расходуется основная часть тока. Выход по току германия низкий (порядка 1—3 %) Большое влияние на процесс злектроосаждения оказывает природа металлической подложки. При определенных концентрациях галогенида германия, повышенных плотностях тока и температурах возможно катодное образование диоксида германия [482, 196]. Пример оптимальных условий получения металлического германия растворитель — этиленгликоль, концентрация ОеСи — 3—5 %, температура — комнатная, интервал плотности тока 5—50 А/дм . При этих условиях на подложках из меди, серебра, платины и алюминия осаждаются ровные, хорошо сцепленные с подложкой, компактные германиевые покрытия светло-серого цвета. В качестве анода использовали графит или германий, выход по току германия составляет 2 % [291, 293]. Возможно катодное получение пленок германия и из других неводных сред, например из низкотемпературных расплавов ацетамида [147]. Из растворов в ацетамиде с добавками хлорида аммония при температуре 90—130 °С двухвалентный германий восстанавливается, образуя тонкослойные (1—2 мк) осадки, прочно сцепленные с подложкой. Выход по току еще ниже, чем в спиртовых растворах (приблизительно 0,1—0,5 %) Из-за выделяющегося водорода осадок германия при этом достаточно наводорожен. [c.157]

    Ацетилен используется для получения синтетических каучуков (см. 2.3.4). При пропускании ацетилена через подкисленный водный раствор, содержащий смесь хлорида меди(1) СиС1 и хлорида аммония МН С1 происходит реакция димеризации с образованием винил-ацетилена, в молекуле которого находятся одновременно двойная и тройная связи. При действии хлороводорода на винилацети-леи осуществляется присоединение только по тройной связи и образуется хлоропрен (2-хлорбутадиен-1,3), полимеризацией которого получают хлоропреновьи каучук. [c.103]

    Хармадарьян и Бродович [22], исследуя влияние носителя нэ каталитические свойства пятиокиси ванадия в окислении двуокиси серы воздухом, считали, что двуокись марганца лучший носитель, чем такие вещества, как асбест, инфузорная земля, стекло, фарфор и кварц,и отметили, что действие активаторов— сульфата меди, сульфата железа, хлорида бария и сульфата марганца—является функцией природы носителя. Они также указали, что метод покрьп ия и толщина слоя значительно влияют на эффективность катализатсра. Пятиокись ванадия, осажденная из коллоидного раствора соляной кислотой, имела большую каталитическую активность, чем приготовленная коагуляцией нагреванием. Зависимость активности от концентрации раствора обнаружена у катализатора, приготовленного из метаванадата аммония, нагретого до 440° для получения равномерного распределения. [c.124]

    Фишер [49] указал, что под влиянием электронной бомбардировки в микроскопе кристаллы хлоридов натрия и калия распадаются на более мелкие частицы без изменения химического состава. Быстро возгоняются кристаллы хлористого аммония. Такие соединения, как хлористое и азотнокислое серебро, закись меди и углекислый свинец, восстанавливаются с образованием металла. При достаточно высоких значениях интенсивности электронного пучка начинается разложение бромистого кадмия и на электронограмме появляются линии, указывающие на присутствие в продуктах реакции металлического кадмия [50]. Тэлбот [51] электронографически показал, что воздействие сильного электронного пучка вызывает разложение сернокислого кальция с образованием окиси и сернистого кальция. Возникновение своеобразной пористой структуры было отмечено в окиси алюминия, полученной обезвоживанием кристаллов гиббсита [52]. Поры в продукте реакции имели удли- [c.182]

    Фосфорномолибденовая кислота экстрагируется селективно, и ионы силиката, арсената и германата не мешают, в то время как при обычном методе определения по образованию фосфорномолибденовой кислоты названные ионы мешают определению. Уэйдлин и Меллон [26] исследовали зкстрагируемость гетерополикислот и установили, что 20%-ный по объему раствор бутанола-1 в хлороформе селективно извлекает фосфорномолибденовую кислоту в присутствии ионов арсената, силиката и германата. Предложенный ими метод позволяет определить 25 мкг фосфора в присутствии 4 мг мышьяка, 5 мг кремния и 1 мг германия. Более того, при экстракции удаляется избыток молибдата, поглощающего в ультрафиолетовой области. Измерение оптической плотности экстракта при 310 ммк обеспечивает увеличение чувствительности метода. Для получения надежных результатов необходимо строго контролировать концентрацию реагентов. Определению не мешают ионы ацетата, аммония, бария, бериллия, бората, бромида, кадмия, кальция, хлорида, трехвалентного хрома, кобальта, двухвалентной меди, йодата, йодида, лития, магния, двухвалентного марганца, двухвалентной ртути, никеля, нитрата, калия, четырехвалентного селена, натрия, стронция и тартрата. Должны отсутствовать ионы трехвалентного золота, трехвалентного висмута, бихромата, свинца, нитрита, роданида, тиосульфата, тория, уранила и цирконила. Допустимо присутствие до 1 мг фторида, перйодата, перманганата, ванадата и цинка. Количество алюминия, трехвалентного железа и вольфрамата не должно превышать 10 мг. [c.20]

    Приборы н реактивы. Газометр с хлором или прибор для получения хлора. Прибор для получения сероводорода. Пробирки. Штатив для пробирок. Гво.здь. Сурьма. Цинк. Сульфит натрия. Двуокись свинца. Нитрит калия. Сульфид железа. Нитрат свинца. Перекись натрия. Карбонат натрия. Персульфят аммония или калия. Крахмальный клейстер. Спирт этиловый. Сероводородная вода. Бромная вода. Иод.чая вода. Растворы серной кислоты (2 н., 4 н., уд. веса 1,84), соляной кислоты (уд. веса 1,19), азотной кислоты (0,2 н. и 2 н.), едкого натра или кали (2 и.), гидроокиси аммония (2 н.), уксусной кислоты (2 н.), сульфата меди (0,5 н.), хлорида сурьмы (0,5 н.), бихромата калия (0,5 н.), арсенита натрия (0,5 н,), бикарбоната катрия (0,5 и.), перманганата натрия (0,5 н.), роданида аммония (0,01 н.), хлорида олова (0,5 н.), нитрита двухвалентной ртути (0,5 н.), нитрата свинца (0,5 н.), нитрата серебра (0,1 н.), формальдегида (10%-ный), перекиси водрода (3%-ный). [c.95]


Смотреть страницы где упоминается термин Меди-аммония хлорид, получени: [c.658]    [c.293]    [c.136]    [c.417]    [c.339]    [c.496]    [c.213]    [c.496]    [c.191]    [c.509]    [c.403]   
Практикум по общей химии Издание 3 (1957) -- [ c.319 ]




ПОИСК





Смотрите так же термины и статьи:

Аммоний получение

Аммоний хлорид

Хлорид аммония получение



© 2025 chem21.info Реклама на сайте