Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Толуол реакция с этиленом

    Кроме этой основной реакции, идет ряд побочных, в результате которых образуются бензол, толуол, метан, этилен и другие угле- [c.163]

    Наряду с основной реакцией протекают побочные реакции распада и уплотнения. В результате распада этилбензола образуются бензол, толуол, метан, этилен. Происходит также полное разложение углеводородов  [c.98]

    Ароматические углеводороды вследствие своей резонансной характеристики более устойчивы к иррадиации [772, 773], но с ними могут индуцироваться химические реакции. Таким образом, обработка Х-лучами нейтральных водных растворов бензола, насьщенного кислородом, дает фенол, пирокатехин-хинол, пара-бензохинон, альдегид и следы дифенила. В этом случае молекулярный кислород, но-видимому, принимает участие в реакциях радикалов [774]. Можно заметить для сравнения в водном растворе, содержанием кислород и этилен, гамма-лучи вызывают цепные реакции, которые образуют альдегиды с меньшим содержанием спиртов, кислоты, перекиси водорода и других перекисей. Для альдегидов выход в молекулах на 100 эе был около 200 [775]. Подобным же образом индуцируется гамма-лучами хлорирование более низких ароматических соединений таких, как бензол, толуол, ксилол и мезитилен однако бензол устойчив [776]. Как для бензола, так и для толуола хлорирование пропорционально квадратному корню интенсивности излучения это применимо и к присоединению, и к замещению [777 ]. Изучалось также и влияние радиации на асфальты [778]. Изменения, по-видимому, в отличие от вызываемых продувкой воздухом, линеарны по времени и проходят с небольшой скоростью. [c.152]


    При достаточной применимости этих допущений оба уравнения для и оба урав нения для Ig/ довольно хорошо отражают фактические соотношения и приводят к результатам, не содержащим значительной погрешности. Так, при расчете константы равновесия реакции гидрогенизации этилбензола до этилциклогексана по данным для аналогичной реакции гидрогенизации толуола при 700 К уравнение (VII, 34) приводит к значению Ig/С оо = —4,89, а уравнение (IV, 29)—к значению —4,84, в то время как расчет по справочным данным, относящимся непосредственно к компонентам рассматриваемой реакции, приводит к значению —4,86. В табл. VII,20 сопоставлены результаты расчета Ig этой реакции по уравнению (VII, 34) для других температур. В табл. VII, 21 также сопоставлены Ig/ , но реакций гидрогенизации некоторых алкенов при 700 К. Хотя расчет был произведен в этом случае по первому члену гомологического ряда — этилену, однако для [c.293]

    Состав продуктов реакции контролируется не только термодинамическим равновесием, но часто и кинетическими факторами. Алкилирование ароматических углеводородов — сложный процесс, состоящий из ряда взаимосвязанных между собой реакций, таких, как алкилирование, изомеризация, диспропорциони-рование, переалкилирование, полимеризация и т. д. Расчеты равновесия процесса с учетом побочных реакций являются сложной задачей, которая в определенной степени была решена рядом исследователей [9, 10]. Тем не менее термодинамические расчеты по упрощенной схеме процесса алкилирования, в которой, не учитывается ряд стадий и побочных реакций, целесообразно использовать для определения основных параметров процесса, необходимых для его оптимизации. Термодинамический расчет алкилирования бензола этиленом и пропиленом в газовой и жидкой фазах детально рассмотрен в работе [10] и при необходимости может быть использован читателями. Сведения для термодинамических расчетов алкилирования бензола, толуола, ксилолов и других алкилароматических углеводородов можно заимствовать из работы [11]. [c.15]

    Интересно, что к-бутиллитий, связанный в хелатный комплекс с дитретичными аминами, катализирует реакцию между бензолом и этиленом, в результате которой образуются моно-алкилбензолы, содержащие только четное число атомов углерода в боковой цепи, В случае толуола в присутствии того же [c.151]

    Хотя расчеты на ЭВМ с использованием уравнений (44) и (45) для различных температур (580—640 °С) и приведенных времен контакта показали, что данная кинетическая модель достаточно хорошо описывает эксперимент на лабораторной установке, следует отметить, что она не учитывает вероятность торможения суммарной реакции образующимся стиролом, а главное, не принимает во внимание возможность расщепления этилбензола на бензол и этилен и каталитический (бимолекулярный) гидрогенолиз стирола в бензол и толуол. [c.129]


    При полимеризации в растворе существенно облегчается отвод теплоты из реакционных объемов, перемешивание и транспортирование продуктов реакции, возможность организации непрерывного лроизводства и автоматизации управления им. Для полимеризации углеводородов и их производных (этилен, бутадиен и их производные) в качестве растворителей используются гексан, гептан, бензин, толуол, циклогексан и другие углеводороды. Очистка растворителей и реагентов от влаги и кислорода осуществляется осушением и проведением процесса в среде инертных газов. Концентрация мономера в растворе не должна превышать 20%, чтобы избежать роста вязкости системы. Для сокращения расхода растворителя его регенерируют после проведения процесса полимеризации. В образующемся полимере необходимо дезактивировать (или удалять) катализатор, так как он ухудшает свойства полимера и изделий из него (устойчивость к старению, действию химических сред и др.). [c.82]

    Наряду с главной реакцией протекают побочные, из которых наиболее важными являются диспропорционирование толуола до бензола и ксилолов, алкилирование образующегося бензола этиленом, изомеризация метилбензолов  [c.130]

    Катализируемые основаниями реакции углерод-углеродного (по С—С-овязи) шрисоединения представляют интерес для препаративных целей, поскольку они позволяют получать с хорошим выходом углеводороды и аналогичные им соединения щростым одностадийным процессом. Возможность проведения этих реакций определяется тем, что углеводороды и другие соединения, содержащие бензильный или аллильный атом водорода, являются углеродными кислотами , имеющими рКа в интервале от 35 до 37 они могут отдавать протон основанию и превращаться в карба-нионы. Эти карбаиионы способны присоединяться по двойной связи ненасыщенных углеводородов. Превращения, наблюдаемые в ходе цепной каталитической реакции, иллюстрируются приведенными ниже уравнениями (реагенты — толуол и этилен, катализатор — натрий) [5]  [c.164]

Таблица 2.12. Каталитические свойства различных Н-пентасилов в реакции толуола с этиленом Таблица 2.12. <a href="/info/215359">Каталитические свойства</a> различных Н-пентасилов в <a href="/info/124581">реакции толуола</a> с этиленом
    Включение молекулы Оа в алкиларильиые соединения происходит у алкильного углерода, не затрагивая углерод ароматического кольца, поэтому бензол вовсе не реагирует. В алкильном радикале реакционная способность углерода растет со степенью замещения, в частности, внедрение Ог третичного атома кумола происходит быстрее, чем у вторичного атома в этилен-бензоле, а последний образует гидроперекись значительно быстрее, чем толуол. Реакция идет с постоянной скоростью, вероятно, по этапной схеме [30]. [c.40]

    Реакция толуола с пропиленом и высшими олефинами аналогична реакции толуола с этиленом. В противоположность ал-килированию ароматических углеводородов в условиях кислотного катализа реакция толуола с пропиленом, катализируемая основаниями, протекает медленнее, чем реакция с этиленом. В более жестких условиях, например при 225—250°, толуол взаимодействует с пропиленом с удовлетворительной скоростью как установили Пайне и Марк [20], при взаимодействии бутиленов [c.357]

    Значительное место отведено расчету равновесий реакций синтеза важнейших мономеров и полупродуктов, являюш,ихся исходным сырьем для производства различных высокомолекулярных продуктов и пластиков в их числе ацетилен, этилен, пропилен, дивинил, изопрен ароматические углеводороды — бензол, толуол, ксилолы и другие алкилбен-золы — стирол, винилнафталин альдегиды — кетоны, кислоты, спирты, некоторые азотсодержащие соединения и др. [c.5]

    Ароматические углеводороды легче алкилируются олефинами, чем изопарафины. Наиболее благоприятными термодинамическими условиями термической реакции между бензолом и этиленом являются атмосферное давление и температуры до 540° [566], в то время как для изопарафинов — около 300° С. Признаки термического алкилирования бензола с этаном, пропаном и бутанами, проходящего, вероятно, по механизму свободных радикалов, получены при 475—550° С иод давлением 323 — 337 кПсм , наряду с другими продуктами (бифенилом, флуоре-пом, антраценом, дифенилбензолом и т. п.) образуются толуол, этилбензол, Сз и С4-алкилбензолы и ксилолы [567]. Алкилирование бензола проходит полностью в присутствии кислотного катализатора. Кремний-алюминиевые комплексы применяются под давлением нри 240—260° С для алкилирования бензола с этиленом и при 190—240° С с пропиленом в результате реакций образуются этил-и изопронилбензолы [568]. С крепкими кислотами реакция проходит еще легче. Цимол получают алкилированием бензола с пропиленом над катализатором (фосфорная кислота на кизельгуре) [569, 570] или серной кислотой [571, 572]. Фтористоводородная кислота также является эффективным катализатором [573, 574] может применяться и алкан-серная кислота [575], хотя и с металлическим натрием [576] в качестве промотора. [c.133]


    Наряду со стиролом и водородом при дегидрировании этилбензола образуются такие побочные продукты, как метан, окись и двуокись углерода, этилен, бензол, толуол, ксилолы, изопропил-бензал, а- и р-метилстиролы, дибензил, стильбен, антрацен, флуо-рен и др. Бензол и толуол, как было доказано с помощью меченых -атомов [14], возникают непосредственно из этилбензола, а также и из стирола. Они представляют собой главные побочные продукты, в основном определяющие селективность процесса. Высказывалось немало предположений о том, что реакция образования бензола и толуола является обратимой и что добавки этих углеводородов могут увеличить выход целевого продукта. Однако на практике это приводило лищь к уменьщению производительности и отравлению катализатора сопутствующими примесями. [c.735]

    Распад на элементы — не единственная реакция пиролиза метана. Сокращением длительности нагревания и регулированием скорости oxJ[aждeния продуктов реакции из метана можно получить также газообразные и жидкие углеводороды. При 850— 1200 С, пропуская метан с большой скоростью через нагретые фарфоровые и кварцевые трубки, получают конденсат, содеря<а-щий непредельные углеводороды, бензол, толуол, нафталин и тяжелую смолу, содержащую высшие ароматические углеводороды. В газообразных продуктах обнаруживают этилен, ацетилен и бутадиен. Некоторые катализаторы (SiOj, W, Mo, Sn) ускоряют эпу реакцию, другие (железо, графит) — замедляют. Максимальный выход олефинов наблюдается при температурах до 1000 °С, ароматических углеводородов — при 1000—1200 С, а ацетилена — при 1500 С. Образование всех этих продуктов объясняют возникновением нри высоких температурах кратковременно су1цествующих свободных радикалов, например метиленового радикала Hg  [c.411]

    Э и же условия ведут к нежелательной деструкции алкильных груп и побочному образованию алкилбензолов с более короткой алки.1Ьпой группой. Так, при реакции с проиилеиом иобочио получается этилбензол, с этиленом — толуол и т. д. Особенно заметна такая деструкция ири алкилировании алкилгалогепидами и олефинами с достаточно длинной углеродной цепью. Реакция, вероятно, происходит иа стадии расщепления иона карбония, образовавшегося нз алкилирующего агента  [c.247]

    Механизм образования низкотемпературного ПУ исследовался [7-50] методом газового хроматографического анализа продуктов пиролиза, образующихся на поверхности осаждения до и в процессе отложения ПУ. Было установлено, что при 1120 С и давлении метана примерно 40 кПа отложение ПУ начинается после протекания упомянутой выше (рис. 7-20) серий последовательных реакций, в которых образуются ацетилен, этан, этилен, толуол, стирол, пропилен-бензол, нафталин, аценафтен, фенантрен, антрацен и флюорантен. Возникают также вещества с большей, чем у перечисленных, относительной молекулярной массой. Их идентификация затруднена в связи с их малым количеством. [c.455]

    Ароматизацию смеси н-гептан - бензол проводили при массовом содержании бензола в смеси от нуля до 30 %. В ходе проведения экспериментов было установлено, что с увеличением концентрации бензола в смеси с н-гептаном наблюдается расходование бензола с достижением его степени конверсии 32,3 % при содержании в смеси 30 % мае. При концентрации бензола в смеси 12,5 % мае. начинает протекать реакция алкилирования бензола этиленом, что проявляется в увеличении доли этилбензола в составе аренов. При содержании бензола 30 % мае. наряду с реакцией алкилирования возможно взаимодействие бензола с продуктом ароматизации - ксилолом, что приводит к образованшо толуола по реакции диспропорционирования. [c.16]

    Из схемы следует, что кроме а-метилстирола при протекании побочных реакций из кумола образуются бензол, толуол, стирол, метан, этилен, пропилен. Побочные продукты снижают селективность процесса. При высоких температурах (530-600 °С) на железооксидных катализаторах в условиях разбавления водой (соотношение водаггаз А. = 15- 20) протекает преимущественно реакция дегидрирования до а-метилстирола. Рассчитанные для этих условий равновесные (теоретически возможные) степень превращения и селективность соответственно равны = =0,99 и = 0,98. Конверсия кумола в действующем производстве достигает Хд = 0,5, а селективность по а-метилстиролу 5д = 0,9. Используя значения конверсии и селективности в действующем процессе и их предельные значения, можно определить коэффициент эффективности реакторного узла дегидрирования  [c.231]

    К реакциям такого типа относится сочетание алкинов или алкенов в присутствии монооксида углерода с образованием пятичленных циклических кетонов. Например, алкиновые комплексы кобальта в кипящем толуоле стехиометричеоки реагирует с этиленом, терминальными алкенами и циклоалкенами (СзНв— СаНи), давая в качестве единственного продукта циклопентеноны [72] [схемы (3.58), (3.59)]. Стехиометрическая реакция тет-ракарбонилникеля с двумя молекулами алкина также дает циклопентеноны [73] [схема (3.60)]. [c.99]

    За редким исключением, например цис-транс-изо-меризации или медленной миграции двойной связи в олефинах в результате термического, фото- или радиационного воздействия, большинство реакций изомеризации yi леводородов протекают лишь в присутствии катализаторов. ЬСаталитическую активность в отношении изомеризации могут проявлять соединения, большей половины элементов таблицы Менделеева. Хотя некоторые реакции изомеризации могут протекать в присутствии металлов и щелочей, в большинстве известных промышленно значимых процессов изомеризации углеводородов гфименяются катализаторы, обладающие явно выраженными кислотными свойствами. 1Сислотно-основной катализ реакций углеводородов отражает основные или кислотные свойства молекул этих углеводородов. Олефины и ароматические углеводороды являются слабыми основаниями, обладающими некоторым сродством к протону. В олефинах в ряду — этилен, пропилен, изобутилен — основность повышается с увеличением степени замещения образующихся ионов карбония. В ряду ароматических углеводородов — бензол, толуол, о-ксилол — растворимость в НС1 или НВг, а также их растворимость в смеси HF и ВРз, возрастает, что указывает на увеличение основности, возрастающей с увеличением степени замещения метильной группой. [c.893]

    Технологическая схема процесса приведена на рис. 2.7. В реактор синтеза карбоксилатов циркония 1 подают толуол, технический тетрахлорид циркония и фракцию С5—Се СЖК. Выделяющийся прн этом хлороводород поглощают раствором аммиака в аппарате 5. Толуольный раствор карбоксилатов циркония через фильтр 2 подают в емкость 3, а затем направляют в реактор олигомеризации 9. Другим потоком из емкости 6 в реактор Бодают раствор СЭАХ в толуоле. Перемешивание реакционной смеси и отвод тепла реакции осуществляют циркулирующим этиленом, который через компрессор 14 и теплообменник 15 непрерывно подают в нижнюю часть реактора 9. Непрореагиро-вавший этилен, пары толуола и фракция олефинов С4—Се (7— 90%) проходят теплообменники 10, И. Толуол возвращают обратно в реактор, а сконденснровавшиеся С4—Се-олефины собирают в сборнике 12 и направляют на ректификацию. [c.94]

    Из рассмотренных кристаллических алюмосиликатных материалов наибольший интерес для практического использования представляют цеолиты ЦВМ [111]. В отличие от алюмосиликатов типа ZSM, ЦВК и ультрасил, пентасилы ЦВМ при синтезе получаются в Na-форме. В таком виде они не активны в реакции алкилирования толуола этиленом. Замещение Na катион- [c.131]

    Этилен, толуол О реакциях полимери разделе Титан . Ацетальдегид 1 Теломер зации на сложных каталиг Реакции по, Полимер, НдО 1 н-СдНэЫ 40 бар, 120° С, 15 мин [139] Эторах, содержащих литийорганические соединения, см. t ликонденсации НС=СМ(М—Li,. Na или К) в -гептане, 0° С, 15—20 ч. Лучший катализатор—H = Li. Полимер имеет структуру поливинилового спирта. Мол. вес 250—500 [140] [c.15]

    В отличие от Нолли и Катцера [202] Хааг (см. обзор Венуто [И]) изучал алкилирование толуола этиленом в присутствии цеолита РЗЭ-У в жидкой фазе при 80°С. Кинетика этой реакцйй подчинялась уравнению (22), согласно которому скорость алкилирования прямо пропорциональна концентрации каждого реагента, а А —кажущаяся константа скорости реакции второго порядка — на самом деле является произведением истинной константы скорости к и адсорбционного коэффициента этилена. Хааг показал, что в выбранных им условиях диффузионные ограничения отсутствовали и по кинетике можно судить о протекании химической реакции. [c.58]

    В газовой фазе хемилюминесценция сопровождает реакции окисления различных органических веществ молекулярным кислородом. Наибольшее число хемилюминесцентных реакций описано в работах Перкина [49] и Преттра [50—55]. В их опытах свечение наблюдалось визуально при пропускании через нагретую трубку смеси окисляемого вещества с кислородом или воздухом в реакциях окисления насыщенных углеводородов (пропан, н. пен-тан, н.гексан, н.гептан, н.октан) ненасыщенных углеводородов (этилен, пентен, циклогексен) алициклических и ароматических углеводородов (циклогексан, бензол, толуол) спиртов (метиловый, этиловый, н.пропиловый, н.амиловый и изоамиловый, н.гепти ловый) эфиров (диэтиловый) альдегидов (уксусный, масляный) [c.8]

    Литературный материал, собранный мисс Вандерворт, ограничился рефератами Хемикел Абстракте за период с 1940 по 1956 г. Ею собраны данные по вопросам кинетики, механизма реакций, аппаратуры лабораторных и опытных установок, заводского оборудования, а также по катализаторам окисления в паровой фазе и по каталитическим процессам. В предметном указателе Хемикал Абстракте просматривались следующие заголовки окисление, кислород, воздух, аммиак, азотная кислота, окись азота, окись углерода, двуокись серы, серная кислота, трехокись серы, ацетилен, соединения ацетилена, бензол, этилен, окись этилена, антрацен, нафталин, ксилолы, водород, синильная кислота, амины, циклоалканы, толуол, тиолы, соединения меркаптана, альдегид, кетоны, спирты, катализ и катализаторы. В обзор включены статьи, опубликованные в 1957 г. [c.204]

    Процесс идет при 650-750 С без катализатора, подчиняясь закономерностям радикально-цепных реакций и будучи энергоавтономным за счет теплоты реакции. На опытной установке достигнуты следующие показатели конверсия толуола 40-50 %, селективность, % этилбензол + стирол 45-50, бензол 23-28, фенол 12-14, крезолы 6-8, остаток (нафталин, дифенил, дибензил) 4-5. Реакционная смесь может быть разделена ректификацией с выделением бензола в качестве одного из товарных продуктов. Еще более экономично кооперирование процесса с действующим производством этилбензола алкилированием бензола этиленом [140]. [c.236]


Смотреть страницы где упоминается термин Толуол реакция с этиленом: [c.29]    [c.25]    [c.165]    [c.216]    [c.122]    [c.477]    [c.12]    [c.22]    [c.221]    [c.132]    [c.248]    [c.300]    [c.305]    [c.55]    [c.68]    [c.79]    [c.764]    [c.400]    [c.409]   
Безводный хлористый алюминий в органической химии (1949) -- [ c.462 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции этилена



© 2025 chem21.info Реклама на сайте